ПЛОВДИВСКИ УНИВЕРСИТЕТ "ПАИСИЙ ХИЛЕНДАРСКИ", БЪЛГАРИЯ НАУЧНИ ТРУДОВЕ, ТОМ 38, КН. 3, 2011 – МАТЕМАТИКА PLOVDIV UNIVERSITY "PAISSII HILENDARSKI", BULGARIA SCIENTIFIC WORKS, VOL. 38, BOOK 3, 2011 – MATHEMATICS

CHEBYSHEVIAN COMPOSITIONS IN FOUR DIMENSIONAL SPACE WITH AN AFFINE CONNECTEDNESS WITHOUT A TORSION

Musa Ajeti

Abstract. Let A_4 be an affinely connected space without a torsion. Following [7], we define the affinors a_{α}^{β} and b_{α}^{β} , that define conjugate compositions $X \times \overline{X}_2$ and $Y \times \overline{Y}_2$ in A_4 . We define a third composition $Z \times \overline{Z}_2$ with the help of the affinor $\widetilde{c}_{\alpha}^{\beta} = ic_{\alpha}^{\beta}$, $(i^2 = -1)$, where $c_{\alpha}^{\beta} = -a_{\sigma}^{\beta}b_{\alpha}^{\sigma}$. We have found a necessary and sufficient condition for any of the above composition to be a (ch-ch) composition. We have found the spaces A_4 that contain such compositions. We have shown that if the compositions $X \times \overline{X}_2$, $Y \times \overline{Y}_2$ and $Z \times \overline{Z}_2$ are of the kind (ch-ch) then the space A_4 is affine.

 ${f Key\ words}$: affinely connected spaces, spaces of compositions, affinors of compositions

Mathematics Subject Classification 2000: 53B05

1. Preliminary

Let A_N be a space with a symmetric affine connectedness without a torsion, defined by $\Gamma_{\alpha\beta}^{\gamma}$. Let us consider a composition $X_n \times X_m$ of two differentiable basic manifolds X_n and X_m (n+m=N) in the space A_N . For every point of the space of compositions $A_N(X_n \times X_m)$ there are two positions of basic manifolds, which we denotes by $P(X_n)$ and $P(X_m)$.

The defining of a composition in the space A_N is equivalent to the defining of a field of an affinor a_{α}^{β} , that satisfies the condition [2], [3]

$$a_{\sigma}^{\beta} \ a_{\alpha}^{\sigma} = \delta_{\alpha}^{\beta}.$$

The affinor a_{α}^{β} is called an affinor of the composition [2]. According to [3] and [5] the condition for integrability of the structure is

(2)
$$a_{\beta}^{\sigma} \nabla_{[\alpha} a_{\sigma]}^{\nu} - a_{\alpha}^{\sigma} \nabla_{[\beta} a_{\sigma]}^{\nu} = 0.$$

The projective affinors $\overset{n_{\sigma}}{a}$ and $\overset{m_{\sigma}}{a}$ [3], [4], defined by the equalities

$$\overset{n_{\beta}}{a_{\alpha}} = \frac{1}{2} \left(\delta_{\alpha}^{\beta} + a_{\alpha}^{\beta} \right), \qquad \overset{m_{\beta}}{a_{\alpha}} = \frac{1}{2} \left(\delta_{\alpha}^{\beta} - a_{\alpha}^{\beta} \right)$$

satisfy the conditions

$$a_{\alpha}^{\beta} + a_{\alpha}^{\beta} = \delta_{\alpha}^{\beta}, \qquad a_{\alpha}^{\beta} - a_{\alpha}^{\beta} = a_{\alpha}^{\beta}.$$

For every vector $v^{\alpha} \in A_N(X_n \times X_m)$ we have

$$v^{\alpha} = \overset{n_{\alpha}}{a_{\beta}} v^{\beta} + \overset{m_{\alpha}}{a_{\beta}} v^{\beta} = \overset{n}{V}^{\alpha} + \overset{m}{V}^{\alpha},$$

where $\stackrel{n}{V}^{\alpha} = \stackrel{n}{a}_{\beta}^{\alpha} v^{\beta} \in P(X_n)$ and $\stackrel{m}{V}^{\alpha} = \stackrel{m}{a}_{\beta}^{\alpha} v^{\beta} \in P(X_m)$ [4]. According to [3] the composition of the kind (ch - ch), for which the positions $P(X_n)$ and $P(X_m)$ are parallelly translated along any line of X_m and X_n respectively, is characterized with the equality

$$\nabla_{[\alpha} \ a^{\sigma}_{\beta]} = 0.$$

2. Conjugate compositions in spaces A_4

Let A_4 be an space with affine connectedness without a torsion, defined by $\Gamma^{\sigma}_{\alpha\beta}$ $(\alpha, \beta, \sigma = 1, 2, 3, 4)$. Let $v^{\alpha}_{1}, v^{\alpha}_{2}, v^{\alpha}_{3}, v^{\alpha}_{4}$ be independent vector fields in A_{4} . Following [7], we define the covectors $\overset{\sigma}{v}_{\alpha}$ by

(4)
$$v_{\sigma}^{\beta} \overset{\alpha}{v}_{\sigma} = \delta_{\sigma}^{\beta} \Longleftrightarrow v_{\sigma}^{\beta} \overset{\sigma}{v}_{\beta} = \delta_{\alpha}^{\sigma}.$$

According to [6], [7] we can define the affinors

(5)
$$a_{\alpha}^{\beta} = v_{1}^{\beta} v_{\alpha}^{1} + v_{2}^{\beta} v_{\alpha}^{2} - v_{3}^{\beta} v_{\alpha}^{3} - v_{4}^{\beta} v_{\alpha}^{4},$$

that satisfy the equalities (1). The affinor (5) defines a composition $(X_n \times X_m)$

According to [7] the projective affinors are

(6)
$$a_{\alpha}^{1\beta} = v_{1}^{\beta} v_{\alpha}^{1} + v_{2}^{\beta} v_{\alpha}^{2}, \quad a_{\alpha}^{2\beta} = v_{3}^{\beta} v_{\alpha}^{3} + v_{4}^{\beta} v_{\alpha}^{4}.$$

Following [7], let us choose for a coordinate net the net $\begin{pmatrix} v, v, v, v \\ 1 \end{pmatrix}$ and consider the vectors

(7)
$$w^{\alpha} = v^{\alpha} + v^{\alpha}_{3}$$
, $w^{\alpha} = v^{\alpha} + v^{\alpha}_{4}$, $w^{\alpha}_{3} = v^{\alpha} - v^{\alpha}_{3}$, $w^{\alpha}_{4} = v^{\alpha} - v^{\alpha}_{4}$.

We define the covectors $\overset{\alpha}{w}_{\sigma}$ by the equalities

(8)
$$w^{\nu} \overset{\alpha}{w}_{\sigma} = \delta^{\nu}_{\sigma} \leftrightarrow w^{\sigma} \overset{\beta}{w}_{\sigma} = \delta^{\beta}_{\alpha}.$$

By (4) and (8) hold the equalities

Let consider the affinor

(10)
$$b_{\alpha}^{\beta} = w_{\alpha}^{\beta} w_{\alpha}^{1} + w_{\alpha}^{\beta} w_{\alpha}^{2} - w_{\alpha}^{\beta} w_{\alpha}^{3} - w_{\alpha}^{\beta} w_{\alpha}^{4},$$

which according to [7] satisfies the equality $b_{\alpha}^{\beta}b_{\sigma}^{\alpha}=\delta_{\sigma}^{\beta}.$

Therefore the affinor (10) defines a composition $Y_2 \times \overline{Y}_2$ in A_4 . By $P(Y_2)$ and $P(\overline{Y}_2)$ we denote the positions of this composition. By (4), (9) and (10) we obtain

(11)
$$b_{\alpha}^{\beta} = v_{\alpha}^{\beta} v_{\alpha}^{3} + v_{\alpha}^{\beta} v_{\alpha}^{1} + v_{\alpha}^{\beta} v_{\alpha}^{4} + v_{\alpha}^{\beta} v_{\alpha}^{2}.$$

According to [7] the compositions $X_2 \times \overline{X}_2$ and $Y_2 \times \overline{Y}_2$ are conjugate. Following [7], let us consider the affinor

$$c_{\sigma}^{\beta} = -a_{\alpha}^{\beta}b_{\sigma}^{\alpha},$$

that satisfies the equality $c^{\beta}_{\sigma}c^{\sigma}_{\alpha}=-\delta^{\beta}_{\alpha}$. By (4), (5), (11) and (12) we get that

(13)
$$c_{\alpha}^{\beta} = v_{\alpha}^{\beta} v_{\alpha}^{1} - v_{1}^{\beta} v_{\alpha}^{3} + v_{2}^{\beta} v_{\alpha}^{2} - v_{2}^{\beta} v_{\alpha}^{4}.$$

The affinors a^β_α and b^β_α are defining a hyperbolic composition, but the affinor c^β_α is defining an elliptic composition. The eigenvalue of the matrix (c^β_α) are

$$(14) z_1^{\alpha} = v_1^{\alpha} + iv_3^{\alpha}, z_2^{\alpha} = v_2^{\alpha} + iv_4^{\alpha}, z_3^{\alpha} = v_1^{\alpha} - iv_3^{\alpha}, z_4^{\alpha} = v_2^{\alpha} - iv_4^{\alpha},$$

where $i^2=-1$. The affinor $\widetilde{c}_{\alpha}^{\beta}=i\ c_{\alpha}^{\beta}$ defines a composition $Z_2\times\overline{Z}_2$ in A_4

3. Chebyshevian compositions in A_4

According to [8] we have the following derivative equations

(15)
$$\nabla_{\sigma} v^{\beta} = \overset{r}{T}_{\sigma} v^{\beta}, \qquad \nabla_{\sigma} \overset{\alpha}{v}_{\beta} = -\overset{\alpha}{T}_{\sigma} \overset{\nu}{v}_{\beta}.$$

Let us consider the composition $X_2 \times \overline{X}_2$ and let us accept:

$$\alpha, \beta, \gamma, \sigma, \nu \in \{1, 2, 3, 4\}; i, j, k, s \in \{1, 2\}; \overline{i}, \overline{j}, \overline{k}, \overline{s} \in \{3, 4\}.$$

Theorem 1. The composition $X_2 \times \overline{X}_2$ is of the kind (ch - ch) iff the coefficients of the derivative equations satisfy the conditions

Proof. By the equalities (5) and (15) we have

(17)
$$\nabla_{\sigma} a_{\alpha}^{\beta} = T_{1}^{\nu} v^{\beta} v_{\alpha}^{1} - T_{2}^{1} v^{\beta} v_{\alpha}^{\nu} + T_{2}^{\nu} v^{\beta} v_{\alpha}^{2} - T_{2}^{2} v^{\beta} v_{\alpha}^{\nu} - T_{2}^{\nu} v^{\beta} v_{\alpha}^{\nu} - T_{2}^{\nu} v^{\beta} v_{\alpha}^{\nu} - T_{2}^{\nu} v^{\beta} v_{\alpha}^{\nu} + T_{2}$$

It follows by (3) and (17) that the composition $X_2 \times \overline{X}_2$ is of the kind (ch - ch) iff the equality

$$(18) \qquad \begin{array}{l} \displaystyle \overset{\nu}{T}_{[\sigma} \overset{1}{v_{\alpha]}} \overset{v}{v}^{\beta} - \overset{1}{T}_{[\sigma} \overset{\nu}{v_{\alpha]}} \overset{v}{v}^{\beta} + \overset{\nu}{T}_{[\sigma} \overset{2}{v_{\alpha]}} \overset{v}{v}^{\beta} - \overset{2}{T}_{[\sigma} \overset{\nu}{v_{\alpha]}} \overset{v}{v}^{\beta} \\ - \overset{\nu}{T}_{[\sigma} \overset{3}{v_{\alpha]}} \overset{v}{v}^{\beta} + \overset{7}{T}_{[\sigma} \overset{\nu}{v_{\alpha]}} \overset{v}{v}^{\beta} - \overset{\nu}{T}_{[\sigma} \overset{4}{v_{\alpha]}} \overset{4}{v}^{\beta} + \overset{4}{T}_{[\sigma} \overset{\nu}{v_{\alpha]}} \overset{v}{v}^{\beta} = 0 \end{array}$$

holds. The equality (18) is equivalent to the following equalities

because the vectors v^{β} are independent. After a contraction of the equalities (19) with v^{σ} and v^{α} and taking into account (4) we get (16).

Theorem 2. If the net $\begin{pmatrix} v, & v, & v, & v \\ 1 & 2 & 3 & 4 \end{pmatrix}$ is chosen as a coordinate one, then the composition $X_2 \times \overline{X}_2$ of the kind (ch-ch) is characterized by the following equalities for the coefficients of the derivative equations

and by the following equalities for the coefficients of connectedness

(21)
$$\Gamma_{13}^{\alpha} = \Gamma_{14}^{\alpha} = \Gamma_{23}^{\alpha} = \Gamma_{24}^{\alpha} = 0.$$

Proof. Let choose the net $\begin{pmatrix} v_1, v_2, v_3, v_4 \end{pmatrix}$ for a coordinate. Then

(22)
$$v_1^{\alpha}(1, 0, 0, 0), v_2^{\alpha}(0, 1, 0, 0), v_3^{\alpha}(0, 0, 1, 0), v_4^{\alpha}(0, 0, 0, 1).$$

By equality (15) we have $\partial_{\sigma}v^{\beta}_{\alpha} + \Gamma^{\beta}_{\sigma\nu} v^{\nu}_{\alpha} = T^{\nu}_{\alpha\sigma} v^{\beta}_{\nu}$ and after using (22) we obtain

(23)
$$\Gamma^{\beta}_{\sigma\nu} = \overset{\nu}{T}_{\sigma}.$$

Equalities (20) follow from (16) and (22). Then from (20) and (23) we get the equalities (21).

The equalities (21) are obtained in [3], when the coordinates are adaptive with the composition $X_2 \times \overline{X}_2$. This happens so, because the chosen coordinate net raise adaptive with the composition coordinates.

Theorem 3. The composition $Y_2 \times \overline{Y}_2$ is of the kind (ch - ch) iff the coefficients of the derivative equations satisfy the conditions

$$\begin{pmatrix}
\frac{1}{T}\sigma - \frac{3}{T}\sigma \end{pmatrix} v^{\sigma} = \begin{pmatrix}
\frac{1}{T}\sigma - \frac{3}{T}\sigma \end{pmatrix} v^{\sigma}, \quad \begin{pmatrix}
\frac{3}{T}\sigma - \frac{1}{T}\sigma \end{pmatrix} v^{\sigma} = \begin{pmatrix}
\frac{3}{T}\sigma - \frac{1}{T}\sigma \end{pmatrix} v^{\sigma},$$

$$\begin{pmatrix}
\frac{3}{T}\sigma - \frac{1}{T}\sigma \end{pmatrix} v^{\sigma} = \begin{pmatrix}
\frac{3}{T}\sigma - \frac{1}{T}\sigma \end{pmatrix} v^{\sigma}, \quad \begin{pmatrix}
\frac{3}{T}\sigma - \frac{1}{T}\sigma \end{pmatrix} v^{\sigma} = \begin{pmatrix}
\frac{3}{T}\sigma - \frac{1}{T}\sigma \end{pmatrix} v^{\sigma},$$

$$\begin{pmatrix}
\frac{1}{T}\sigma - \frac{3}{T}\sigma \end{pmatrix} v^{\sigma} = \begin{pmatrix}
\frac{1}{T}\sigma - \frac{3}{T}\sigma \end{pmatrix} v^{\sigma}, \quad \begin{pmatrix}
\frac{1}{T}\sigma - \frac{3}{T}\sigma \end{pmatrix} v^{\sigma} = \begin{pmatrix}
\frac{1}{T}\sigma - \frac{3}{T}\sigma \end{pmatrix} v^{\sigma}.$$

Proof. Because of the equalities (11) and (15) we have

$$\nabla_{\sigma}b_{\alpha}^{\beta} = T_{\sigma}^{\nu} v_{\nu}^{\beta} v_{\alpha}^{3} - T_{\sigma}^{3} v_{\alpha}^{\beta} v_{\alpha}^{\nu} + T_{\sigma}^{\nu} v_{\alpha}^{\beta} v_{\alpha}^{1} - T_{\nu}^{3} v_{\alpha}^{\beta} v_{\alpha}^{\nu}$$

$$+ T_{\sigma}^{\nu} v_{\nu}^{\beta} v_{\alpha}^{4} - T_{\nu}^{4} v_{\alpha}^{\beta} v_{\alpha}^{\nu} + T_{\sigma}^{\nu} v_{\alpha}^{\beta} v_{\alpha}^{2} - T_{\nu}^{3} v_{\alpha}^{\beta} v_{\alpha}^{\nu}.$$

$$(25)$$

From (3) and (25) it follows that the composition $Y_2 \times \overline{Y}_2$ is of the kind (ch-ch) iff the equalities

$$(26) \qquad T_{1}^{\nu} \begin{bmatrix} 3 \\ v_{\alpha} \end{bmatrix} v^{\beta} - T_{\nu}^{3} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} + T_{3}^{\nu} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} - T_{\nu}^{3} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} \\ + T_{2}^{\nu} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} - T_{\nu}^{3} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} + T_{2}^{\nu} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} + T_{2}^{\nu} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} - T_{2}^{\nu} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} \\ + T_{2}^{\nu} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} - T_{\nu}^{3} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} + T_{\nu}^{3} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} + T_{\nu}^{3} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} - T_{\nu}^{3} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} \\ + T_{\nu}^{3} \begin{bmatrix} \sigma \\ v_{\alpha} \end{bmatrix} v^{\beta} + T_{\nu}^{3} \begin{bmatrix} \sigma \\$$

hold.

Taking into account that the vectors v^{β}_{α} are independent we find that equality (26) is equivalent to the equalities

$$\frac{1}{T_{[\sigma}} \vec{v}_{\alpha]} - \frac{3}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{1}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{1}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{1}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{1}{T_{[\sigma}} \vec{v}_{\alpha]} = 0$$

$$\frac{2}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{2}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{2}{T_{[\sigma}} \vec{v}_{\alpha]} - \frac{4}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{2}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{2}{T_{[\sigma}} \vec{v}_{\alpha]} = 0$$

$$\frac{3}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{3}{T_{[\sigma}} \vec{v}_{\alpha]} - \frac{1}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{3}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{3}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{3}{T_{[\sigma}} \vec{v}_{\alpha]} = 0$$

$$\frac{4}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{4}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{4}{T_{[\sigma}} \vec{v}_{\alpha]} + \frac{4}{T_{[\sigma}} \vec{v}_{\alpha]} - \frac{2}{T_{[\sigma}} \vec{v}_{\alpha]} = 0.$$

After a contraction of the equalities (27) with v^{σ}_{ν} and v^{α}_{β} and using (4) we get (24).

Theorem 4 If the net $\begin{pmatrix} v, & v, & v, & v \\ 1 & 2 & 3 \end{pmatrix}$ is chosen as a coordinate one then the composition $Y_2 \times \overline{Y}_2$ of the kind (ch-ch) is characterized by the following equalities for the coefficients of the derivative equations

(28)
$$T_1 = T_3 = T_4 =$$

and with the following equalities of the coefficients of the connectedness

(29)
$$\Gamma_{11}^{\alpha} = \Gamma_{33}^{\alpha}, \quad \Gamma_{22}^{\alpha} = \Gamma_{44}^{\alpha}, \quad \Gamma_{12}^{\alpha} = \Gamma_{34}^{\alpha}, \quad \Gamma_{23}^{\alpha} = \Gamma_{14}^{\alpha}.$$

Proof. Let us choose the net $\begin{pmatrix} v, & v, & v, & v \\ 1 & 2 & 3 & 4 \end{pmatrix}$ for a coordinate net. The equalities in (28) follow from (22) and (24), and the equalities in (29) follow from (23) and (28).

Theorem 5 The composition $Z_2 \times \overline{Z}_2$ is of the kind (ch - ch) iff the coefficients of the derivative equations satisfy the conditions

$$\begin{pmatrix}
3 \\ T_{1}\sigma + \frac{1}{3}\sigma
\end{pmatrix} v_{2}^{\sigma} = \begin{pmatrix}
3 \\ T_{2}\sigma + \frac{1}{4}\sigma
\end{pmatrix} v_{1}^{\sigma}, \quad \begin{pmatrix}
1 \\ T_{3}\sigma + \frac{3}{1}\sigma
\end{pmatrix} v_{3}^{\sigma} = \begin{pmatrix}
3 \\ T_{3}\sigma - \frac{1}{1}\sigma
\end{pmatrix} v_{1}^{\sigma},$$

$$(30) \quad \begin{pmatrix}
1 \\ T_{3}\sigma + \frac{3}{1}\sigma
\end{pmatrix} v_{4}^{\sigma} = \begin{pmatrix}
3 \\ T_{4}\sigma - \frac{1}{2}\sigma
\end{pmatrix} v_{1}^{\sigma}, \quad \begin{pmatrix}
3 \\ T_{3}\sigma - \frac{1}{1}\sigma
\end{pmatrix} v_{2}^{\sigma} = \begin{pmatrix}
3 \\ T_{2}\sigma + \frac{1}{4}\sigma
\end{pmatrix} v_{3}^{\sigma},$$

$$\begin{pmatrix}
3 \\ T_{2}\sigma + \frac{1}{4}\sigma
\end{pmatrix} v_{4}^{\sigma} = \begin{pmatrix}
3 \\ T_{2}\sigma - \frac{1}{2}\sigma
\end{pmatrix} v_{2}^{\sigma}, \quad \begin{pmatrix}
3 \\ T_{3}\sigma - \frac{1}{1}\sigma
\end{pmatrix} v_{4}^{\sigma} = \begin{pmatrix}
3 \\ T_{4}\sigma - \frac{1}{2}\sigma
\end{pmatrix} v_{3}^{\sigma}.$$

Proof. By the equalities (13) and (15) we obtain

(31)
$$\nabla_{\sigma} \tilde{c}_{\alpha}^{\beta} = i \left(\tilde{T}_{3\sigma\nu}^{\nu} v^{\beta}_{\alpha}^{1} - \tilde{T}_{\nu\sigma}^{1} v^{\beta}_{\alpha}^{\nu} - \tilde{T}_{1\sigma\nu}^{\nu} v^{\beta}_{\alpha}^{3} + \tilde{T}_{\nu\sigma}^{3} v^{\beta}_{\alpha}^{\nu} + \tilde{T}_{\nu\sigma}^{3} v^{\beta}_{\alpha}^{\nu} + \tilde{T}_{\nu\sigma}^{3} v^{\beta}_{\alpha}^{\nu} + \tilde{T}_{\nu\sigma}^{3} v^{\beta}_{\alpha}^{\nu} - \tilde{T}_{\nu\sigma}^{3} v^{\beta}_{\alpha}^{\nu} - \tilde{T}_{\nu\sigma}^{3} v^{\beta}_{\alpha}^{\nu} + \tilde{T}_{\nu\sigma}^{3} v^{\beta}_{\alpha}^{\nu} + \tilde{T}_{\nu\sigma}^{3} v^{\beta}_{\alpha}^{\nu} \right).$$

Therefore, by (3) and (31) it follows that the composition $Z \times \overline{Z}_2$ is of the kind (ch - ch) iff the equality

$$(32) \qquad \begin{array}{c} T_{[\sigma}^{\nu}v_{\alpha]}v^{\beta} - T_{[\sigma}^{\nu}v_{\alpha]}v^{\beta} - T_{[\sigma}^{\nu}v_{\alpha]}v^{\beta} + T_{[\sigma}^{\nu}v_{\alpha]}v^{\beta} \\ T_{[\sigma}v_{\alpha]}v^{\beta} - T_{[\sigma}^{\nu}v_{\alpha]}v^{\beta} - T_{[\sigma}^{\nu}v_{\alpha]}v^{\beta$$

holds. Taking into account that the vectors $\begin{array}{c} v^{\beta} \\ \alpha \end{array}$ are independent, we can

rewrite (32) in the following form

$$\frac{1}{3} \begin{bmatrix} 1 \\ \sigma v_{\alpha} \end{bmatrix} - \frac{1}{T} \begin{bmatrix} 3 \\ \sigma v_{\alpha} \end{bmatrix} + \frac{3}{T} \begin{bmatrix} \nu \\ \sigma v_{\alpha} \end{bmatrix} + \frac{1}{T} \begin{bmatrix} 2 \\ \sigma v_{\alpha} \end{bmatrix} - \frac{1}{T} \begin{bmatrix} 4 \\ \sigma v_{\alpha} \end{bmatrix} = 0,$$

$$\frac{2}{3} \begin{bmatrix} 1 \\ \sigma v_{\alpha} \end{bmatrix} - \frac{2}{T} \begin{bmatrix} 3 \\ \sigma v_{\alpha} \end{bmatrix} + \frac{2}{T} \begin{bmatrix} 2 \\ \sigma v_{\alpha} \end{bmatrix} - \frac{2}{T} \begin{bmatrix} 4 \\ \sigma v_{\alpha} \end{bmatrix} + \frac{4}{T} \begin{bmatrix} \nu \\ \sigma v_{\alpha} \end{bmatrix} = 0,$$

$$\frac{3}{3} \begin{bmatrix} 1 \\ \sigma v_{\alpha} \end{bmatrix} - \frac{1}{T} \begin{bmatrix} \nu \\ \sigma v_{\alpha} \end{bmatrix} - \frac{3}{T} \begin{bmatrix} 3 \\ \sigma v_{\alpha} \end{bmatrix} + \frac{3}{T} \begin{bmatrix} 2 \\ \sigma v_{\alpha} \end{bmatrix} - \frac{3}{T} \begin{bmatrix} 4 \\ \sigma v_{\alpha} \end{bmatrix} = 0,$$

$$\frac{4}{3} \begin{bmatrix} 1 \\ \sigma v_{\alpha} \end{bmatrix} - \frac{4}{T} \begin{bmatrix} 3 \\ \sigma v_{\alpha} \end{bmatrix} + \frac{4}{T} \begin{bmatrix} 2 \\ \sigma v_{\alpha} \end{bmatrix} - \frac{2}{T} \begin{bmatrix} \nu \\ \sigma v_{\alpha} \end{bmatrix} - \frac{4}{T} \begin{bmatrix} 4 \\ \sigma v_{\alpha} \end{bmatrix} = 0,$$

and after a contraction of the above equalities with v^{σ}_{ν} and v^{α}_{β} and using (4) we get (30).

Theorem 6. If the net $\begin{pmatrix} v, & v, & v, & v \\ 1 & 2 & 3 & 4 \end{pmatrix}$ is chosen as a coordinate one then the composition $Z_2 \times \overline{Z}_2$ from the kind (ch-ch) is characterized by the following equalities for the coefficients of the derivative equations:

and with the following equalities of the coefficients of the connectedness:

$$(35) \qquad \Gamma_{11}^{\alpha} = -\Gamma_{33}^{\alpha} \,, \quad \Gamma_{22}^{\alpha} = -\Gamma_{44}^{\alpha} \,, \quad \Gamma_{12}^{\alpha} = -\Gamma_{34}^{\alpha} \,, \quad \Gamma_{23}^{\alpha} = \Gamma_{14}^{\alpha} \,.$$

Proof. Let choose the net $\begin{pmatrix} v, & v, & v, & v \\ 1 & 2 & 3 & 4 \end{pmatrix}$ for a coordinate net. Then the equalities (34) follow by (22) and (30), and the equalities (35) follow by (23) and (34).

Corollary 1. If the conjugate compositions $X_2 \times \overline{X}_2$ and $Y_2 \times \overline{Y}_2$ are simultaneously of the kind (ch - ch) then in the parameters of the coordinate net $\begin{pmatrix} v, & v, & v, \\ 1, & v, & y, \\ 3, & 4 \end{pmatrix}$ the coefficients of the connectedness $\Gamma^{\sigma}_{\alpha\beta}$ satisfy the conditions

(36)
$$\Gamma_{11}^{\alpha} = \Gamma_{33}^{\alpha} \,, \quad \Gamma_{22}^{\alpha} = \Gamma_{44}^{\alpha} \,, \quad \Gamma_{12}^{\alpha} = \Gamma_{34}^{\alpha} \,,$$

$$\Gamma_{13}^{\alpha} = \Gamma_{14}^{\alpha} = \Gamma_{23}^{\alpha} = \Gamma_{24}^{\alpha} = 0 \,.$$

Corollary 2. If the compositions $X_2 \times \overline{X}_2$ and $Z_2 \times \overline{Z}_2$ are simultaneously of the kind (ch-ch), then in the parameters of the coordinate net $\begin{pmatrix} v, & v, & v, & v \\ 1, & v, & v, & v \end{pmatrix}$ the coefficients of the connectedness $\Gamma^{\sigma}_{\alpha\beta}$ satisfy the conditions

(37)
$$\Gamma_{11}^{\alpha} = -\Gamma_{33}^{\alpha} \,, \quad \Gamma_{22}^{\alpha} = -\Gamma_{44}^{\alpha} \,, \quad \Gamma_{12}^{\alpha} = -\Gamma_{34}^{\alpha} \,,$$
$$\Gamma_{13}^{\alpha} = \Gamma_{14}^{\alpha} = \Gamma_{23}^{\alpha} = \Gamma_{24}^{\alpha} = 0 \,.$$

The conditions (36) and (37) can be written in the form

$$\Gamma_{11}^{\alpha} = \varepsilon \, \Gamma_{33}^{\alpha} \,, \quad \Gamma_{22}^{\alpha} = \varepsilon \, \Gamma_{44}^{\alpha} \,, \quad \Gamma_{12}^{\alpha} = \varepsilon \Gamma_{34}^{\alpha} \,,$$

$$\Gamma_{13}^{\alpha} = \Gamma_{14}^{\alpha} = \Gamma_{23}^{\alpha} = \Gamma_{24}^{\alpha} = 0 \,, \text{ where } \varepsilon = \pm 1.$$

Using [1] and (38), we find the following representation for the components of the tensor of the curvature

$$(39) \qquad R_{123}{}^{\alpha} = R_{124}{}^{\alpha} = R_{341}{}^{\alpha} = R_{342}{}^{\alpha} = 0;$$

$$R_{3ij}{}^{\alpha} = R_{3ji}{}^{\alpha} = \partial_3 \Gamma_{ij}^{\alpha} + \varepsilon \left(\Gamma_{11}^{\alpha} \Gamma_{ij}^3 + \Gamma_{12}^{\alpha} \Gamma_{ij}^4 \right),$$

$$R_{4ij}{}^{\alpha} = R_{4ji}{}^{\alpha} = \partial_4 \Gamma_{ij}^{\alpha} + \varepsilon \left(\Gamma_{22}^{\alpha} \Gamma_{ij}^4 + \Gamma_{12}^{\alpha} \Gamma_{ij}^3 \right),$$

$$R_{i33}{}^{\alpha} = \varepsilon \left(\partial_i \Gamma_{11}^{\alpha} + \Gamma_{ii}^{\alpha} \Gamma_{11}^i + \Gamma_{12}^{\alpha} \Gamma_{ii}^j \right), \quad i \neq j,$$

$$R_{i44}{}^{\alpha} = \varepsilon \left(\partial_i \Gamma_{22}^{\alpha} + \Gamma_{ii}^{\alpha} \Gamma_{22}^i + \Gamma_{12}^{\alpha} \Gamma_{22}^j \right), \quad i \neq j,$$

$$R_{134}{}^{\alpha} = R_{143}{}^{\alpha} = \varepsilon \left(\partial_i \Gamma_{12}^{\alpha} + \Gamma_{ii}^{\alpha} \Gamma_{12}^i \right) + \Gamma_{12}^{\alpha} \Gamma_{12}^j, \quad i \neq j,$$

$$R_{ijj}{}^{\alpha} = \partial_i \Gamma_{jj}^{\alpha} - \partial_j \Gamma_{12}^{\alpha} + \Gamma_{ii}^{\alpha} \Gamma_{jj}^i + \Gamma_{12}^{\alpha} \Gamma_{jj}^j - R \Gamma_{12}^{\alpha} \Gamma_{12}^i - \Gamma_{jj}^{\alpha} \Gamma_{12}^j, \quad i \neq j,$$

$$R_{344}{}^{\alpha} = \varepsilon \left(\partial_3 \Gamma_{22}^{\alpha} - \partial_4 \Gamma_{12}^{\alpha} \right) + \Gamma_{11}^{\alpha} \Gamma_{22}^3 + \Gamma_{12}^{\alpha} \Gamma_{22}^4 - \Gamma_{12}^{\alpha} \Gamma_{12}^3 - \Gamma_{22}^{\alpha} \Gamma_{12}^4,$$

$$R_{343}{}^{\alpha} = \varepsilon \left(\partial_4 \Gamma_{11}^{\alpha} - \partial_3 \Gamma_{12}^{\alpha} \right) + \Gamma_{22}^{\alpha} \Gamma_{11}^4 + \Gamma_{12}^{\alpha} \Gamma_{11}^3 - \Gamma_{12}^{\alpha} \Gamma_{12}^4 - \Gamma_{11}^{\alpha} \Gamma_{12}^3.$$
Hence,
$$R_{\overline{i}[ij]}{}^{\alpha} = 0, \quad R_{i[\overline{i},\overline{j}]}{}^{\alpha} = 0.$$

Corollary 3. If the compositions $Y_2 \times \overline{Y}_2$ and $Z_2 \times \overline{Z}_2$ are simultaneously of the kind (ch-ch) then in the parameters of the coordinate net $\begin{pmatrix} v, & v, & v, & v \\ 1, & 2, & 3, & 4 \end{pmatrix}$ the coefficients of the connectedness $\Gamma_{\alpha\beta}^{\sigma}$ satisfy the conditions

(41)
$$\Gamma_{\overline{i}\ \overline{j}}^{i} = 0, \quad \Gamma_{ij}^{\overline{i}} = 0$$

and

(42)
$$\Gamma_{ij}^k = 0, \quad \Gamma_{\bar{i}\ \bar{i}}^{\overline{k}} = 0, \quad \Gamma_{23}^{\alpha} = \Gamma_{14}^{\alpha}.$$

In this case, using [1], (41), (42) we find $R_{ijk}^{\alpha} = 0$ and $R_{\bar{i}\;\bar{j}\;\bar{k}}^{\alpha} = 0$. From [3] and (41) it follows that the composition $X_2 \times \overline{X}_2$ is of the kind (g-g).

Corollary 4. If the compositions $X_2 \times \overline{X}_2$, $Y_2 \times \overline{Y}_2$ and $Z_2 \times \overline{Z}_2$ are simultaneously of the kind (ch - ch), then the space A_N is an affine space.

Proof. If the compositions $X_2 \times \overline{X}_2$, $Y_2 \times \overline{Y}_2$ and $Z_2 \times \overline{Z}_2$ are simultaneously of the kind (ch-ch), then by (36), (37), (41), (42) we obtain that $\Gamma_{\alpha\beta}^{\sigma} = 0$, and consequently A_N is an affine space.

References

- [1] NORDEN A., Affinely connected spaces, Moskow, (1976).
- [2] NORDEN A., Spaces with Cartesian compositions, *Izv. Vyssh. Uchebn. Zaved. Math.*, 4, (1963), 117–128, (In Russian).
- [3] NORDEN A., TIMOFEEV G., Invariant tests of special compositions in many-dimensional spaces, *Izv. Vyssh. Uchebn. Zaved. Math.*, **8**, (1972), 81–89 (In Russian).
- [4] Timofeev G., Invariant tests of special compositions in Weyl spaces, *Izv. Vyssh. Uchebn. Zaved. Math.*, 1, (1976), 87–99, (In Russian).
- [5] WILLMORE T., Connexions for systems of parallel distributions, Quart. J., Math., Vol. 7, No. 28, (1956), 269–276.
- [6] ZLATANOV G., Compositions generated by special nets in affinely connected spaces, *Serdika Math. J.*, **28**, (2002), 1001–1012.
- [7] ZLATANOV G., TSAREVA B., Conjugated Compositions in even-dimensional affinely connected spaces without a torsion, *REMIA 2010*, 10–12 December, Plovdiv, Bulgaria, (2010), 225–231.
- [8] ZLATANOV G., TSAREVA B., Geometry of the Nets in Equiaffine Spaces, J. Geometry, 55, (1996), 192–201.

Presevo, Srbija Received 04 May 2011

e-mail: m-ajeti@hotmail.com

ЧЕБИШЕВИ КОМПОЗИЦИИ В ЧЕТИРИМЕРНО ПРОСТРАНСТВО С АФИННА СВЪРЗАНОСТ БЕЗ ТОРЗИЯ

Муса Айети

Резюме. Нека е дадено пространство с афинна свързаност A_4 без торзия. Следвайки [7] се определят афинори a_{α}^{β} и b_{α}^{β} , които определят спрегнати композиции $X \times \overline{X}_2$ и $Y \times \overline{Y}_2$ в A_4 . С помощта на афинора $\widetilde{c}_{\alpha}^{\ \beta} = i c_{\alpha}^{\beta}$ ($i^2 = -1$), където $c_{\alpha}^{\beta} = -a_{\sigma}^{\beta} b_{\alpha}^{\sigma}$, се определя трета композиция $Z \times \overline{Z}_2$. Намерени са необходими и достатъчни условия при които всяка от тези композиции е от вида (ch-ch). Определени са пространствата A_4 , които съдържат такива композиции. Доказано е, че ако композициите $X \times \overline{X}_2$, $Y \times \overline{Y}_2$ и $Z \times \overline{Z}_2$ са от вида (ch-ch), то пространството A_4 е афинно.