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Abstract. A generalization of the well known dichotomies for a
class of homogeneous linear differential equations in an arbitrary Banach
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Key words: Ordinary Differential Equations, Generalized Dichotomy,
L, (¢, 1)-solutions
Mathematics Subject Classification 2000: 34G10, 47TH10

1. Introduction

The notion of exponential and ordinary dichotomy is fundamental in the
qualitative theory of ordinary differential equations. It is considered in detail
for example in the monographs [1]-[2],[7]-[9]. In the given paper we use a
(M, N, R) dichotomy, introduced in [6] and considered in [4],[5], which is a
generalization of all dichotomies known by the authors.

We study the existence of solutions in the spaces Ly(¢, ) of nonhomo-
geneous linear differential equations with generalized dichotomy of the corre-
sponding homogeneous equation. In the paper are found sufficient conditions
for the existence of such L, (¢, 1)-solutions.
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2. Problem statement

Let X is an arbitrary Banach space with norm |.| and identity I and let
R; = [0,00). Let L(X) is the space of all linear bounded operators acting in
X with the norm |[.|].

We consider the nonhomogeneous linear equation

du
(1) &= A+ 1)
where A(t) € L(X),t € R.
By V(t) we will denote the Cauchy operator of

2) % = At)u

In this paper we will use the (M, N, R)-dichotomy, introduced in [4] with
following properties and definitions.

Let R(t): X — X (t € J) is an arbitrary bounded operator.

Lemma 1. [4] The function

3) MQ=AV%W@W1@H®%—AmeU—M$W1@N@%

is a solution of the equation (1) if the integrals in (3) exist.

Following conditions are introduced
(H1). |V@&)R(s)VHs)z |< M(t,s,2),t >s,2€ X
(H2). |V(t)(I — R(s))V7i(s)z [< N(t,s,2),t <s,z€ X

Definition 1. [4] We call the equation (2) be a (M, N, R) - dichotomous
if the conditions (H1), (H2) are fulfilled.

Remark 1. [4] Let R(t) = P,where P : X — X is a projector.
For

M(t, s, z) = Kle_f:‘sl(T)dT\z| (t>s,z€X)
Nt s,z) = Koe 50T 2] (s> ¢, 2 € X)

where K1, Ko are positive constants and 1, d2 are continuous real-valued func-
tions on R, we obtain the exponential dichotomy of [§].
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For 6;(t) = const (t € Ry, i =1,2) we obtain the exponential dichotomy
of [1],[2],[7]. In the case 6;(t) = 0 (t € Ry, i@ = 1,2) we obtain the ordinary
dichotomy of [1],[7].

For

M(t,s,z) = Kh(t)h "' (s)|z| (t > 5>0,,2 € X)

N(t,s,2) = Kk(t)k™(s)|z| (0<t<s,2€X)
where K is a positive constant and h,k : R, — Ry are two continuous func-
tions, we obtain the dichotomy of [9].

Let the right hand part of (H1) and (H2) has the form

() {M(t,s,z):gol(t)@g(s) |z|, t>s), z€ X

N(t,s,2) =1(t)a(s) | 2|, (t<s), z€ X

where ¢1(t), p2(t), 1¥1(t), ¥2(t) are positive scalar functions.

Definition 2. We call the equation (2) be a (¢, %, R) - dichotomous if it
is (M, N, R) - dichotomous and the conditions (H1), (H2) have the form (4).

Let the equation (2) is a (¢, ¢, R) - dichotomous. We consider the following
Banach spaces :

Ly(p) = {9() : Ry — X' sup sol(t)/o pa(s)lg(s)["ds < oo}

teER 4

with the norm

1

t P
Wi, = 50 (1) [ ea(0laPas)”
+

L) = {g() : Ry — X : sup (1) / " ga(s)\g(s)Pds < oo}

teR

with the norm
1
P

s, = 530 (1(0) [ wa(slalo)"as)

and

Lo ={g(.) : Ry — X : sup |g(t)| < oo}
teR,
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with the norm

l9lp_ = sup |g(t)].
t€R+

We introduce the following conditions:

(H3) sup gol(t)/o pa2(s)ds < My

teR

(H4) sup 1(t) /toc Pa(s)ds < My

teR

3. Main results

Lemma 2. Let the following conditions are fulfilled:

1. The operator-function A(t) is continuous for t € R..

2. Conditions (H3) and (H4) hold.

3. The linear differential equation (2) is (¢, 1, R) - dichotomous.

Then for any function f € L,() N L,(v)) the linear nonhomogeneous
equation (1) has a bounded solution u(t) (¢t € Ry) for which the following
formula is valid

(5) ult) = / V(OR(s)V 1 (s)f(s)ds — / V(O — R()V ) (s) f(s)ds
Proof. The formula (5) follows from Lemma 1. We shall estimate the

norm of the integrals in (5).

Let ¢ = pp 7- We use Holder’s inequality. For the norm of the integrals
we obtain

| / V(OR(s)V () f(s)ds] < / VRV (s 1£(3))ds <
0 0
< / o1 () pa(s)| £(5)]ds <

< / o1 (D)o (s)ds} / o1 (Dpa(s) f(s)Pds <
< M1%|f|Lp(¢)
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and
I/too V(#)(I = R(s))V "' (s) f(s)ds| < /too V(I = R(s))V " (s)[| [ f(s)]ds <

s[ww@wx$ﬂwws

< {/foo ¢1(t)¢2(5)ds}q/tm ?ﬁl(t)wg(s)\f(s)\pds; <
< M7 |fl1,

O

Definition 3. The solution u(t) (t € Ry) of the linear nonhomogeneous
equation (1) is said to be a L, (¢, 1)-solution, if u € L,(p) N Ly(¢) N L.

For £ € L,(¢) N Ly (¥) we introduce the norm

€12, (o)L, = Max€]L, ), €], )}

Lemma 3. Let the following conditions are fulfilled:

1. The operator-function A(t) is continuous for t € R..

2. Conditions (H3) and (H4) hold.

3. The linear differential equation (2) is (¢, %, R) - dichotomous.
Then the operator G, defined by the formula

w)Gﬂﬂ—AVWW@W1®V®@ZWV@UM$W1@M@®

maps L,(¢) N L,(v) into L,(p) N L,(¥) N Lo and the following estimates are
valid

1 1
(7) |Gf|LOC < (Mya + M) |f|Lp(90)ﬁLp(¢)
M. 1
1 2,49
(8) Gl < 20 M+ (7)) i, onr, @
M 1
1 1.9
(9) Gl @) <20 Ma(1+ (E) ) L)L, @)

1,1 _
Whereg—i—a—l.
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Proof. Let f € L,(¢) N L,(¢). From Lemma 2. follows the estimate

IGF(0)] < Myt |fly, ) + Mat|fly gy (EERY).
Then

Gfly < (Mo + Mys) maz{fly, . 11,00}
Hence (7) holds.

Now we shall prove, that Gf € L,(¢). From (7) and condition (H3) we
obtain

1

t P
611, = 0 (1) [ ea(aliGs ) ) <

1

IN

t

1 1..\P

< sup (‘Pl(t)/ P2(s)((My7 + Maa)) |f‘ip(¢)mLp(¢)d3)
teR 0

|~

p

1 P P % t
<BORT 25 |1y, s, 0 510 (1) [ a(s)dn)” <
+

1 1 1 1
< 20 My (Mye + M) flp, (o), w) =

1 My s
=2aM(1+ (E) ) |f|LP(¢)an(w)

11 p N
<20 Myr(Mye + M) " |flL oL, v) <

=

Hence the inequality (8) holds.
The proof of the inequality (9) is analogously. O

Theorem 1. Let the following conditions are fulfilled:

1. The operator-function A(t) is continuous for t € R.

2. Conditions (H3) and (H4) hold.

3. The linear differential equation (2) is (¢, 1, R) - dichotomous.

Then for any function f € L,() N Ly(v) the linear nonhomogeneous
equation (1) has a Ly(p,v)-solution.

Proof. Let f € L,(v) N Ly(¢). Then the equality (5) has the form
(10) u(t) = Gf(t)

where G is the operator, defined by (6). From (10), Lemma 2., Lemma 3. and
condition 2 of Theorem 1. follows, that the solution of the linear nonhomoge-
neous equation (1) lies in the space L,(y) N L,(¥) N Lo, i.e. the equation (1)
has a L,(¢g, 1)-solution. O
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Remark 2. The case, when the linear operator A(t) is unbounded, the

equation is impulsive and for the linear equation is not presumed dichotomous
is considered in [3].

(1]
2]

3]
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CBIIIECTBYBAHE HA Lp(p,¢)-PEIIIEHNA HA JIMHEVHN
JANOEPEHIINAJIHN YPABHEHU A C OBOBIIIEHA
ANXOTOMNA B BAHAXOBO ITPOCTPAHCTBO

Xpucro Kuckunos, Crernan Kocraguaos
Pesrome. Mznonssano e 06001meHne Ha 100pe M3BECTHUTE IUXOTOMUHN 34
KJIAC OT XOMOTEHHH JUHEHHN audepeHnna i YpaBHEHNsI B MPOU3BOIHO ba-

HaXOBO IIPOCTPAaHCTBO. C merosa IIoMoII Ca HaMEepPpeHU JOCTATbIHU YCJIOBUA 3a
CbIIEeCTBYBaHE Ha LP(QO, ’lp)—peﬂleHI/IH Ha CbOTBETHOTO HEXOMOT€HHO YpaBHEHUE.
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