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Abstract. Let A4 be an affinely connected space without a torsion.
Following [7], we define the affinors aβ

α and bβ
α, that define conjugate

compositions X ×X2 and Y × Y 2 in A4. We define a third composition
Z × Z2 with the help of the affinor c̃ β

α = icβ
α, (i2 = −1), where cβ

α =
−aβ

σbσ
α. We have found a necessary and sufficient condition for any of

the above composition to be a (ch-ch) composition. We have found the
spaces A4 that contain such compositions.We have shown that if the
compositions X ×X2, Y ×Y 2 and Z ×Z2 are of the kind (ch− ch) then
the space A4 is affine.
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1. Preliminary

Let AN be a space with a symmetric affine connectedness without a tor-
sion, defined by Γγ

αβ . Let us consider a composition Xn ×Xm of two differen-
tiable basic manifolds Xn and Xm (n + m = N) in the space AN . For every
point of the space of compositions AN (Xn × Xm) there are two positions of
basic manifolds, which we denotes by P (Xn) and P (Xm).

The defining of a composition in the space AN is equivalent to the defining
of a field of an affinor aβ

α, that satisfies the condition [2], [3]

(1) aβ
σ aσ

α = δβ
α.
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The affinor aβ
α is called an affinor of the composition [2]. According to [3]

and [5] the condition for integrability of the structure is

(2) aσ
β∇[α aν

σ] − aσ
α∇[β aν

σ] = 0.

The projective affinors
n
aσ

α and
m
aσ

α [3], [4], defined by the equalities

n
aβ

α =
1
2
(
δβ
α + aβ

α

)
,

m
aβ

α =
1
2
(
δβ
α − aβ

α

)

satisfy the conditions

n
aβ

α +
m
aβ

α = δβ
α,

n
aβ

α −
m
aβ

α = aβ
α.

For every vector vα ∈ AN (Xn ×Xm) we have

vα =
n
aα

β vβ +
m
aα

β vβ =
n

V α +
m

V α,

where
n

V α =
n
aα

β vβ ∈ P (Xn) and
m

V α =
m
aα

β vβ ∈ P (Xm) [4].
According to [3] the composition of the kind (ch − ch), for which the

positions P (Xn) and P (Xm) are parallelly translated along any line of Xm

and Xn respectively, is characterized with the equality

(3) ∇[α aσ
β] = 0.

2. Conjugate compositions in spaces A4

Let A4 be an space with affine connectedness without a torsion, defined by
Γσ

αβ (α, β, σ = 1, 2, 3, 4). Let v
1

α, v
2

α, v
3

α, v
4

α be independent vector fields in A4.

Following [7], we define the covectors
σ
vα by

(4) v
α

β α
vσ = δβ

σ ⇐⇒ v
α

β σ
vβ = δσ

α.

According to [6], [7] we can define the affinors

(5) aβ
α = v

1

β 1
vα + v

2

β 2
vα − v

3

β 3
vα − v

4

β 4
vα,

that satisfy the equalities (1). The affinor (5) defines a composition (Xn×Xm)
in A4.
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According to [7] the projective affinors are

(6)
1
aβ

α = v
1

β 1
vα + v

2

β 2
vα,

2
aβ

α = v
3

β 3
vα + v

4

β 4
vα.

Following [7], let us choose for a coordinate net the net
(
v
1
, v

2
, v

3
, v

4

)
and

consider the vectors

(7) w
1

α = v
1

α + v
3

α, w
2

α = v
2

α + v
4

α, w
3

α = v
1

α − v
3

α, w
4

α = v
2

α − v
4

α.

We define the covectors
α
wσ by the equalities

(8) w
α

ν α
wσ = δν

σ ↔ w
α

σ β
wσ = δβ

α.

By (4) and (8) hold the equalities

1
wα =

1
2

(
1
vα +

3
vα

)
,

2
wα =

1
2

(
2
vα +

4
vα

)
,

3
wα =

1
2

(
1
vα − 3

vα

)
,

1
wα =

1
2

(
2
vα − 4

vα

)
.

(9)

Let consider the affinor

(10) bβ
α = w

1

β 1
wα + w

2

β 2
wα − w

3

β 3
wα − w

4

β 4
wα,

which according to [7] satisfies the equality bβ
αbα

σ = δβ
σ .

Therefore the affinor (10) defines a composition Y2 × Y 2 in A4. By P (Y2)
and P (Y 2) we denote the positions of this composition. By (4), (9) and (10)
we obtain

(11) bβ
α = v

1

β 3
vα + v

3

β 1
vα + v

2

β 4
vα + v

4

β 2
vα.

According to [7] the compositions X2 × X2 and Y2 × Y 2 are conjugate.
Following [7], let us consider the affinor

(12) cβ
σ = −aβ

αbα
σ ,

that satisfies the equality cβ
σcσ

α = −δβ
α. By (4), (5), (11) and (12) we get that

(13) cβ
α = v

3

β 1
vα − v

1

β 3
vα + v

4

β 2
vα − v

2

β 4
vα.
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The affinors aβ
α and bβ

α are defining a hyperbolic composition, but the affinor
cβ
α is defining an elliptic composition. The eigenvalue of the matrix (cβ

α) are

(14) z
1

α = v
1

α + iv
3

α, z
2

α = v
2

α + iv
4

α, z
3

α = v
1

α − iv
3

α, z
4

α = v
2

α − iv
4

α,

where i2 = −1. The affinor c̃β
α = i cβ

α defines a composition Z2 × Z2 in A4

3. Chebyshevian compositions in A4

According to [8] we have the following derivative equations

(15) ∇σv
α

β =
ν

T
α

σ v
ν

β , ∇σ
α
vβ = −

α

T
ν

σ
ν
vβ .

Let us consider the composition X2 ×X2 and let us accept:

α, β, γ, σ, ν ∈ {1, 2, 3, 4}; i, j, k, s ∈ {1, 2}; i, j, k, s ∈ {3, 4}.
Theorem 1. The composition X2 × X2 is of the kind (ch − ch) iff the

coefficients of the derivative equations satisfy the conditions

(16)
i

T
j

α v
k

α = 0,
i

T
j

α v
k

α = 0.

Proof. By the equalities (5) and (15) we have

∇σaβ
α =

ν

T
1

σ v
ν

β 1
vα −

1

T
ν

σ v
1

β ν
vα +

ν

T
2

σ v
ν

β 2
vα −

2

T
ν

σ v
2

β ν
vα

−
ν

T
3

σ v
ν

β 3
vα +

3

T
ν

σ v
3

β ν
vα −

ν

T
4

σ v
ν

β 4
vα +

4

T
ν

σ v
4

β ν
vα.

(17)

It follows by (3) and (17) that the composition X2 × X2 is of the kind
(ch− ch) iff the equality

ν

T
1

[σ
1
vα] v

ν

β −
1

T
ν

[σ
ν
vα] v

1

β +
ν

T
2

[σ
2
vα] v

ν

β −
2

T
ν

[σ
ν
vα] v

2

β

−
ν

T
3

[σ
3
vα] v

ν

β +
3

T
ν

[σ
ν
vα] v

3

β −
ν

T
4

[σ
4
vα] v

ν

β +
4

T
ν

[σ
ν
vα] v

4

β = 0
(18)

holds. The equality (18) is equivalent to the following equalities

(19)

1

T
3 [σ

3
vα] +

1

T
4

[σ
4
vα] = 0,

2

T
3 [σ

3
vα] +

2

T
4

[σ
4
vα] = 0,

3

T
1 [σ

1
vα] +

3

T
2 [σ

2
vα] = 0,

4

T
1

[σ
1
vα] +

4

T
2

[σ
2
vα] = 0,
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because the vectors v
α

β are independent. After a contraction of the equali-

ties (19) with v
ν

σ and v
β

α and taking into account (4) we get (16).

Theorem 2. If the net
(
v
1
, v

2
, v

3
, v

4

)
is chosen as a coordinate one, then

the composition X2×X2 of the kind (ch− ch) is characterized by the following
equalities for the coefficients of the derivative equations

(20)
i

T
j k = 0,

i

T
j

k = 0

and by the following equalities for the coefficients of connectedness

(21) Γα
13 = Γα

14 = Γα
23 = Γα

24 = 0 .

Proof. Let choose the net
(
v
1
, v

2
, v

3
, v

4

)
for a coordinate. Then

(22) v
1

α(1, 0, 0, 0), v
2

α(0, 1, 0, 0), v
3

α(0, 0, 1, 0), v
4

α(0, 0, 0, 1).

By equality (15) we have ∂σv
α

β + Γβ
σν v

α

ν =
ν

T
α

σ v
ν

β and after using (22) we
obtain

(23) Γβ
σν =

ν

T
α

σ.

Equalities (20) follow from (16) and (22). Then from (20) and (23) we get
the equalities (21).

The equalities (21) are obtained in [3], when the coordinates are adaptive
with the composition X2×X2. This happens so, because the chosen coordinate
net raise adaptive with the composition coordinates.

Theorem 3. The composition Y2 × Y 2 is of the kind (ch − ch) iff the
coefficients of the derivative equations satisfy the conditions

(
1

T
3

σ −
3

T
1

σ

)
v
2

σ =
(

1

T
4

σ −
3

T
2

σ

)
v
1

σ,

(
3

T
3

σ −
1

T
1

σ

)
v
1

σ =
(

3

T
1

σ −
1

T
3

σ

)
v
3

σ,

(
3

T
4

σ −
1

T
2

σ

)
v
1

σ =
(

3

T
1

σ −
1

T
3

σ

)
v
4

σ,

(
3

T
3

σ −
1

T
1

σ

)
v
2

σ =
(

3

T
2

σ −
1

T
4

σ

)
v
3

σ,

(
1

T
4

σ −
3

T
2

σ

)
v
4

σ =
(

1

T
2

σ −
3

T
2

σ

)
v
2

σ,

(
1

T
1

σ −
3

T
3

σ

)
v
4

σ =
(

1

T
2

σ −
3

T
4

σ

)
v
3

σ.

(24)
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Proof. Because of the equalities (11) and (15) we have

∇σbβ
α =

ν

T
1

σ v
ν

β 3
vα −

3

T
ν

σ v
1

β ν
vα +

ν

T
3

σ v
ν

β 1
vα −

1

T
ν

σv
3

β ν
vα

+
ν

T
2

σ v
ν

β 4
vα −

4

T
ν

σ v
2

β ν
vα +

ν

T
4

σ v
ν

β 2
vα −

2

T
ν

σ v
4

β ν
vα.

(25)

From (3) and (25) it follows that the composition Y2 × Y 2 is of the kind
(ch− ch) iff the equalities

ν

T
1

[σ
3
vα] v

ν

β −
3

T
ν

[σ
ν
vα] v

1

β +
ν

T
3

[σ
1
vα] v

ν

β −
1

T
ν

[σ
ν
vα] v

3

β

+
ν

T
2

[σ
4
vα] v

ν

β −
4

T
ν

[σ
ν
vα] v

2

β +
ν

T
4

[σ
2
vα] v

ν

β −
2

T
ν

[σ
ν
vα] v

4

β = 0

(26)

hold.
Taking into account that the vectors v

α

β are independent we find that

equality (26) is equivalent to the equalities

(27)

1

T
1

[σ
3
vα] −

3

T
ν

[σ
ν
vα] +

1

T
3

[σ
1
vα] +

1

T
2

[σ
4
vα] +

1

T
4

[σ
2
vα] = 0

2

T
1

[σ
3
vα] +

2

T
3

[σ
1
vα] +

2

T
2

[σ
4
vα] −

4

T
ν

[σ
ν
vα] +

2

T
4

[σ
2
vα] = 0

3

T
1

[σ
3
vα] +

3

T
3

[σ
1
vα] −

1

T
ν

[σ
ν
vα] +

3

T
2

[σ
4
vα] +

3

T
4

[σ
2
vα] = 0

4

T
1

[σ
3
vα] +

4

T
3

[σ
1
vα] +

4

T
2

[σ
4
vα] +

4

T
4

[σ
2
vα] −

2

T
ν

[σ
ν
vα] = 0.

After a contraction of the equalities (27) with v
ν

σ and v
β

α and using (4) we

get (24).

Theorem 4 If the net
(
v
1
, v

2
, v

3
, v

4

)
is chosen as a coordinate one then

the composition Y2 × Y 2 of the kind (ch− ch) is characterized by the following
equalities for the coefficients of the derivative equations

(28)
α

T
1

1 =
α

T
3

3 ,
α

T
2

2 =
α

T
4

4 ,
α

T
2

1 =
α

T
3

4 ,
α

T
3

2 =
α

T
4

1

10



Chebyshevian Compositions in Four Dimensional Space with an Affine ...

and with the following equalities of the coefficients of the connectedness

(29) Γα
11 = Γα

33 , Γα
22 = Γα

44 , Γα
12 = Γα

34 , Γα
23 = Γα

14 .

Proof. Let us choose the net
(
v
1
, v

2
, v

3
, v

4

)
for a coordinate net. The

equalities in (28) follow from (22) and (24), and the equalities in (29) follow
from (23) and (28).

Theorem 5 The composition Z2 × Z2 is of the kind (ch − ch) iff the
coefficients of the derivative equations satisfy the conditions

(
3

T
1

σ +
1

T
3

σ

)
v
2

σ =
(

3

T
2

σ +
1

T
4

σ

)
v
1

σ,

(
1

T
3

σ +
3

T
1

σ

)
v
3

σ =
(

3

T
3

σ −
1

T
1

σ

)
v
1

σ,

(
1

T
3

σ +
3

T
1

σ

)
v
4

σ =
(

3

T
4

σ −
1

T
2

σ

)
v
1

σ,

(
3

T
3

σ −
1

T
1

σ

)
v
2

σ =
(

3

T
2

σ +
1

T
4

σ

)
v
3

σ,

(
3

T
2

σ +
1

T
4

σ

)
v
4

σ =
(

3

T
4

σ −
1

T
2

σ

)
v
2

σ,

(
3

T
3

σ −
1

T
1

σ

)
v
4

σ =
(

3

T
4

σ −
1

T
2

σ

)
v
3

σ.

(30)

Proof. By the equalities (13) and (15) we obtain

∇σ c̃ β
α = i

(
ν

T
3

σv
ν

β 1
vα −

1

T
ν

σv
3

β ν
vα −

ν

T
1

σv
ν

β 3
vα +

3

T
ν

σv
1

β ν
vα

+
ν

T
4

σv
ν

β 2
vα −

2

T
ν

σv
4

β ν
vα −

ν

T
2

σv
ν

β 4
vα +

4

T
ν

σv
2

β ν
vα

)
.

(31)

Therefore, by (3) and (31) it follows that the composition Z×Z2 is of the
kind (ch− ch) iff the equality

ν

T
3

[σ
1
vα]v

ν

β −
1

T
ν

[σ
ν
vα]v

3

β −
ν

T
1

[σ
3
vα]v

ν

β +
3

T
ν

[σ
ν
vα]v

1

β

[6pt] +
ν

T
4

[σ
2
vα]v

ν

β −
2

T
ν

[σ
ν
vα]v

4

β −
ν

T
2

[σ
4
vα]v

ν

β +
4

T
ν

[σ
ν
vα]v

2

β = 0.

(32)

holds. Taking into account that the vectors v
α

β are independent, we can

11
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rewrite (32) in the following form

1

T
3

[σ
1
vα] −

1

T
1

[σ
3
vα] +

3

T
ν

[σ
ν
vα] +

1

T
4

[σ
2
vα] −

1

T
2

[σ
4
vα] = 0,

2

T
3

[σ
1
vα] −

2

T
1

[σ
3
vα] +

2

T
4

[σ
2
vα] −

2

T
2

[σ
4
vα] +

4

T
ν

[σ
ν
vα] = 0,

3

T
3

[σ
1
vα] −

1

T
ν

[σ
ν
vα] −

3

T
1

[σ
3
vα] +

3

T
4

[σ
2
vα] −

3

T
2

[σ
4
vα] = 0,

4

T
3

[σ
1
vα] −

4

T
1

[σ
3
vα] +

4

T
4

[σ
2
vα] −

2

T
ν

[σ
ν
vα] −

4

T
2

[σ
4
vα] = 0,

(33)

and after a contraction of the above equalities with v
ν

σ and v
β

α and using (4)

we get (30).

Theorem 6. If the net
(
v
1
, v

2
, v

3
, v

4

)
is chosen as a coordinate one then

the composition Z2×Z2 from the kind (ch−ch) is characterized by the following
equalities for the coefficients of the derivative equations:

(34)
α

T
1

1 = −
α

T
3

3 , α2 = −
α

T
4

4 ,
α

T
2

1 = −
α

T
3

4 ,
α

T
3

2 =
α

T
4

1

and with the following equalities of the coefficients of the connectedness:

(35) Γα
11 = −Γα

33 , Γα
22 = −Γα

44 , Γα
12 = −Γα

34 , Γα
23 = Γα

14 .

Proof. Let choose the net
(
v
1
, v

2
, v

3
, v

4

)
for a coordinate net. Then the

equalities (34) follow by (22) and (30), and the equalities (35) follow by (23)
and (34).

Corollary 1. If the conjugate compositions X2 × X2 and Y2 × Y 2 are
simultaneously of the kind (ch − ch) then in the parameters of the coordinate
net

(
v
1
, v

2
, v

3
, v

4

)
the coefficients of the connectedness Γσ

αβ satisfy the conditions

(36)
Γα

11 = Γα
33 , Γα

22 = Γα
44 , Γα

12 = Γα
34 ,

Γα
13 = Γα

14 = Γα
23 = Γα

24 = 0 .

12
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Corollary 2. If the compositions X2×X2 and Z2×Z2 are simultaneously
of the kind (ch−ch), then in the parameters of the coordinate net

(
v
1
, v

2
, v

3
, v

4

)

the coefficients of the connectedness Γσ
αβ satisfy the conditions

(37)
Γα

11 = −Γα
33 , Γα

22 = −Γα
44 , Γα

12 = −Γα
34 ,

Γα
13 = Γα

14 = Γα
23 = Γα

24 = 0 .

The conditions (36) and (37) can be written in the form

(38)
Γα

11 = ε Γα
33 , Γα

22 = εΓα
44 , Γα

12 = εΓα
34 ,

Γα
13 = Γα

14 = Γα
23 = Γα

24 = 0 , where ε = ±1.

Using [1] and (38), we find the following representation for the components
of the tensor of the curvature

(39) R123
α. = R124

α. = R341
α. = R342

α. = 0;

R3ij
α. = R3ji

α. = ∂3Γα
ij + ε

(
Γα

11Γ
3
ij + Γα

12Γ
4
ij

)
,

R4ij
α. = R4ji

α. = ∂4Γα
ij + ε

(
Γα

22Γ
4
ij + Γα

12Γ
3
ij

)
,

Ri33
α. = ε

(
∂iΓα

11 + Γα
iiΓ

i
11 + Γα

12Γ
j
ii

)
, i 6= j,

Ri44
α. = ε

(
∂iΓα

22 + Γα
iiΓ

i
22 + Γα

12Γ
j
22

)
, i 6= j,

R134
α. = R143

α. = ε
(
∂iΓα

12 + Γα
iiΓ

i
12

)
+ Γα

12Γ
j
12 , i 6= j,

Rijj
α. = ∂iΓα

jj − ∂jΓα
12 + Γα

iiΓ
i
jj + Γα

12Γ
j
jj −RΓα

12Γ
i
12 − Γα

jjΓ
j
12 , i 6= j,

R344
α. = ε(∂3Γα

22 − ∂4Γα
12) + Γα

11Γ
3
22 + Γα

12Γ
4
22 − Γα

12Γ
3
12 − Γα

22Γ
4
12 ,

R433
α. = ε (∂4Γα

11 − ∂3Γα
12) + Γα

22Γ
4
11 + Γα

12Γ
3
11 − Γα

12Γ
4
12 − Γα

11Γ
3
12 .

(40)

Hence,
Ri[ij]

α. = 0 , Ri[i j]
α. = 0.

13
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Corollary 3. If the compositions Y2×Y 2 and Z2×Z2 are simultaneously
of the kind (ch− ch) then in the parameters of the coordinate net

(
v
1
, v

2
, v

3
, v

4

)

the coefficients of the connectedness Γσ
αβ satisfy the conditions

(41) Γi
i j

= 0 , Γi
ij = 0

and

(42) Γk
ij = 0 , Γk

i j
= 0 , Γα

23 = Γα
14.

In this case, using [1], (41), (42) we find Rijk
α. = 0 and Ri j k

α. = 0.

From [3] and (41) it follows that the composition X2×X2 is of the kind (g−g).

Corollary 4. If the compositions X2 × X2, Y2 × Y 2 and Z2 × Z2 are
simultaneously of the kind (ch− ch), then the space AN is an affine space.

Proof. If the compositions X2 × X2, Y2 × Y 2 and Z2 × Z2 are simul-
taneously of the kind (ch − ch), then by (36), (37), (41), (42) we obtain that
Γσ

αβ = 0, and consequently AN is an affine space.
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ЧЕБИШЕВИ КОМПОЗИЦИИ В ЧЕТИРИМЕРНО
ПРОСТРАНСТВО С АФИННА СВЪРЗАНОСТ БЕЗ ТОРЗИЯ

Муса Айети

Резюме. Нека е дадено пространство с афинна свързаност A4 без тор-
зия. Следвайки [7] се определят афинори aβ

α и bβ
α, които определят спрег-

нати композиции X ×X2 и Y × Y 2 в A4. С помощта на афинора c̃ β
α = icβ

α

(i2 = −1), където cβ
α = −aβ

σbσ
α, се определя трета композиция Z × Z2.

Намерени са необходими и достатъчни условия при които всяка от тези
композиции е от вида (ch − ch). Определени са пространствата A4, които
съдържат такива композиции. Доказано е, че ако композициите X × X2,
Y × Y 2 и Z × Z2 са от вида (ch− ch), то пространството A4 е афинно.
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