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1. Introduction

In the paper we study the L,-equivalence between two ordinary impulse
differential equations with bounded linear impulse operators in an arbitrary
Banch space. This means, that to every solution of the first equation, which lies
in a closad and convex set, there corresponds a soluition of the second equation,
which lies in an other closed and convex set and the difference between both
solutions lies in the spaces L, and vice versa. In Theorem 1. and Theorem 2.
are found suflicient conditions for the existence of L,-equivalence between the
considered equations.
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2. Problem statement

Let X is an arbitrary Banach space with norm ||.|| and identity I. Let
R} = [0,400). By {t,},., we shall denote a sequence of points

0=ty <ty <ty <..<t, <.., satisfying the condition lim ¢, = oc.

n—oo
We consider the following impulse differential equation:

dui

(1) o

= F;(t,u;) fort#t,

(2) wi(th) = Q' (ui(t,)) forn=1,2,..
where F;(.,.) : Ry x X — X (i = 1,2) are continuous functions and Q¢, : X —

X(i=1,2;n=1,2,...) are linear bounded operators. Furthermore, we assume
that all considered functions are continuous from the left. Let Qf = I and let

wilt,s)= J[ @ (i=1,20<s<1)

s<t; <t

Lemma 1. The solutions u;(t)(i = 1,2) of the integral equations

(3) u; (t) = w;(t,0)u;(0) —I—/O w;(t, 8)Fi(s,ui(s))ds (i =1,2)

satisfy the impulse differential equations (1), (2) (i=1,2).
ProofLet t € (¢, tn4+1). Then

wit) = wi(t, 0)us(0) + 3 / it $) Fi(s, ui(s))ds+
k=0 "tk
—|—/t w;(t, 8)Fi(s,u;(s))ds =
nn ) n—1 tht1 n ) t
= HQ;ul(O)—i—Z/ H Q;Fi(&ui(s))ds—i—/ Fi(s,u;(s))ds
j=1 k=0"tk  j=k41 tn

We differentiate in respect to t and receive
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n

d i te+1
1; _dt HQZW dt/ H QF s,ui(8))ds)+

j=k+1

+ c(lit(/tﬂ Fi(s,ui(s))ds) = Fi(t,u;(t))

Let t =t,,. Then

ui (7)) = wi (£, 0)u; (0) + /tn wi(th, 8)Fi(s,ui(s))ds =
n thi1 n 4
= H )+ Z/ H Q;Fi(s,ui(s))ds =
j=1 e j=k+1
— thy1 M 1
=;H (0 +Q’Z/ [T Q.Fi(s,uils))ds
t j=k+1

Qy (ui(tn))

Hence for t = ¢, (n = 1,2,...) the solutions u;(t) (i = 1,2) of the integral
equations (3) (i = 1,2) satisfy the jump condition (2) (i = 1,2). O
By L,(X), 1 < p < oo we denote the space of all functions v : Ry — X

1

for which f [u(t)[|Pdt < oo with norm |uf|, = f |lu(t)|[dt)

Definition 1. ([3]) The equation (1), (2) for i = 2 is called Ly-equivalent
to the equation (1),(2) for i = 1 in the unempty, closed and convex subset
B of X, if there exists convex and closed subset D of X, such that for any
solution wui(t) of (1),(2) (i = 1) lying in the set B there exists a solution
uz(t) of (1),(2) (i = 2) lying in the set B U D and satisfying the relation
ug(t) —u1(t) € Lp(X). If the equation (1), (2) (i = 2) is Ly-equivalent to the
equation (1), (2) (¢ = 1) in the set B and vice versa, we shall say that equations
(1),(2) (¢ =1) and (1), (2) (¢ = 2) are Ly-equivalent in the set B.

Let S(R4, X) is the linear set of all functions which are continuous for
t#t, (n=1,2,...), have both left and right limits at points ¢,, and are continuous
from the left. The set S(R, X) is a locally convex space w.r.t. the metric

max_||u(t) —v(t)]|

plu,v) = sup (1+T)" 11_0:t<T ORI
0<T<o0 Oglta<XT u v
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The convergence with respect to this metric coincides with the uniform con-
vergence on each bounded interval. For this space an analog of Arzella-Ascoli’s
theorem is valid.

Lemma 2. ([1]) The set H C S(R., X) is relatively compact if the inter-
sections H(t) = {h(t) : h € H} are relatively compact for t € Ry and H is
equicontinuous on each interval (t,,t,4+1] (n =0,1,2,...).

ProofWe apply Arzella-Ascoli’s theorem on each intervals
(tn,tn+1] (n = 0,1,2,...) and constitute a diagonal line sequence, which is
converging on each of them. ]
Let C is an unempty subset of X and let

C={ueSRy,X):ult)cCteRy}

Lemma 3. ([3]) Let C' is an unempty, convex and closed subset of X and
the operator T' is continuous, compact and maps C' into itself.
Then T has a fixpoint in C.

Prooflt follows from the fixpoint principles of Schauder-Tychonoff. O

3. Main results

Let u(t) = ua(t) — uyi(t), where u;(t) (i = 1,2) are defined by (3). Then
the function u(t) is a solution of the integral equation w(t) = T'(u1,u)(t), where

T(uy,u)(t) = wa(t,0)(u1(0) + u(0)) — w1 (¢, 0)u(0)+

4 t
W +/0 (wa(t, 5)F2(s, ur(s) + u(s)) — wi(t, s)Fi(s,ui(s)))ds
Now we will find sufficient conditions for the existence of L,-equivence
between the impulse differential equations (1), (2) (i = 1,2).

We shall prove, that for any solution wui(t) of the equation (1),(2) for
i =1, which lies in an unempty, closed and convex subset B of X, there exists
a closed and convex subset D of X, where the operator T'(uj,u) has such a
fixpoint u(t), that u;i(t) + u(t) € BUD and u € L,(X).

Theorem 1. Let the following conditions are fulfilled:

1. There exists an unempty, convex and closed subset D of X, such that
T(uy,u)(t) € D for each u with u(t) € D (t € Ry)

2. The operator-functions w;(t, s) (i = 1,2) satisfy the conditions:
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2.1 |Jwi(t, )¢l < MJ[¢]] (1 =1,2;¢€ € X;0 < s <t<ox), where M is a
positive number.

2.2 flwa(t,0)6 —wi(t,0)n|] < x(t) (0 <t < o00), where £ € BUD, ne
B, x € Ly(R,).

3. The functions F;(t,v) and w;(t,s) (i = 1,2) satisfy the conditions:
3.1. Fulfilled is

t
~Sup~ ~ / HwQ(tv 8)F2(Saw) - wl(t7 S)Fl (s,v)||ds < ’(/)(t)’
vEB,weBUD J0

where ¢ € L,(Ry).
3.2. For any fixed u; € B the following inclusions hold

/0 wa(t, 8) Fy(s, u1(s) + ua(s))ds € K™ (£),

where K" (t) is for any fixed t € Ry a compact subset of X.
3.3. Fulfilled is

sup |[Fa(t, w)|| < ¢(1),
weBUD

where ¢(t) is integrable function for each interval (t,,tn1+1] (n=0,1,2,...).

Then the equation (1), (2) for i = 2 is L,-equivalent to the equation (1), (2)
for i =1 in the set B.

ProofFrom condition 1. of Theorem 1 it follows, that the operator T'(u1, u)
defined by (4) maps the set D = {u € S(R;, X) : u(t) € D,t € R, } into itself
for uq € B.

For each u; € B we set H,, = {h(t) = T(u1,u)(t) : u € D,t € Ry}. We
will show the equicontinuity of the functions of the set H,,. Let ¢’ > ¢’ and
t',t" € (tn,tnt1]. Then

wi(t',8) = w;(t",s) = H Q) (i=12)

s<t;<t’
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and hence

|[R(t") = h(")I| <
< w2 (t',0)(u1(0) + u(0)) — wi(t', 0)ui (0)—
—wa(t”,0)(u1(0) + u(0)) + w1 (¢, 0)uy (0)]|+

+ H/o (wa(t', 8)Fo(s,ui(s) +u(s)) —wi(t', s)Fi(s,ui(s)))ds—

g

— / (wa(t", 8)Fa(s,ui(s) +u(s)) —wi(t”, s)Fi(s,ui(s)))ds|| <

S/t [lwa (', 8)Fa(s,ur(s) + u(s)) — wi(t', s)Fi(s, ua(s))|lds <

7
’
t

< / wa(t, 5)Fa(s, ur (s) + u(s))|ds + / wn (¢, 5)Fy (s, ur (5))]ds <

t t’
<M sup / [|Fa(s,w)||ds + Msup/ [|Fi(s,v)||ds
weBUD Jt" veB Jt”

From this estimate and from the continuosity of the functions F;(t,v) (i = 1,2)
follows the equicontinuity of the functions of the set H,, .

From condition 3.2. and (4) follows, that the sets H,, (t) = {h(t) : h €
H,,} are relatively compact for every t € R;. From Lemma 2. follows the
relatively compactness of the set H,, .

Now we will show, that the operator T'(u1,u) is continuous in S(R,, X).

Let the sequence {i;} C D is convergent in the metric of the space
S(R,, X) to the function @ € D.

Then from the continuity of the function F(¢,v) follows, that for ¢ € Ry
the sequence Fy(t,u1(t) 4+ 4k (t)) convergence to Fo(t,ui(t) + u(t)).

From conditions 2.1. and 3.3. follows, that the sequence of functions
wa(t, 8)Fa(s,u1(s) + @x(s)) is bounded by an integrable function. Indded

[lwa(t, s) Fa(s, ua(s) + ar(s))]| < M sup |[[Fa(s, w)|| < Me(s)

weBUD

From the Lebesgue’s Theorem follows, that in the untegral formula

T(uy, ) (t) = wa(t, 0)(u1(0) + g (0)) — wi(t,0)us (0)+

+ /0 wa(t, $)Fa(s,ur(s) + ax(s))ds — [ wi(t,s)Fi(s,u1(s))ds

S—
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is possible to go to the limit. Hence T'(uy, u)(t) converges to T(uy,a)(t) for
t € Ry. From this convergence and from the compactness of the operator
T(uy,u) follows the convergence in S(Ry, X).

From Lemma 3. follows, that for every u; € B the operator T(u1,u) has
a fixpoint u € D i.e. u=T(uy,u).

Now we will show, that this fixpoint lies in L,(X). From conditions 2.2.,
3.1. and (4) we receive

[u(®)]| = [[wa(t,0)(u1(0) + u(0)) — w1 (t, 0)ur (0)||+

t
+ ﬁw~~/Hmw@E@aWﬂm@$ﬂwwmﬁéx®+¢®
veB,weBUD JO0

Then from the inequality of Minkowski follows

lull, < llx + 9, < lIxll, + I,

Hence the equation (1), (2) (i = 2) is Ly-equivalent to the equation (1), (2)
(¢ =1) in the set B. O

Remark 1. The case, when dimX < oo and the sets B and D are closed
balls with center zero is considered in [2]. In this case the condition 3.2. of
Theorem 1. is automaticaly fulfilled.

Now by the help of the Banach fixpoint principle we will prove, that for
every fixed u; € B the operator T(uy,u) has an unique fixpoint u € D, such
that u € Ly(X).

Theorem 2. Let the following conditions are fulfilled:
1. The conditions 1., 2.2. and 3.1. of Theorem 1.
2. The operator-function ws(t,s) (0 <s <t < oo) fulfilled the condition

[|wa(t, s)E]] < MI[EI,

where M is a positive number and £ € X.
3. The function F3(t,v) satisfies the condition

[[Fa(t,v) = Fa(t, w)]] < ¢(8)[[v — wl],

where i(.) : R, — Ry and v,w € BU D.
4. The function v(t) and the constant M from condition 2. satisfy the
condition

M1+ /000 P(s)ds) < 1.
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Then for every fixed u; € B the operator T(u1,u) has an unique fixpoint
u € D.

ProofLet u; € B is fixed and «/,u” € D. We denote

I M| — ") — o (D
Il = w7l = maxju(t) = w" ()]

From conditions 2. and 3. we obtain

T (ur, u)(£) = T'(ur, u”) (B)]| <
< [lwa(t, 0)(u1 (0) + u'(0)) — wa(t, 0)(ur (0) + " (0))]|+

Jr/ [|wa(t, 8)Fa(s,u1(s) +u'(s)) — wa(t, s)Fa(s,u1(s) +u”(s))||ds <

0

< M|u'(0) — " (0)]| + M/O |Fa (s, u1(s) +u/(s)) — Fa(s,ui(s) +u”(s))||ds <
< M|[ju" — ||| + M/O P(s)||u(s) — u”"(s)lds <

t
< <M+M/0 (s)ds) ||’ — ||

From condition 4. and the last estimate follows, that the operator T'(ui,u) is
a contraction. O

Remark 2. Similar problems for the existence of L,-equivence between
nonlinear impulse differential equations with unbounded linear parts in an ar-
bitrary Banch space are considered in [3] and [4]. The case, when the linear
parts are bounded operators in Banach space is considered in [5], [6]. Suffi-
cient conditions for the existence of Ly-equivence between impulse differential
equations in N-dimensional Euclidean space are found in [2].
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Lp-EKBUBAJIEHTHOCT ME2K/TY JIBE OBMKHOBEHN
NMMITVJICHU JINOEPEHIITMAJIHN YPABHEHUSA C
OIrPAHUYEHU JIMHEVMHN UMIIYJICHU OIIEPATOPU
B BAHAXOBO ITPOCTPAHCTBO

leopru Kocragunos, Aupeit Saxapuen

Pesrome. C nomorra Ha IPUHIAIIATE 32 HEMTOABUKHATA ToUKa Ha [laymep-
Tuxonos n Bamax ca HamepeHn HOCTATHIHHU yCJIOBUS 33 CDHINECTBYBAHETO Ha
L ,-eKBUBATIEHTHOCT MEXK/Iy /IBe OOMKHOBEHN UMITYJICHH JTHMDEPEHITHATHA yPaB-
HEHUs C OTPAHUYEHM JIMHEHHN MMIIYJICHU OIIepaTOPH B IIPOM3BOJIHO Banaxoso
IIPOCTPAHCTBO.
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