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Abstract. Let R be a direct product of commutative indecompos-
able rings with identities and let G be a finite abelian p-group. In the
present paper we give a complete system of invariants of the group algebra
RG of G over R when p is an invertible element in R. These investiga-
tions extend some classical results of Berman (Zbl 0050.25504 and Zbl
0080.02102), Sehgal (Zbl 0209.05804) and Karpilovsky (Zbl 0526.20004)
as well as a result of Mollov (Zbl 0655.16004).
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1. Introduction

Let RG be the group algebra of an abelian group G over a commutative
ring R with identity. Denote by G, the p-component of G and by ¢G the torsion
subgroup of G.

The investigation of the unit group of the group algebra RG represents a
high interest. However, the question for the isomorphism of two group algebras
as R-algebras is more important. It can be formulated in the following way: if G
is a group, H is any group and R is a ring with identity then find necessary and
sufficient conditions for the isomorphism RG = RH as R-algebras, that is find
a full system of invariants of RG in the terms of R and G which determines RG
up to isomorphism. Further we will not say always that the considered above
isomorphism of algebras is an isomorphism of R-algebras.
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The important of the isomorphism problem is underlined in many alge-
braic forums. This problem is raised in 1947 year in the Michigan algebraic
conference from R. Trell. More specially for the group algebras of the crystal-
lographic groups this problem is raised in the session of AMS in 1979 year in
Washington from Farkash [13].

The investigation of the isomorphism problem begins with the unpublished
thesis of Higman [15] who proves that if G and H are arbitrary abelian groups,
then ZH = 7ZG implies H = G, that is the group algebra ZG determines the
isomorphism class of G. The first proof of this result which appears in the
literature gives Cohn [10].

For infinite abelian p-groups we note the fundamental article of Berman [3]
which solves the isomorphism problem when G is a countable abelian p-group.
May [21] solves this problem for an arbitrary abelian group G if K is an alge-
braic closed field such that the characteristic of K does not divide the orders
of the torsion elements of G and shows that a full system of invariants of RG
is |G/tG| and |tG|. Berman and Bogdan [4] find a full system of invariants of
the group algebra RG of an abelian group G.

Let ; be a primitive p’-root of the identity. Berman and Mollov [6] give
a full system of invariants of the group algebra KG, when K is a field of
characteristic different from the prime p and either (i) G is an abelian p-group
and the first Ulm factor G/G* is a direct sum of cyclic groups or (ii) G is
p-mixed and the degree (K (e, €2, ...) : K) < oo, that is K is a field of the
second kind with respect to p. Nachev and Mollov [30] give a new simple form
of the above result (). Ullery [33] call R-favourable an abelian group G if
whenever a prime p is a unit in R, then G, = 1 and proves that if the ring R is
indecomposable of characteristic 0 and G is a R-favoarable group then the group
algebra RG defines the isomorphic class of G. Let Z[1/p] be the ring of every
rationals which denominators are degrees of a prime p. Nachev [27] proves that
if G and H are arbitrary abelian p-groups, then Z[1/p|G = Z[1/p|H as Z[1/p]-
algebras if and only if QG = QH as Q-algebras. This theorem implies that
the solution of the indicated conjecture is reduced to the isomorphism over the
field Q of the rationals. Nachev [28] considers special field K of characteristic 0
which is called primarily neat field and proves that if G is a torsion 2-divisible
abelian group and H is an arbitrary group, then the isomorphism KG = KH
as K-algebras holds if and only if H is a torsion 2-divisible abelian group and
the K-algebra isomorphism KG), = K Hy, holds for every prime integer p. This
result is an analogue of a theorem of Perlis and Walker [31].

We recall that the group algebra RG is called modular if the characteristic
of the ring R is a prime number p. In connection with the isomorphism problem

88



Isomorphism of Commutative Group Algebras of Finite Abelian p-Groups

for modular group algebras there exists the following wide known conjecture
from “Group rings” of Zalesky and Mikhalev [34, conjecture 9.4, page 61]: if K
is a field of prime characteristic p, G is a p-group and H is an arbitrary group,
then KG =2 KH as K-algebras if and only if G = H, that is the group alge-
bra RG determines the isomorphism class of G. This conjecture is not proved
even in a partial case when G is an abelian p-group. In this direction we mark
the paper [5] of Berman and Mollov which solves the isomorphism problem,
that is the above conjecture, for the group algebra RG when G is a direct sum
of cyclic p-groups and R is a ring of a prime characteristic p. We note also
that W. May [20] shows that if R is a ring of a prime characteristic p and G
and H are arbitrary groups groups, then the isomorphism RG = RH as R-
algebras implies that (i) G, and H, have the same Ulm-Kaplansky invariants,
(#7) dGp = dH, and (i3i) G/tG = H/tH where dG) is the maximal divisible
subgroup of G,. We mark that the results (¢) and (i¢) are obtained indepen-
dently from Berman and Mollov [5], when G = G),. In the paper [22] of May
the isomorphism problem is solved for modular group algrebra RG when G is
a p-local Warfield group and in particular case when G is a simply presented
abelian p-group.

There are few results for the isomorphism problem for modular group
algebras over a field K of prime characteristic p when G is a mixed abelian
group such that the torsion subgroup tG of G is a p-group, i.e. G is p-mixed.
In this direction we note that Hill and Ullery [16] solve the isomorphism problem
when r9(G) = 1 and ¢G is a simply presented p-group with [(G) < Q+w, where
ro(@) is the torsion free rank of G, IG is the lenght of G, w is the first infinite
ordinal and €2 is the first uncountable ordinal. We note also the following
corollaries of Hill and Ullery [16, Corollaries 5.7 and 5.8], which are slightly
modified. Let tG be a simply presented p-group and either (i) I[(tG) < Q
or (it) ro(G) is countable and (tG) < Q 4+ w. If H is any group such that
KG = KH as K-algebras, then tG = tH and G x T = H x T for some simply
presented p-group T'. In the paper [23] of May, Mollov and Nachev an abelian
group G is called special p-mixed if G is p-mixed and there exists a subgroup F'
of G such that F' D tG and the following conditions are fulfilled: (i) F'/tG is a
free subgroup of G/tG, (ii) G/F = t(G/F) and (iii) (G/F), is identity. In the
indicated paper [23] May, Mollov and Nachev decide the isomorphism problem
for a field of a prime characteristic p when G is a special p-mixed abelian group
and Gy, is a reduced totally projective p-group.

For the isomorphism problem we shall consider specially the case when G
is a finite abelian group. Jennings [17], Deskins [12] and Coleman [11] prove
that if G is a finite abelian p-group and F' is a field of characteristic p, then the
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group algebra F'G determines the isomorphism class of G. We note that now
this result is known as theorem of Deskins. Perlis and Walker [31] prove that
if G is a finite abelian group and F' is a field such that the characteristic of F’
does not divide the order of G then for any group H it holds (i) FH = FG
if and only if FH, = FG, for every prime p and (i) QH = QG if and only
if H = G. Note that the proof of the result () is incorrect and it is corrected
in addition in the papers of Cohen [9], Bautista [8] and Berman and Rossa [7].
If G is a finite abelian p-group and F is a field such that the characteristic of F’
is different from p, then Berman [1, 2] finds a complete system of invariants
of the group algebra F'G in the terms of F-conjugate classes of the group G.
Sehgal [32] proves that if G is a finite abelian p-group and Q, is the field of
the p-adic numbers, then the group algebra Q,G determines the isomorphism
class of G. If G is a finite abelian group and F is a field, then Karpilovsky
[18 and 19, Theorem12.31] generalizes the above result of Berman giving a
full system of invariants of the group algebra F'G in the terms of F-conjugate
classes of the group G. If GG is a finite abelian group and F' is a field, such that
the characteristic of F' does not divide the order of G, then Mollov [25] finds
a complete system of invariants of the group algebra F'G in the terms of the
group G and the field F', using the concept a spectrum of F' with respect to an
arbitrary prime number p (see Mollov [24]).

In the present paper we give a full system of invariants of the group alge-
bra RG when G is a finite abelian p-group, R is a direct product of commutative
indecomposable rings with identity and p is an invertible element in R.

2. Some concepts and preliminary results

Let G be an abelian group and let R be a commutative ring with identity.
Denote by U(RG) the multiplicative group of RG, by R* the multiplicative
group of R and Ny = N[ J{0}.

Recall some well known definitions. Namely, a ring R is called indecom-
posable, if it cannot be decomposed into a direct sum of two or more nontrivial
ideals of R. This definition is equivalent to the following condition: the ring R
does not have nontrivial idempotents (different from 0 and 1). We say that an
abelian group G has exponent n if G™ = 1 and n is the least natural with this
property.

Let G be a finite abelian group of exponent n and n € R*, that is n is an
invertible element in R. For every divisor d of n we denote A(d) = pu(d)v(d),
where u(d) is the number of the cyclic subgroups of G of order d and v(d) is
the number of the monic irreducible divisor of the cyclotomic polynomial ®4(z)
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over R. Then the number A(d), where d/n, is called a d-number of the group
algebra RG (see Moloov and Nachev [26])

We shall use the signs > for a mark of direct sums of algebras. Let [[G

n
denote the coproduct of n copies of G, where n € N. If n, m € Z, then n/m
will denote n divides m.

The abelian group terminology is in agreement with the books [14] of
Fuchs.

If « is an algebraic element over R, « is a root of the polynomial f(z) €
R[z] and f(z) is a polynomial of the least degree with this property, then f(z)
is called a minimal polynomial of a over R. An algebraic element « over R is
called an integral algebraic element over R if there exists a minimal polynomial
of o over R which is monic. This definition differs from the definition in the
theory of the algebraic numbers and in the field theory since an element «
can be a root of a monic polynomial over R and a can have not a minimal
polynomial over R which is monic.

Let R; be a commutative indecomposable ring with identity. We denote by
€q an integral algebraic element over R; which is a root of a monic irreducible
divisor of ®4(x) over R;, that is €4 is a root of a monic irreducible divisor ¢(z)
of ®4(x) such that p(x) is the monic minimal polynomial of €4 over R; (see
Mollov and Nachev [26]).

The following result for group algebras of finite abelian groups, which
generalizes results of Berman [2] and Perlis and Walker [31], is proved by Mollov
and Nachev [26].

Theorem 2.1. Let G be a finite abelian group of exponent n and let R be
a commutative Ting with identity which is a direct product of m indecomposable
rings R; (e.g. R is a noetherian), m, i € N.

Then

RG =) RG.
i=1
If n is an invertible element in R, then

R,G 2y " Ni(d)Rilzdl,
d/n
where \;(d) is a d-number of the group ring R;G.

Therefore,
URG) =[] ] Rileal™
d/n Xi(d)
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The following statement is a direct corollary from the result of May [20].
However, for the completeness of the presentation we shall give its proof.

Proposition 2.2. Let G be a finite abelian p-group and let R be a com-
mutative ring with identity such that p is not invertible in R. If H is any group
then RH = RG as R-algebras if and only if H = G.

Proof. Let RH = RG as R-algebras for some group H. Obviously, H is a
finite abelian p-group, since RH is a commutative algebra and |H| = |G|. We
have, by result of May [20], that the corresponding Ulm-Kaplansky invariants
of H and G coincide. Since H and G are finite abelian p-groups, then H = G.

Conversely, if H = @, then obviously RH = RG as R-algebras.

O

The following assertion which generalizes the result of Deskins is a di-
rect corollary of Proposition 2.2. We shall give an independent proof of this
statement.

Corollary 2.3. Let G be a finite abelian p-group and let R be a commu-
tative ring with identity of characteristic p. If H is any group then RH = RG
as R-algebras if and only if H = G.

Proof. Let RH = RG as R-algebras. Then, as in Proposition 2.2, we
see that H is a finite abelian p-group. We have, by a well known formula,
RP"HP" = RP"GP" for every n € Ny. Hence, |[H?"| = |GP"| holds for every
n € Ny and as it is not hard to see, H = G is fulfilled.

O

3. Main results

In this section we give a complete system of invariants of the group alge-
bra RG when G is a finite abelian p-group and R is a commutative ring with
identity which is a direct product of indecomposable rings such that p is an
invertible element in R.

Let R;, 7 € I, be a system of rings and let G be an arbitrary group. If

a€ (H Ri> G, then

il
(3.1) a= Z ag9, ag € HRi,
g€G, el
where G, is a finite subset of G. We note that G, and the system {a,4|g € G}
are defined identically from the element a. Besides, ag = (..., ag;, ...) where

ag; € R; for every i € I and every g € G,. We define a map
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(3.2) ©: (H Ri> G — [[(R:G)

i€l i€l

by

(3.3) go(a)z(...,Zagig7...>.

g€Gq

It is not hard to see that ¢ is a natural injective homomorphism of R-
algebras.
The following result is announced in the Dissertation of Nachev [29].

Proposition 3.1. The homomorphism (3.2) of R-algebras, defined by
equality (8.83), is an isomorphism of R-algebras if and only if either I is a
finite set or G is a finite group.

Proof. We shall prove that if either [ is a finite set or G is a finite group,
then ¢ is a surjective homomorphism, that is ¢ is an isomorphism of R-algebras.

Let I be a finite set, I = {1, 2, ..., n} and let z € [[ (R;G). Then
i€l

2= (21,22, -+, 2n), 2z €ERG, 1=1,2 ... n.

We put G, = U?:l G;, where G; is the support of z;. Then

(3.4) =Y 29, zg€Ri, i=1,2...,n,
geG:

where z5; = 0if g ¢ G;. Formula (3.4) has a sense, since G, is a finite set of G.
Now we put

T = E 299,  Zg = (Zg1, Zg2, - -+ s Zgn)-
9€G2

Then, by (3.3), we have p(z) = z, that is ¢ is a surjective homomorphism.
Now let G be a finite group and let again z € [[ (R;G). Then we have

i€l
z="(..cy2iy,...), 2z €RG.

Since G is finite, then

2 = Z Z2gig, Zgi € Ri, i€l
geG
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If we put

y:Zzgg, zg= (..o, Zgiy -+ ),

geG

then (3.3) implies ¢(y) = z, that is ¢ is a surjective homomorphism.

In the end we shall prove that if I and G are infinite, then the homo-
morphism ¢ is not surjective. Indeed, then I can be represented in the kind
I = I |J I, where I; is countably infinite and I is its complement in I. We
choose also an infinite countable subset M of G which elements g; are indexed

by naturals. Now we consider the element r = (..., r;, ...) € [] (R;G) which
icl
is constructed by the following way:

) 9, if 1€ Iy
""TVo0, if i€ b.

We shall prove that r does not have preimage. Suppose the contrary. Let
o(a) = r. Then a has a form (3.1). Since G, is finite, then there exists an
element g; € M such that g; ¢ G,. Then, by (3.3), for the indicated ¢ we have

Z Ggig = Gi-

9g€G,

In the right part of this equality the element g; participates with a co-
efficient 1 and in the left part this coefficient is 0, since g, ¢ G, which is a
contradiction.

Therefore, the homomorphism ¢ is not surjective.

O

For every i € Ng = N{J{0} we shall use also the designation e, = (4).
As in the paper of Mollov [24] we give the following definition.

Definition. We define a spectrum s,(R) of the ring R with respect to the
prime p by the following way:

s,(R) = {z € No|R[=(i)] # Rle(i + 1)]}.
If s,(R) # @, then we put s,(R) = {i1, i2, ... |11 <i2a < ...}

Further GG will be a finite non-identity abelian p-group of an exponent p”,
n € N, R a commutative ring with identity and p an invertible element in R.
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Lemma 3.2. FExactly one of the following conditions holds:

(a) either sp(R) = @ or s,(R) # @ but n < iy;

(b) sp(R) # @ and there is s € N, such that is <n <igyq;

(c) sp(R) # @, sp(R) = {i1, 92, ..., is} is a finite set and n > i,.

Proof. Suppose that the condition (@) is not fulfilled. Then s,(R) # @&
and n > 4;. Therefore, either (i) there exists s € N, such that iy < n < iz,
that is the case (b) holds or (i7) s with the indicated property does not exist.
In the case (i) sp(R) = {41, 92, ... , 95} is a finite set and n > i,, that is the
case (c) holds.

(I

Definition. We define a spectrum sg(R) of the ring R with respect to the
group G by the following way:

(a) if either (i) sp(R) = @ or (it) sp(R) # @ but n < 41, then we put
sa(R) ={-1}

(b) if sp(R) # @ and there is s € N such that i; < n < i54q, then we put
SG(R) = {ilv i27 SR isa is+1};

(c) if sp(R) # &, s,(R) = {i1, 2, ..., is} is a finite set and n > iy, then
we put sg(R) = {i1, i2, ..., is, 00}.

Lemma 3.3. If Rle(i)] # Rle(i + 1)], then R[e(i)] is not isomorphic of
R[e(i + 1)] as R-algebras.

Proof. Suppose the contrary that R[e(i)] = R[e(i + 1)]. Therefore, there
exists an isomorphism ¢ : R[e(i + 1)] — R[e(é)]. Let f(x) be the minimal
polynomial of (i + 1) over R. By the above isomorphism &(i + 1) will be
mapped in an element A € R[e(7)] and A is a root of f(x). However, f(z) does
not have a root in R[e(i)]. This is a contradiction.

a
If £ € N, then further we denote kR = R&® ... & R, where the number
of the addends is k. In the following theorem A(p'), i = 0, 1, ..., n, are the

d-numbers of the group algebra RG when G has an exponent p™.

Theorem 3.4. Let G be a non-identity finite abelian p-group of an expo-
nent p", R a commutative indecomposable ring with identity and p an invertible
element in R. Then

(a) if sg(R) = {—1}, then

(3.5) RG=O(-1)R, 0(=1) = A1)+ A(p) + ... + A");
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(b) Zng(R) = {il, ’ig, ey ’L'S, is+1}, then
(3.6) RG = 0(i1)R[e(i1)] @ 0(i2)Rle(iz)] ® ... ® O(is+1)R[e(is41)],

where
0(i1) = A1)+ A(p) + ... +A(p™),
(3.7)  O(ig) = APt 4+ AP + L+ A(p), k=2,3,...,s,
O(isr1) = AP +AP“T2) + ... £ A0");
(¢) if sq(R) = {iy, iz, ... , is, 00}, then

(3.8)  RG=0(i1)R[e(i1)] @ ... ® 0(is)R[e(is)] @ 0(is + 1)R[e(is + 1)],

where 0(i1), ...,0(is),0(is+1) coincide with the numbers 0(iy), ...,0(is),0(is+1)
from (8.7), respectively.

For the group algebra RG exactly one of the indicated cases (a), (b) and
(c) holds.

Proof. Since p is an invertible element in R, then Theorem 2.1 implies
(3.9) RG = A1)R[e1] @ AMp)R[ep]) & ... & A(D")R[epn].

(a) Let sg(R) = {—1}. Then either (i) s,(R) = @ or (ii) sp(R) # @ but
n < 41. In the case (i) R = R[e(1)] = R[e(2)] = ... hold and in the case (i7)
R = R[e(1)] = --- = RJe(i1)] are fulfilled. Therefore, in the cases (i) and (i)
we have R = R[e(1)] = --- = R[e(n)] and (3.9) obtains the form (3.5).
(0) Let sg(R) = {i1,92, - , is, ts41}. Then s,(R) # @&, is < n < 5471 and
(3.9), by Lemma 3.3, obtains the form (3.6), where the numbers 6(j) are de-
termined by (3.7).
(¢) Let sq(R) = {i1,12, ... ,i5,00}. Then s,(R) # &, sp(R) = {31,192, ... ,is}
is a finite set and n > i,. Hence, by Lemma 3.3, Rle(s)] # Rle(s +1)] =
Rlz(s +2)] = ... and the decomposition (3.9), by Lemma 3.3, obtains the
form (3.8), where the numbers 6(j) are indicated in the case (c) of the theorem.

Lemma 3.2 implies that for the group algebra RG exactly one of the
indicated cases (a), (b) and (¢) holds.

]

We note that the proved theorem for group algebras over rings continues
results of Berman [2], Perlis and Walker [31] and Mollov [25] giving the number
of the repetitions of the addends in the decomposition of the group algebra RG
in a direct sum of extensions of the ring R.
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By using of the cases (a), (b) and (c) in the formulation of Theorem 3.4
we can give the following definition.

Definition. Let G be a finite non-identity abelian p-group of an exponent
p", R a commutative indecomposable ring with identity and p an invertible
element in R. Characteristic numbers 0(j) of the ring R with respect to the
group G are called the following numbers:

(a) 0(=1) = A1) + A(p) + - +A@"), if s (R) = {~1};

(b) 0(i1), 0(i2), ..., O(isy1) from formula (3.7), if sg(R) = {i1, i2, ..., is,
is—&-l}?
() 0(ir), 0(iz), ... , O(is) from formula (3.7) and O(is + 1) = A(p" ™) +
A(ptt2) + ...+ A", if sg(R) = {i1, ia, ... , is, 0O}

In the following result we denote by sy (R) the spectrum of the ring R
with respect to a finite abelian p-group H.

Theorem 3.5. Suppose G is a finite non-identity abelian p-group, R is a
commutative indecomposable ring with identity and p is an invertible element
in R. If H is any group, then RH = RG as R-algebras if and only if H is a
finite abelian p-group such that (i) sgp(R) = sg(R) and (i1) 6'(j) = 0(j) for
every j, where 8'(j) are the characteristic numbers of the ring R with respect
to H.

Proof. Necessity. Let RH = RG as R-algebras for some group H. Suppose
that the finite abelian p-group G has an exponent p™. Obviously, H is a finite
abelian p-group of some exponent p"/, since RH is a commutative algebra
and |H| = |G|. Tt is not hard to see, because of the decomposition of RH =
RG as R-algebras, giving in Theorem 3.4 and Lemma 3.3, that if for sg(R)
one of the conditions (a), (b) or (c¢) of the definition of sg(R) holds, then
for sg(R) the same corresponding condition is fulfilled. Therefore, sy (R) =
sg(R), that is the condition (7) holds. Since RH and RG have the same
corresponding decompositions from the kind (3.5), (3.6) and (3.8) with the
same corresponding conditions for 6’(j) and 6(j) (in the expressing of €'(j)
participate the d-numbers X' (p’) of RH and n’), then RH = RG as R-algebras
implies 6'(j) = 0(j) for every j, that is the condition (é¢) holds.

Sufficiency. Let G and H be finite abelian p-groups of exponents p"
and p”/, respectively, and let the conditions (i) and (i7) of the theorem are
fulfilled. Then, by Theorem 3.4, RH and RG have the same corresponding
decompositions from the kind (3.5), (3.6) and (3.8) with the same corresponding
conditions for 6'(j) and 6(j). This decompositions and 6'(j) = 6(j) implies
RH = RG as R-algebras. The theorem is proved.

([l
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The following theorem gives a complete solution of the isomorphism prob-
lem for group algebras of finite abelian p-groups over a commutative ring R
with identity which is a direct product of indecomposable rings and p is an
invertible element in R.

Theorem 3.6. Suppose G is a non-identity finite abelian p-group, R =
I1 Ri, every R; is a commutative indecomposable ring with identity and p is
i€l
an invertible element in R. If H is any group, then RH = RG as R-algebras
if and only if H is a finite abelian p-group such that (i) sg(R;) = sa(R;) for
every i € I and (i1) 05(j) = 0;(j) for every i € I and every j, where 6;(j) and
0:(3) are the characteristic numbers of the ring R; with respect to H and G,
respectively.

Proof. If (a) RH = RG as R-algebras holds, then, as in Theorem 3.5, we
see that H is a finite abelian p-group. Therefore, we shall suppose this condition
for H. Besides the condition (a) we consider the following conditions: (b)
[T(R:H) = [[(R;G) as R-algebras; (¢) R;H = R;G as R;-algebras for every
iel iel
i € I and (d) the conditions (i) and (i) of the theorem are fulfilled. The
condition (a), by Proposition 3.1, is equivalent to the condition (b), (b) and
(c) are obviously equivalent and (¢) and (d) are equivalent by Theorem 3.5.
Consequently, (a) and (d) are equivalent. The proof is completed.

O

The proved theorem extends some classical results of Berman [1, 2], Sehgal
[32] and Karpilovsky [18] as well as a result of Mollov [25].
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N30MOPPUI3IBbM HA KOMYTATUBHU I'PYIIOBU AJITEBPU
HA KPAIHU ABEJIEBU P-TPYIIU

Tomop 2K. Mosutos u Hako A. Haues

Pesome. Heka R e JqMpeKTHO IpOU3BeJeHNE Ha KOMYTATUBHU HEPA3JIO-
JKUMHU TIpbCTeHN ¢ equnuim u G e Kpaiina abejieBa p-rpyna. B mpencraBeHara
CTaTHUs Ce /IaBa IIbJIHA CHCTeMa WHBAPUAHTHU Ha rpynosara ajrebpa RG ma G
mag R, xorato p e obparum eement B R.

Tesu u3caenBaHUsT TPOIBLIKABAT HIKOW KJIACHYECKM Pe3yJITaTh Ha bep-
ma (Zbl 0050.25504 u Zbl 0080.02102), Ceraxn (Zbl 0209.05804) n Kapnumos-
cku (Zbl 0526.20004), kakTo u enun pesyirar Ha Moo (Zbl 0655.16004).
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