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Abstract In this note we investigate the generalized modulus of convexity δ(λ) and
the generalized modulus smoothness ρ(λ). We find some estimates of these modulus for
X = ℓp. We obtain inequalities between WCS coefficient of a Köthe sequence space

X and δ
(λ)
X . We show that for a wide class of Köthe sequence spaces X if for some

ε ∈ (0, 9
10
] holds δX(ε) >

1

3

(
1−

√
3

2

)
ε, then X has normal structure.
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1 Introduction

The weakly convergent sequence coefficient WCS(X) of a Banach space X was intro-
duced by Bynum in [1]. The connections of the coefficientWCS(X) with some geomet-
ric parameters is widely investigated. The notation of normal structure was introduced
by Brodskii and Milman in [2]. A reflexive Banach space X with WCS(X) > 1 has
normal structure [1].

Inequalities between the weakly convergent sequence coefficient WCS(X) and the
modulus of smoothness ρX and the constants J(X), CNJ(X) are found by in [3]. These
inequalities are used to show that if J(X) < (1+

√
5)/2 or CNJ(X) < (1+

√
3)/2 then

X has normal structure [4, 5]. It is known that if ρX(θ) <
θ

2
holds for some θ ∈ (0, 1]

then X has normal structure [6]. This result was sharpen in [3] by the statement if

ρX(θ) <
θ − 2 +

√
θ2 + 4

2
holds for some θ ∈ (0, 1], then X has normal structure.

The generalized modulus of convexity δ(λ) was investigated by [7]. It was shown
there that δ(λ) shares the same properties as like as the Clrakson modulus of convexity
δ.

Following the ideas in [7] we define a generalized modulus of smoothness ρ(λ) and
we show that δ(λ) and ρ(λ) are connected by the same formula as are δ and ρ. We obtain
some upper and lower estimates for δ

(λ)
ℓp

and ρ
(λ)
ℓp

, for p ≥ 2, which are sharp for p = 2.

According to [8] if δX(ε) ≥
1

6
ε holds for some ε ∈ (0, 3/2] then X has uniform normal

structure. Following the ideas in [3] we show that if δX(ε) >
1

3

(
1−

√
3

2

)
ε holds for

some ε ∈ (0, 9
10
] then X has normal structure, provided X is a Köthe sequence spaces.

1Research is partially supported by National Fund for Scientific Research of the Bulgarian Ministry
of Education and Science, Contract MM-1401/04.
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2 Preliminaries

We use the standard Banach space terminology from [9]. Let X be a real Banach space,
SX be the unit sphere of X, N be the set of natural numbers and R be the set of the
real numbers. Let ℓ0 stand for the space of all real sequences i.e. x = {xi}∞i=1 ∈ ℓ0,
xi ∈ R for every i ∈ N.

For a sequence {x(n)}∞n=1 of X, we use the following notation:

A({x(n)}) = lim sup
n→∞

{∥x(i) − x(j)∥ : i, j ≥ n, i ̸= j}.

Definition 2.1 [1] The weakly convergent sequence coefficient of X, denoted by WCS(X),
is defined as follows:

WCS(X) = sup{k : for each weakly convergent sequence {x(n)}∞n=1, there exists

some y ∈ co({x(n)}∞n=1) such that k lim sup
n→∞

∥x(n) − y∥ ≤ A({x(n)})},

where co({x(n)}∞n=1) denotes the convex hull of the elements of {x(n)}∞n=1.

It is easy to see that 1 ≤ WCS(X) ≤ 2. A Banach space X is said to have weak
uniform normal structure if WCS(X) > 1 [10].

Recall that a Banach space has Schur property if every weakly null sequence is
norm null. We will assume in the sequel that the Banach spaces, we investigate are not
Schur spaces. Thus there exists a weakly null sequence {x(n)}∞n=1 ∈ X, which is not

norm null. We will use the notation x(n) w−→ 0 to indicate that {x(n)}∞n=1 converges
weakly to zero.

It is known that Banach space with normal structure has the fixed point property
[2, 1], and every reflexive Banach space X with WCS(X) > 1 has normal structure
[1].

Definition 2.2 A Banach space (X, ∥ · ∥) is said to be Köthe sequence space if X is a
subspace of ℓ0 such that

i) If x ∈ ℓ0, y ∈ X and |xi| ≤ |yi| for all i ∈ N then x ∈ X and ∥x∥ ≤ ∥y∥;
ii) There exists an element x ∈ X such that xi > 0 for all i ∈ N.

A sequence {vi}∞i=1 in a Banach space X is called Schauder basis of X (or basis
for short) if for each x ∈ X there exists an unique sequence {ai}∞i=1 of scalars such

that x =
∞∑
i=1

aivi. If {vi}∞i=1 is a basis in X such that the series
∞∑
i=1

aivi converges

whenever sup
n∈N

∥∥∥∥∥
n∑

i=1

aivi

∥∥∥∥∥ < ∞, then it is called a boundedly complete basis of X. A

sequence of non zero vectors {x(n)}∞n=1 of the form
pn+1∑

i=pn+1

aivi, with {ai}∞i=1 scalars and

0 = p1 < p2 < p3 . . . an increasing sequence of integers is called a block basic sequence
or block basis of {vi}∞i=1 for short. By {ei}∞i=1 we denote the unit vectors.

The main tool in this note will be the next theorem:
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Theorem 1 [11] Let X be a Köthe sequence space with {ei}∞i=1–boundedly complete
basis. Then

WCS(X) = inf

A({x(n)}) : x(n) =
pn+1∑

i=pn+1

xn(i)ei ∈ SX , xn
w−→ 0, 0 = p1 < p2 < p3 . . .

 .

Modulus of convexity [12] is the function δX : [0, 2] → [0, 1] given by

δX(ε) = inf
{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ BX , ∥x− y∥ ≥ ε
}
.

It is well known [13] that

δX(ε) = inf
{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ SX , ∥x− y∥ = ε
}
. (1)

In [7] a generalized modulis of convexity δ
(λ)
X , λ ∈ (0, 1) is defined by

δ
(λ)
X (ε) = inf {1− ∥λx+ (1− λ)y∥ : x, y ∈ SX , ∥x− y∥ ≥ ε}

and is investigated. It is shown there that δ
(λ)
X shares the same properties as like as δX .

3 Main result

Theorem 2 Let X be a Köthe sequence space with basis {ei}∞i=1 both shrinking and

boundedly complete. If δX(ε) >
1

3

(
1−

√
3

2

)
ε for some ε ∈ (0, 9/10], then X has

normal structure.

4 Generalized Modulus of Convexity and Smoothness

Let us recall that modulus of smoothness ρX is defined by the formula:

ρX(τ) = sup
{
1

2
(∥x+ τy∥+ ∥x− τy∥ − 2) : x, y ∈ SX

}
.

Lindenshtrauss proved in [14] that

ρX∗(τ) = sup
{
τε

2
− δX(ε) : ε ∈ [0, 2]

}
and

ρX(τ) = sup
{
τε

2
− δX∗(ε) : ε ∈ [0, 2]

}
,

where ρX∗ and δX∗ are the modulus of smoothness and convexity in the dual space X∗

with respect to the dual norm ∥ · ∥∗.
Following the same idea as in [14, 7] we define the generalized modulus of smooth-

ness ρ
(λ)
X by

ρ
(λ)
X (τ) = sup

{
∥2λx+ τy∥+ ∥2(1− λ)x− τy∥ − 2∥x∥

2
: x, y ∈ SX

}
, λ ∈ (0, 1), τ > 0.
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Theorem 3 Let X be a Banach space with a generalized modulus of convexity δ
(λ)
X and

ρ
(λ)
X∗ be the generalized modulus of smoothness of the dual norm ∥ · ∥∗, then for any

τ > 0 holds

ρ
(λ)
X∗(τ) = sup

{
τε

2
− δ

(λ)
X (ε) : ε ∈ [0, 2]

}
, (2)

and let ρ
(λ)
X be the generalized modulus of smoothness and δ

(λ)
X∗ be the generalized modulus

of convexity of the dual norm ∥ · ∥∗, then

ρ
(λ)
X (τ) = sup

{
τε

2
− δ

(λ)
X∗(ε) : ε ∈ [0, 2]

}
. (3)

Proof: We will prove (2), the proof of (3) is similar.
We claim first that for any ε ∈ [0, 2] and any τ > 0 the inequality

ρ
(λ)
X∗(τ) + δ

(λ)
X (ε) ≥ τε

2
(4)

holds. Indeed let x, y ∈ SX be such that ∥x− y∥ ≥ ε. Choose f, g ∈ SX∗ such that

f(λx+ (1− λ)y) = ∥λx+ (1− λ)y∥ and g(x− y) = ∥x− y∥.

From the definition of ρ
(λ)
X∗ we have

2ρ
(λ)
X∗(τ) ≥ ∥2λf + τg∥∗ + ∥2(1− λ)f − τg∥∗ − 2

≥ (2λf + τg)(x) + (2(1− λ)f − τg)(y)− 2

= 2λf(x) + 2(1− λ)f(y) + τg(x)− τg(y)− 2

= 2(f(λx) + f((1− λ)y)) + τg(x− y)− 2

= 2f(λx+ (1− λ)y) + τg(x− y)− 2

= 2∥λx+ (1− λ)y∥+ τ∥x− y∥ − 2

≥ 2∥λx+ (1− λ)y∥+ τε− 2.

Hence the inequality

1− ∥λx+ (1− λ)y∥ ≥ τε

2
− ρ

(λ)
X∗(τ)

holds for every ε ∈ [0, 2], τ > 0 and x, y ∈ SX , such that ∥x− y∥ ≥ ε. Thus from the

definition of δ
(λ)
X we get (4) and consequently

ρ
(λ)
X∗(τ) ≥ sup

{
τε

2
− δ

(λ)
X (ε) : ε ∈ [0, 2]

}
.

To prove the converse inequality, let τ > 0 and f, g ∈ SX∗ . For any η > 0 there
exist x, y ∈ SX such that

(2λf + τg)(x) ≥ ∥2λf + τg∥∗ − η
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and
(2(1− λ)f − τg)(y) ≥ ∥2(1− λ)f − τg∥∗ − η.

Therefore

∥2λf + τg∥∗ + ∥2(1− λ)f − τg∥∗ ≤ 2λf(x) + 2(1− λ)f(y) + τg(x)− τg(y) + 2η

= 2(f(λx) + f((1− λ)y) + τg(x− y) + 2η

= 2(f(λx+ (1− λ)y) + τg(x− y) + 2η

≤ 2∥λx+ (1− λ)y∥+ τg(x− y) + 2η.

Put ε = ∥x− y∥, then ∥λx+ (1− λ)y∥ ≤ 1− δ
(λ)
X (ε). Therefore

∥2λf + τg∥∗ + ∥2(1− λ)f − τg∥∗ ≤ 2− 2δ
(λ)
X (ε) + τε+ 2η

and consequently

∥2λf + τg∥∗ + ∥2(1− λ)f − τg∥∗ − 2∥f∥
2

≤ τε

2
− δ

(λ)
X (ε) + η.

Thus

∥2λf + τg∥∗ + ∥2(1− λ)f − τg∥∗ − 2∥f∥
2

≤ sup
{
τε

2
− δ

(λ)
X (ε) : 0 ≤ ε ≤ 2

}
+ η.

Since η > 0 is arbitrary chosen, we get

∥2λf + τg∥∗ + ∥2(1− λ)f − τg∥∗ − 2∥f∥
2

≤ sup
{
τε

2
− δ

(λ)
X (ε) : 0 ≤ ε ≤ 2

}
,

i.e.

ρ
(λ)
X∗(τ) ≤ sup

{
τε

2
− δ

(λ)
X (ε) : 0 ≤ ε ≤ 2

}
.

The dual statement is obtained similarly. �

Proposition 4.1 Let X be a Banach space with generalized modulus of convexity δ
(λ)
X .

Then
δ
(λ)
X (ε) = inf{1− ∥λx+ (1− λ)y∥ : x, y ∈ SX , ∥x− y∥ = ε}.

Proof: By a simple geometric argument we have

δ
(λ)
X (ε) = inf {1− ∥λx− (1− λ)y∥ : x, y ∈ BX , ∥x− y∥ = ε} .

Also, by multiplying x and y by the same number so that one of them reaches SX we
have:

δ
(λ)
X (ε) = inf {1− ∥λx− (1− λ)y∥ : x, y ∈ BX , ∥x− y∥ = ε}

= inf {1− ∥λx− (1− λ)y∥ : x ∈ SX , y ∈ BX , ∥x− y∥ = ε} .
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Consider the half plane H cut by the line through x and −x in which y lies.
Consider the family of pairs of points {u, u + y − x}, u ∈ H ∩ SX . If u = x, then
u + y − x = y ∈ int BX . If u is the intersection of the ray x + t(y − x), t ≥ 0 with
SX , then u + y − x ̸∈ BX . Therefore, by continuity there is u ∈ SX ∩ H, such that
u+y−x ∈ SX . Let ℓ1 be the line through u, x and ℓ2 be the line through λx+(1−λ)y,
u+ (1− λ)(y − x). By

(λx+ (1− λ)y)− (u+ (1− λ)(y − x)) = x− y

it follows that ℓ1 and ℓ2 are parallel. Let w be the intersection of ℓ1 with the ray
emanating form the origin and passing through λx+(1−λ)y and z be the intersection
of ℓ1 with the ray emanating form the origin and passing through u + (1− λ)(y − x).
By argument using similar triangles it follows that there is α > 0, such that

∥z∥ = α∥u+ (1− λ)(y − x)∥, ∥w∥ = α∥λx+ (1− λ)y∥.

There are two cases:
1) The points x, u, w, z are in this order in the ray emanating from x and going through
u. By convexity of the norm function on this ray it follows that ∥z∥ ≥ ∥w∥ ≥ ∥u∥ =
∥x∥ = 1 and therefore ∥u+ (1− λ)(y − x)∥ ≥ ∥λx+ (1− λ)y∥.

2) The points x,w, u, z are in this order in the ray emanating from x and going
through u. By convexity of the norm function on this ray it follows that ∥z∥ ≥ ∥u∥ =
1 = ∥x∥ ≥ ∥w∥ and therefore ∥u+ (1− λ)(y − x)∥ ≥ ∥λx+ (1− λ)y∥.
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Put in both cases v = u + y − x. Then u, v ∈ SX , ∥u − v∥ = ∥x − y∥ and
∥λv + (1− λ)u∥ = ∥u+ (1− λ)(y − x)∥ ≥ ∥λx+ (1− λ)y∥. �

Let H be a Hilbert space. It is easy to check [7], that the equality δ
(λ)
H (ε) =

1−
(
1−

(
ε
√
λ(1− λ)

)2)1/2

holds.

Proposition 4.2 Let X be a Banach space and H be a Hilbert space. Then the in-
equality

δ
(λ)
X (ε) ≤ δ

(λ)
H (ε)

holds for every ε ∈ [0, 2] and any λ ∈ (0, 1).

Proof: Since, by a well known theorem of Dvorezky [15], every infinite dimensional
Banach space contains nearly isometric copies of ℓn2 for all n it follows that

δ
(λ)
X (ε) ≤ 1−

(
1−

(
ε
√
λ(1− λ)

)2
)1/2

= δ
(λ)
H (ε)

for every ε ∈ [0, 2] and any λ ∈ (0, 1). �
There is a direct geometric proof of Proposition 4.2 for λ = 1/2 [16].
For the next several Lemmas we will need the following function:

α(λ)(t) = 1− δ
(λ)
X (t) +

(
1−

√
1− λ(1− λ)

)
t.

Lemma 4.1 For any Banach space X with a generalized modulus of convexity δ
(λ)
X the

inequality

1 ≤ α(λ)(t) ≤ 1 +
(
1−

√
1− λ(1− λ)

)
t (5)

holds for every t ∈ [0, 1].
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Proof: The righthandside inequality is obtained if taking into account that δ
(λ)
X (t) ≥ 0

for every t ∈ (0, 2] and λ ∈ (0, 1).

By Proposition 4.2 it follows that δ
(λ)
X (t) ≤ δ

(λ)
H (t) = 1−

√
1− t2λ(1− λ) holds for

every t ∈ [0, 2]. It is easy to check, that for every t ∈ [0, 1] the inequality√
1− t2λ(1− λ) ≥ 1−

(
1−

√
1− λ(1− λ)

)
t

holds. Therefore for every λ ∈ (0, 1) and every t ∈ [0, 1] the inequalities

α(λ)(t) ≥ 1− δ
(λ)
H (t) +

(
1−

√
1− λ(1− λ)

)
t

=
√
1− t2λ(1− λ) +

(
1−

√
1− λ(1− λ)

)
t ≥ 1

hold for every t ∈ [0, 1]. �
For simplicity of the notations let put: WCS(X) = d,

fd+ε,λ(t) = (d + ε)
(
1−

√
1− λ(1− λ)

)
t2 +

(
d+ ε− 1 +

√
1− λ(1− λ)

)
t − 2 + ε,

Dε,λ =
(
d+ ε− 1 +

√
1− λ(1− λ)

)2
+ 4(2− ε)

(
1−

√
1− λ(1− λ)

)
(d+ ε) and

a(d+ ε, λ) =
1− d− ε−

√
1− λ(1− λ) +

√
Dε,λ

2(d+ ε)
(
1−

√
1− λ(1− λ)

) .

Lemma 4.2 Let X be a Banach space and λ ∈ (0, 1). Then for any t ∈ [0, a(d, λ))
there exists ε0 > 0, such that for every ε ∈ (0, ε0) the inequality

1

d+ ε

(
1 +

1− ε

α(λ)(t)

)
≥ t

holds.

Proof: By (5) we have the inequality:

1

d+ ε

(
1 +

1− ε

α(λ)(t)

)
≥ 1

d+ ε

1 + 1− ε

1 +
(
1−

√
1− λ(1− λ)

)
t

 .

The inequality
1

d+ ε

1 + 1− ε

1 +
(
1−

√
1− λ(1− λ)

)
t

 ≥ t is equivalent to the in-

equality
fd+ε,λ(t) ≤ 0. (6)

For any t ≥ 0, λ ∈ (0, 1), 0 ≤ ε1 < ε2 holds

fd+ε1,λ(t) < fd+ε2,λ(t), (7)

and for any ε ≥ 0, λ ∈ (0, 1), 0 ≤ t1 < t2 holds

fd+ε,λ(t1) < fd+ε,λ(t2). (8)
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By fd+ε,λ(0) = −2 + ε < 0, for ε ∈ [0, 2) it follows that for every ε ∈ [0, 2) and
every λ ∈ (0, 1) the two roots t1 and t2 of the equation:

fd+ε,λ(t) = 0 (9)

have different signs.
Denote by tε,λ the positive root of the equation (9). Then tε,λ = a(d + ε, λ) and

t0,λ = a(d, λ). Obviously limε→0 tε,λ = t0,λ for any λ ∈ (0, 1).
By (7) for any 0 < ε1 < ε2 < 2 we have the inequalities 0 = fd+ε1,λ(tε1,λ) <

fd+ε2,λ(tε1,λ) and 0 = fd,λ(t0,λ) < fd+ε1,λ(t0,λ) and therefore tε2,λ < tε1,λ < t0,λ = a(d, λ).
Thus for any t ∈ [0, a(d, λ)) there is ε0 > 0, such that t < tε0,λ < t0,λ = a(d, λ) and for
any ε ∈ (0, ε0] using (7) and (8) we get

fd+ε,λ(t) ≤ fd+ε0,λ(t) < fd+ε0,λ(tε0,λ) = 0,

which is (6). �

Theorem 4 Let X be a Köthe sequence space with {ei}∞i=1–boundedly complete basis

and with a generalized modulus of convexity δ
(λ)
X . Then for any t ∈ [0, a(d, λ)) the

inequality

WCS(X) ≥
1− λδ

(λ)
X (t) + λ

(
1−

√
1− λ(1− λ)

)
t

(1− δ
(λ)
X (t))(1− δ

(λ)
X (t) +

(
1−

√
1− λ(1− λ)

)
t)

(10)

holds.

Proof: If δ
(λ)
X ≡ 0 then

1 + λ
(
1−

√
1− λ(1− λ)

)
t

1 +
(
1−

√
1− λ(1− λ)

)
t

< 1 and consequently (10) holds

true.
If δ

(λ)
X (t) > 0 for every t ∈ (0, 2] and every λ ∈ (0, 1) then X is reflexive, because

according to [7]

2min{λ, 1− λ}δ(t) ≤ δ(λ)(t) ≤ 2max{λ, 1− λ}δ(t)

for λ ∈ (0, 1). Let {xn}∞n=1 be a weakly null, block basic sequence in SX . Assume
that d = lim

n,m → ∞
m ̸= n

∥xn − xm∥ exists and consider a normalized functional sequence

{x∗
n}∞n=1 such that x∗

n(xn) = 1. Note that the reflexivity of X guarantees that there

exists x∗ such that x∗
n

w−→ x∗. By Lemma 4.2 for every t ∈ [0, a(d, λ)) there exists ε0,
such that for every ε ∈ (0, ε0] the inequality

1

d+ ε

1 + 1− ε

1− δ
(λ)
X (t) +

(
1−

√
1− λ(1− λ)

)
t

 ≥ t

9



holds. Choose an arbitrary ε ∈ (0, ε0], then there exists N ∈ N, large enough so that
|x∗(xN)| < ε/2 and

d− ε < ∥xN − xm∥ < d+ ε

for all m > N . Note that

lim
n,m → ∞
m ̸= n

∥∥∥∥xn − xm

d+ ε

∥∥∥∥ ≤ 1 and
∥∥∥∥ xN

d+ ε

∥∥∥∥ ≤ 1.

By the assumption that X is a Köthe sequence space and that {xn}∞n=1 be a block basic
sequence we have that ∥xn − xm∥ = ∥xn + xm∥ holds for every n,m ∈ N. Therefore we
can choose M > N large enough, such that the inequalities∥∥∥∥xN + xM

d+ ε

∥∥∥∥ = ∥∥∥∥xN − xM

d+ ε

∥∥∥∥ ≤ 1 ≤ 1− δ
(λ)
X (t) +

(
1−

√
1− λ(1− λ)

)
t, (11)

|(x∗
M − x∗)(xN)| < ε/2 and |x∗

N(xM)| < ε/2 hold. Hence

|x∗
M(xN)| ≤ |(x∗

M − x∗)(xN)|+ |x∗(xN)| < ε.

Put x =
XN −XM

d+ ε
and y =

XN +XM

(d+ ε)α(λ)(t)
. By (5) it follows that α(λ)(t) ≥ 1 and it is

easy to see that α(λ)(t) ≤ 2, therefore x, y ∈ BX . We will need the next two inequalities

∥λx+ (1− λ)y∥ =
∥(λα(λ)(t) + 1− λ)xN − (λα(λ)(t)− 1 + λ)xM∥

(d+ ε)α(λ)(t)

≥ (λα(λ)(t) + 1− λ)x∗
N(xN)− (λα(λ)(t)− 1 + λ)x∗

N(xM)

(d+ ε)α(λ)(t)

≥ λα(λ)(t) + 1− λ− ε

(d+ ε)α(λ)(t)

and

∥x− y∥ =
∥(α(λ)(t) + 1)xM − (α(λ)(t)− 1)xN∥

(d+ ε)α(λ)(t)

≥ ((α(λ)(t) + 1)x∗
M(xM)− (α(λ)(t)− 1)x∗

M(xN))

(d+ ε)α(λ)(t)

≥ α(λ)(t) + 1− ε

(d+ ε)α(λ)(t)
.

By Lemma 4.2 we get the inequalities

∥x− y∥ ≥ α(λ)(t) + 1− ε

(d+ ε)α(λ)(t)
≥ 1

d+ ε

(
1 +

1− ε

α(λ)(t)

)
≥ t.

By the definition of δ
(λ)
X , we obtain

δ
(λ)
X (t) ≤ 1− ∥λx+ (1− λ)y∥ ≤ 1− λα(λ)(t) + 1− λ− ε

dα(λ)(t)
.

10



Letting ε → 0 we get

1− δ
(λ)
X (t) ≥ λα(λ)(t) + 1− λ

dα(λ)(t)
.

Consequently the inequality

d ≥ λα(λ)(t) + 1− λ

(1− δ
(λ)
X (t))α(λ)(t)

=
1− λδ

(λ)
X (t) + λ

(
1−

√
1− λ(1− λ)

)
t

(1− δ
(λ)
X (t))(1− δ

(λ)
X (t) +

(
1−

√
1− λ(1− λ)

)
t)

(12)

holds for any weakly null, block basic sequence {xn}∞n=1 ⊂ SX . Since t ∈ (0, a(d, λ))
was arbitrary choosen we get that (12) holds for every t ∈ [0, a(d, λ)) and therefore
according to Theorem 1 we get (10). �

Corollary 4.1 Let X be a Köthe sequence space with {ei}∞i=1–boundedly complete basis
and with a modulus of convexity δX . Then for any t ∈ (0, a(d, 1/2)) the inequality

WCS(X) ≥
2− δX(t) +

(
1−

√
3
2

)
t

2(1− δX(t))(1− δX(t) +
(
1−

√
3
2

)
t)

(13)

holds.

Corollary 4.2 Let X be a Köthe sequence space with {ei}∞i=1–boundedly complete basis
and with a modulus of convexity δX . Then for any t ∈ (0, a(2, 1/2)) the inequality

WCS(X) ≥
2− δX(t) +

(
1−

√
3
2

)
t

2(1− δX(t))(1− δX(t) +
(
1−

√
3
2

)
t)

holds.

Proof: It is easy to check that a(d, 1/2) is a decreasing function and therefore [0, a(2, 1/2)) ⊆
[0, a(d, 1/2)).

Corollary 4.3 Let X be a Köthe sequence space with {ei}∞i=1 both shrinking and bound-
edly complete basis and with a modulus of convexity δX . If

δX(t) >

3 + 2

(
1−

√
3

2

)
t−

√√√√9 + 4

(
1−

√
3

2

)
t+ 4

(
1−

√
3

2

)2

t2

4

for some t ∈ [0, a(2, 1/2)) then X has normal structure.

Proof: If the inequality

2− δX(t) +
(
1−

√
3
2

)
t

2(1− δX(t))(1− δX(t) +
(
1−

√
3
2

)
t)

> 1 (14)

11



holds for some t ∈ [0, a(2, 1/2)) then by Theorem 4 it follows that WCS(X) > 1. The
inequality (14) is equivalent to

2δ2X(t)−
(
3 + 2

(
1−

√
3

2

)
t

)
δX(t) +

(
1−

√
3

2

)
t < 0 (15)

i.e. if the inequalities

δX(t) >

3 + 2

(
1−

√
3

2

)
t−

√√√√9 + 4

(
1−

√
3

2

)
t+ 4

(
1−

√
3

2

)
t2

4
(16)

δX(t) <

3 + 2

(
1−

√
3

2

)
t+

√√√√9 + 4

(
1−

√
3

2

)
t+ 4

(
1−

√
3

2

)
t2

4
. (17)

hold for some t ∈ [0, a(2, 1/2)) then WCS(X) > 1. It is easy to check that the
inequality (17) holds for every t ∈ [0, 2]. That’s why if holds

δX(t) >

3 + 2

(
1−

√
3

2

)
t−

√√√√9 + 4

(
1−

√
3

2

)
t+ 4

(
1−

√
3

2

)
t2

4

for some t ∈ [0, a(2, 1/2)) then holds (14) and thus WCS(X) > 1. According to [1] a
reflexive Banach space X with WCS(X) > 1 has normal structure. To finish the proof
we need to mention the well known fact that a Banach space X with a basis {ei} is
reflexive iff {ei} is both shrinking and boundedly complete. �

5 Proof of the main result

By the inequalities

3 + 2

(
1−

√
3

2

)
t−

√√√√9 + 4

(
1−

√
3

2

)
t+ 4

(
1−

√
3

2

)
t2

4
≤ 1

3

(
1−

√
3

2

)
t,

for every t ∈ [0, a(2, 1/2)), 0.9 < a(2, 1/2) and Corollary 4.3 the proof follows. �

6 Some estimates of δ
(λ)
ℓp

and ρ
(λ)
ℓp

Lemma 6.1 For every a, b ∈ R, p ≥ 2 and λ ∈ [0, 1] the inequality

|λ + (1− λ)b|p +
∣∣∣∣ p

√
λ(1−λ)
2p−2 (a− b)

∣∣∣∣p

≤
(
|λa+ (1− λ)b|2 +

∣∣∣∣ p

√
λ(1−λ)
2p−2 (a− b)

∣∣∣∣2
)p/2 (18)

holds
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Proof: The proof follows right away if taking into account that in R2 ∥x + y∥p ≤
∥x+ y∥2, where x = λa+ (1− λ)b and y = p

√
λ(1−λ)
2p−2 (a− b). �

Lemma 6.2 For every a, b ∈ R, p ≥ 2 and λ ∈ [0, 1] the inequality

(λa+ (1− λ)b)2 +
(

p

√
λ(1−λ)
2p−2 (a− b)

)2

≤ a2
(
λ2 +

(
p

√
λ(1−λ)
2p−2

)2
)
+ b2

(
(1− λ)2 +

(
p

√
λ(1−λ)
2p−2

)2
) (19)

holds

Proof: Obviously

(λa + (1− λ)b)2 +

 p

√
λ(1− λ)

2p−2
(a− b)

2

= λ2a2 + 2λ(1− λ)ab+ (1− λ)2b2 +

 p

√
λ(1− λ)

2p−2

2

(a2 − 2ab+ b2)

= a2

λ2 +

 p

√
λ(1− λ)

2p−2

2
+ b2

(1− λ)2 +

 p

√
λ(1− λ)

2p−2

2


− 2ab


 p

√
λ(1− λ)

2p−2

2

− λ(1− λ)


≤ a2

λ2 +

 p

√
λ(1− λ)

2p−2

2
+ b2

(1− λ)2 +

 p

√
λ(1− λ)

2p−2

2
 ,

because for any λ ∈ (0, 1) holds

(
1

2

) p−2
p

>
(
1

2

) 2(p−2)
p

≥ (λ(1− λ))
p−2
p

and thus
p

√
λ(1− λ)

2p−2
− λ(1− λ) > 0. �

Lemma 6.3 For every a, b ∈ R, p ≥ 2 and λ ∈ (0, 1) the inequality

a2

λ2 +

 p

√
λ(1− λ)

2p−2

2
+ b2

(1− λ)2 +

 p

√
λ(1− λ)

2p−2

2


≤ (|a|p + |b|p)2/p
(
2

p−2
2 (λ(1− λ))2/p +

(
λ

2p
p−2 + (1− λ)

2p
p−2

) p−2
p

) (20)

holds
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Proof: By Hölder inequality we get the inequality:

a2

 p

√
λ(1− λ)

2p−2

2

+ b2

 p

√
λ(1− λ)

2p−2

2

= (a2 + b2)

 p

√
λ(1− λ)

2p−2

2

≤
(
|a2|p/2 + |b2|p/2

)2/p
(1

p
p−2 + 1

p
p−2 )

p−2
p

 p

√
λ(1− λ)

2p−2

2

= (|a|p + |b|p)2/p 2
p−2
p 2−

2(p−2)
p

(
p

√
λ(1− λ)

)2

= (|a|p + |b|p)2/p 2−
(p−2)

p

(
p

√
λ(1− λ)

)2

(21)

and

a2λ2 + b2(1− λ)2 ≤ (|a|p + |b|p)2/p
(
(λ2)

p
p−2 + ((1− λ)2)

p
p−2

) p−2
p . (22)

Now by (21) and (22) we get the proof. �

Theorem 5 For p ≥ 2 and any λ ∈ (0, 1) and ε ∈ [0, 2] holds:

1−

1−
ε p

√
λ(1− λ)

2p−2

p1/p

≤ δ
(λ)
ℓp

(ε) ≤ 1−

1−
ε p

√
pλ(1− λ)

2p−1

p1/p

.

Proof: For any x, y ∈ Sℓp and λ ∈ (0, 1) by Lemmas 6.1, 6.2 and 6.3 we have

∞∑
k=1

|λxk + (1− λ)yk|p +
∞∑
k=1

λ(1− λ)

2p−2
|xk − yk|p

≤

 ∞∑
k=1

|λxk + (1− λ)yk|2 +
∞∑
k=1

 p

√
λ(1− λ)

2p−2

2

|xk − yk|2


p/2

≤

 ∞∑
k=1

x2
k

λ2 +

 p

√
λ(1− λ)

2p−2

2
+

∞∑
k=1

y2k

(1− λ)2 +

 p

√
λ(1− λ)

2p−2

2



p/2

≤

( ∞∑
k=1

(|xk|p + |yk|p)
)2/p (

2−
p−2
p (λ(1− λ))

2
p +

(
λ

2p
p−2 + (1− λ)

2p
p−2

) p−2
p

)p/2

≤
[
22/p

(
2−

p−2
p 2−

4
p +

(
2.2−

2p
p−2

) p−2
p

)]p/2

=
[
2

2
p

(
2

−p−2
p + 2

−p−2
p

)]p/2
= 1.

Hence ∥λx+(1−λ)y∥p+
(
ε p

√
λ(1−λ)
2p−2

)p

≤ 1 and therefore δ
(λ)
ℓp

(ε) ≥ 1−
(
1−

(
ε p

√
λ(1−λ)
2p−2

)p)1/p

.
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For the proof of the righthandside inequality let define:

x1 = y1 =
p

√√√√1− εpλ(1− λ)

(1− |2λ− 1|p)2p−2
,

x2 = −y2 = ε p

√√√√ λ(1− λ)

(1− |2λ− 1|p)2p−2

and xi = yi = 0 for i ≥ 3. Consider x = {xi}∞i=1, y = {yi}∞i=1. Obviously ∥x∥p =

∥y∥p = 1− εpλ(1−λ)
(1−|2λ−1|p)2p−2 +

εpλ(1−λ)
(1−|2λ−1|p)2p−2 = 1,

∥λx+ (1− λ)y∥p = |λx1 − λy1 + y1|p + |λx2 − λy2 + y2|p = |y1|p + |2λy2 − y2|p

= 1− εpλ(1−λ)
(1−|2λ−1|p)2p−2 +

εpλ(1−λ)
(1−|2λ−1|p)2p−2 |2λ− 1|p

= 1−
(
ε p

√
λ(1−λ)
2p−2

)p

and

∥x− y∥p = |x2 − y2|p = 2p
εpλ(1− λ)

(1− |2λ− 1|p)2p−2
= 4εp

λ(1− λ)

1− |2λ− 1|p
(23)

Claim 6.1 For any λ ∈ (0, 1), and p ≥ 2 holds the inequality:

2pλ(1− λ) ≥ 1− |2λ− 1|p. (24)

Proof: WLOG we may assume that λ ∈ (0, 1/2]. Consider the function

fp(λ) = 2pλ(1− λ)− 1 + (1− 2λ)p.

By f
′
p(λ) = 2p−4pλ−2p(1−2λ)p−1 = 2p(1−2λ−(1−2λ)p−1) ≥ 0 for any λ ∈ (0, 1/2],

p ≥ 2 it follows that 0 = fp(0) ≤ fp(λ) for any λ ∈ (0, 1/2], p ≥ 2 and the Claim is
proved. �

Now by (23) and (24) we get that

∥x− y∥ ≥ ε p

√
2

p
.

Therefore

δ
(λ)
ℓp

(
ε p

√
2/p

)
≤ 1−

1−
ε p

√
λ(1− λ)

2p−2

p1/p

,

i.e.

δ
(λ)
ℓp

(ε) ≤ 1−

1−
ε p

√
pλ(1− λ)

2p−1

p1/p

.

�
Remark: For p = 2 the estimate obtained in Theorem 5 is exact and coincides

with the result in [7] that

δ
(α)
ℓ2

(ε) = 1−
(
1−

(
ε
√
α(1− α)

)2
)1/2

.
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Theorem 6 For any Banach space X the inequality

ρ
(λ)
X (τ) ≥

√√√√1 +
τ 2

4λ(1− λ)
− 1

holds for every τ > 0 and λ ∈ (0, 1).

Proof: By Theorem 3 we have

ρ
(λ)
X (τ) = sup0≤ε≤2

{
τε
2
− δ

(λ)
X∗(ε)

}
≥ sup0≤ε≤2

{
τε
2
− δ

(λ)
ℓ2

(ε)
}

= sup0≤ε≤2

{
τε
2
− 1 +

√
1− ε2λ(1− λ)

}
.

Put
f(ε) =

τε

2
− 1 +

√
1− ε2λ(1− λ).

It is easy to check that f(ετ ) ≥ f(ε), where ετ =
τ√

4λ2(1− λ)2 + τ 2λ(1− λ)
is the

solution of the equation:

f
′
(ετ ) =

τ

2
− ετλ(1− λ)√

1− ε2τλ(1− λ)
= 0,

Therefore

ρ
(λ)
X (τ) ≥ f(ετ )

=
τ 2

2
√
4λ2(1− λ)2 + τ 2λ(1− λ)

− 1 +

√√√√1− τ 2λ(1− λ)

4λ2(1− λ)2 + τ 2λ(1− λ)

=
τ 2 + 4λ(1− λ)

2
√
λ(1− λ)(4λ(1− λ) + τ 2)

− 1 =

√
τ 2 + 4λ(1− λ)

2
√
λ(1− λ)

− 1

=

√
1 +

τ 2

4λ(1− λ)
− 1.

�

References

[1] W. Bynum. Normal structure coefficients for Banach spaces. Pacific J Math,
1980, 86: 427–436.

[2] M. Brodskii, D. Milman. On the center of convex sets. Dokl Akad Nauk SSSR,
1948, 59: 837-840.

[3] F. Wang, H. Cui. Some estimates on the weakly convergent sequence coefficient
in Banach spaces. J Inequal Pure and Appl Math, 2006, 7(5) Art. 161: 427–436.

16



[4] S. Dhompongsa, A. Kaewkhao, S. Tasena. On a generalized James constant. J
Math Anal Appl, 2003, 285: 419–435.

[5] S. Dhompongsa, A. Kaewkhao. A note on properties that imply the fixed point
property. Abstr Appl Anal, 2006, 2006: Article ID 34959.

[6] J. Gao. Normal structure ant smoothness in Banach spaces. J Nonlinear Func-
tional Anal Appl, 2005, 10: 103–115.

[7] Y. Changsen, W. Fenghui. On generalized modulus of convexity and uniform
normal structure. Acta Math Scientia, 2007, 126: 838–844.

[8] J. Gao, K. Lau. On two classes Banach spaces with uniform normal structure.
Studia Math, 1991, 99: 41–56.

[9] J. Lindenstrauss, L. Tzafriri. Classical Banach Spaces I, Sequence Spaces.
Springer–Verlag: Berlin, 1977.

[10] F. Hiai. Representation of additive functional on vector–valued normed Köthe
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