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Abstract. The notation of eventual yo-stability of nonlinear sys-
tems of ordinary differential equations in terms of two measures is intro-
duced. Our technique depends on Lyapunov direct method. Perturbing
cone-valued Lyapunov functions have been applied and comparison scalar
ordinary differential equations have been employed.
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1. Introduction

Lakshmikantham and Leela [7] initiated the development of theory of
differential inequalities through cones and cone-valued Lyapunov function me-
thod. Furthermore the same authors in [5], [8] used the comparison principal
to improve and extend different types of stability, say eventual stability and
(ho, h)-stability for the differential systems.

Akpan and Akinyele [1] discussed p-stability notions of the comparison
system. Hristova [4] introduced a new notion of stability called pg-stability in
terms of two measures for the differential systems.

In [2] the authors extended the notion of (hg, h)-stability to the so-called
(ho, h)-eventual stability.

In the present paper eventual yg-stability of ordinary differential systems
in terms of two measures is studied. Cone-valued Lyapunov functions are
employed as well as comparison results.
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2. Preliminary notes and definitions

Consider the system of nonlinear differential equations
(1) &= f(t,x) fort > to,
where z € R™ and f € C[R* x R", R"].
We denote by x(t; to,xo) the solution of the system (1) with initial con-

dition z(to; to, zo) = xp.
Consider the following sets

K ={a€ C[R",R"]: a(s) is strictly increasing and a(0) = 0};
G={HecC[R"x R",R"]: ir}?er H(t,s) =0 for each t € RT};
seRR

Z ={o € C[R",R"]: o(t) is strictly decreasing and o(t)—0 as t—o0}.

Definition 1. ([1]). A proper set K C R"™ is called a cone if

() ACCK, A>0;
(i) K+KcCK;
(i) K = K;

(iv) K°#a;

(v)  Kn(=K)= {0}

The set
K*={peR":(p,x) >0, x € K}

is called a joint cone, if K* is a cone.

Let p be a positive constant, ¢y € K and H € G. Define the sets:

S(H, p,¢0) = {(t,x) € R*x K : H(t, (g0, z)) < p};
SC(H7 Ps @0) = {(tv'r) ERTXK: H(ta (@va)) 2 p}'

We will study eventual pp-stability in terms of two measures of ordinary
differential systems. In the case when cone-valued Lyapunov functions are
applied both measures are from the set G. In this case we will introduce
the definition of a new type of stability, that combines the ideas of eventual
stability in terms of two measures of ordinary differential equations ([2]) and
po-stability ([1]).

Definition 2. Let g € K*, H, Hy € G. The system (1) is said to be:
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(S1) (Ho, H)-eventually uniformly po-stable if for every e > 0 and for any
to € RT, there exist a 6 = () > 0 and a 7 = 7(¢) > 0 such that

H, (to, (gpo,xo)) < ¢ implies H(t, (¢o,x(t; to,xo))) <e fort>tyg>1(e),

where x(t; to, o) is any solution of system (1);

(S2) (Ho, H)-eventually quasi-uniformly asymptotically pqo-stable, if for
every € > 0 and for any to € RT, there exist positive numbers &y, 7o and
T =T(e) such that

Ho(to, (w0, 20)) < do implies H (t, (o, z(t; to, 20))) < € fort > to+T, to > 70;

(S3) (Hy, H)-eventually uniformly asymptotically @o-stable if (S1) and
(52) hold together.

In our further investigations we will use two different comparison scalar
ordinary differential equations:

(2) u:gl(t’u)a t2t07
and
(3) 7}:92(15”0)7 tZto»

where u, v € R, ¢;(t,0) =0 (i =1, 2).
We will use some properties of the functions from the class G.

Definition 3. ([3]). Let H, Hy € G. Then we say that a function Hy(t, x)
is uniformly finer than a function H(t,x), if there exist a constant 6 > 0 and
a function a € K such that

Ho(t,z) <6 implies H(t,z) < a(Ho(t,z)).
We will use the following class of functions:

Definition 5. ([4]). We will say that the function V(t,z) : R"x R" — K
belongs to the class L, if:

1. V(t,z) is continuous function for any t € R* and z € K;

2. Function V(t,x) is component-wisely Lipshitz in x relatively to K.

Definition 4. ([4]). Let ¢o € K*, H € G. Function V(t,x) € L is said
to be pqo-strongly H-decrescent, if there exist a constant 6 > 0 and a function
a € K such that the inequality

H(t,(po,2)) <& implies (o, V (t,x)) < a(H(t, (o, ))).
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Let ¢t > tg, = € R™. We define the derivative of the function V(¢,z) € L
along the trajectory of the solution of (1) as follows

DV (t,x) = Jim, sup(l/s){V(t +e, z+ef(tz)) — V(t,x)}.

In the further investigations we will use the following comparison result:

Lemma 1. (Theorem 1.4.1., 5). Let E C R X R be an open set and:
1. Function g, € C[E, R).
2. Function m € C|[to,to + a) x RN E, R] satisfies the inequalities

m < gl(tam)a te [thtO + a)a m(tO) < Uo-

3. Function r*(t) = r*(¢; to,ug) is the mazximal solution of (2) through
the point (to,ug), defined for t € [to,to + a).
Then
m(t) < T*(t)7 t e [t()ﬂf() + a).

3. Main results

We will obtain sufficient conditions for eventual uniform @g-stability and
eventual uniform asymptotic g-stability of system of ordinary differential
equations in terms of two measures. We will employ two different types of
Lyapunov functions from the class L. The proof is based on the second method
of Lyapunov with perturbing Lyapunov functions combined with comparison
results for scalar ordinary differential equations.

Theorem 1. Let the following conditions be fulfilled:

1. Function f € C[R*x R",K].

2. Function Hy, H € G, Hy is uniformly finer than H.

3. Function ¢y € K*.

4. There exists a function Vi € L that is pg-strongly Hy-decrescent and

(Z) (‘p07D(J1r)V1(t>$)) <qn (tv (()007 Vl(tvr))) for (tax) € S’(H, Py L)00)7

where g1(t,u) € C[R™x R, R], ¢1(t,0) =0 and p = const > 0.
5. For any number p > 0 there exists a function V(g) € L and

(id) b(H(t, (90, 2))) < (90, VG (t,2)) < a(Ho(t, (0. x)))

for (t,x) € S(H, p, o) N S(Ho, u,00), where a, b € K and b(u) — oo as

u — oQ.
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(i) for any point (t,xz) € S(H, p,0) N S¢(Ho, i1, o) the inequality

holds, where go € C[RTx R, R], g2(t,0) = 0;

6. The conditions 2, 4 and 5 are satisfied for 0 < r < H(t, (po,x))
and t > 0(r), where 0 € Z for 0 <r < p.

7. For any initial point (to,xo) € RTx R" the solutions of the system (1)
exist on [tg, 00).

8. For any initial point (to,ug) € RTX R the solutions of the scalar
differential equations (2) and (8) exist on [ty, 00).

9. The zero solution of the scalar differential equation (2) is uniformly
stable.

10. The zero solution of the scalar differential equation (3) is eventually
uniformly stable.

Then the system of differential equations (1) is (Ho, H)-eventually uni-
formly pq-stable.

Proof. Since the function Vi (¢, x) is po-strongly Hy-decrescent, there exist
a constant p; € (0, p) and a function ¥y € K such that

(4) Ho(t, (po,x)) < p1 implies (o, Vi(t,z)) < U1 (Ho(t, (@0, ))).

Since Hy(t, z) is uniformly finer than H(¢,x), there exist a constant pg €
(0, p1) and a function ¥y € K such that

(5) Ho(t,z) < po implies H(t,x) < Wy (Ho(t, z)),

where Wa(pg) < p1.
Let € > 0 be a positive number such that ¢ < p and tg € R be a fixed

number.
Since the zero solution of (3) is eventually uniformly stable, then given
b(e) € K, there exist 71 = 71(¢) > 0 and d1(¢) > 0 such that the inequality

(6) lvo| < 81 implies |v(t; to,v0)| < b(e), t>to > Ti(e),
where v(t; 19, vg) is any solution of (3) with an initial condition v(ty) = vo.

Since the functions @ € K and ¥y € K we can find §3 = da(e) > 0,
0o < pg, such that the inequalities

(7) a(ég) < %7 \IJQ((SQ) <ér

hold.
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Since the zero solution of (2) is uniformly stable, then given 6;/2 > 0 and
to € R, there exists a d3 = d3(¢) > 0 such that

)
(8) lup| < d3 implies |u(t; to,uo)| < 51, t > 1o,

where u(t; to, ug) is any solution of (2) with an initial condition u(tp) = ug.
Since the function ¥; € K there exists d;4 = d4(d3) = d4(€) > 0 such that
for |u| < d4 the inequality

(9) \Ill(u) < 63

holds.

We choose ug = (gpo, Vi (to, xo)). From inequalities (4) and (8) follows that
there exists 05 = d5(e) > 0, d5 < min(dy, p1), such that Hy (to, (wo,xo)) < 05
implies ((po,Vl(to,a:O)) < Uy (Ho(to,(gao,xo))) < 3. We set § = min(ds, Js5)
and now let the point zy € R™ be such that

(10) Hy(to, (po, o)) < 0.
From inequalities (5) and (9) we get
(11) H (to, (p0,20)) < Wa(Ho(to, (po,20))) < Ua(8) < Wa(da) < e.

Going through as in the proof of Theorem 3.14.1 of [5], we define
T2(e) = 0(3(¢)), and let T = 7(¢) = max [ (), T2()].
To prove the theorem, it must be shown that

(12) Ho(to, (¢o,w0)) <& implies H (¢, (po,(t; to,x0))) <&, t>to>7(e).

Suppose this is false. Therefore, there exists a point t* > ty such that for
t € [to,t*) and ¢y > 7(e) the following inequalities are valid

(13) H(t*7 (@va(t*; to,l‘o))) > €, H(t’ ((po,ﬂ?(t; to,Io))) <Eé.

From the continuity of the solution x(¢; ¢, zo) at point ¢* it follows that
H (t*, (g0, z(t*; to, 0))) = e.

Define z(s) = x(s; to,x0), s € [to, t*].

If we assume that Ho (t*, (w0, z(t*))) < 62 < p, then from the choice of d;
follows

H(t*, (g0, z(t*))) < Wa(Ho(t", (po,z(t)))) < ¥2(d2) <&,

which contradicts (13).
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Therefore,

(14) Ho(t*, (po, z(t*))) > 82,  Ho(to, (g0, 20)) <& < b.

From inequalities (14) follows that there exists a point tf € (tg,¢*) such
that 6 = Ho (¢}, (o, z(t))) and

(15) (t7l‘(t)) ES(H763900)QSC(H07523900)7 le [t;;,t*)
Let r(t; to, up) be the maximal solution of differential equation (2) where
ug = (o, Vi (to, 0)).
Define the function p(t) = (o, Vi(t,z(t))) for ¢ € [t§,¢*]. Then
D¥p(t) = lim sup(1/e){p(t + <) ~ p(t)}

tim sup(1/6){ (9o, Vit +2,2(t +2)) = (o, Vi(t,a(1)) }

(16)
= (0. lim sup(1/e){Vi(t+=.2(t+2)) ~ Vilt.a(t) )
= (o, Dy Vi(t, 2(1)) < g1 (t: (0, Vilt, (1)) = gu(t, p(2)).
According to Lemma 1 we obtain
(17) p(s) = (o, Vi(s,z(s))) < ri(s; to,uo), s € [to, t*].

Condition (10) for the point xy and inequalities (4), (8) and (17) imply
that

(19) (o, Vil 2(13) < L.

Consider the function V(;SZ)(t,:r) that is defined in condition 5 of Theo-
rem 1 and define the function

(19) m(t,z) = Vi(t,z) + V) (t,2), t >t
From inequality (7) and condition (éii) of Theorem 1 follows that

(20) (0, V13, 2(15)) < alHolt, (g0, 2(13)) = a(d2) < &

From inequalities (18) and (20) we obtain
(21) (00, m(t5, x(t5))) < 1.
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Define the function q(t) = (o, m(t, z(t))) for t > t3.
Let t € [t§,t*]. Then using inclusion (15) and condition (4i7) of Theorem 1
we obtain

1
(22)  Dta(t) = (o, { D Valt, () + DEVE (820 }) < galtsa(t)).
According to inequality (22) we get
(23) q(t) = (o, m(t, x(t; to,z0))) < r*(t; tg,v5) for t € [tg,t*],

where r*(t; t§,vg) is the maximal solution of (3) through the point (¢§,vg),
US = (<P0am(t3a$(t3a to,Io))).

From inequality (21) follows that |v§| < d; and therefore according to
inequality (6)
(24) r(t; t5,v5) < ble), t >t

From inequalities (23) and (24), the choice of the point ¢*, and condi-
tion (#i¢) of Theorem 1 we obtain

b(e) > r*(t*; t§,v5) = (cpo,m(t*,x(t*; to,xo))) >
> (00, VO (1%, 2(t*; to, 0))) = b(H (", (o, z(t*; to,x0)))) = b(e).

The obtained contradiction proves the validity of inequality (12).
Inequality (12) proves the (Hy, H)-eventual uniform pg-stability of the
considered system of differential equations. O

Theorem 2 Let the conditions 1-5 of Theorem 1 be satisfied and let the
following equality g=(t,v) = 0 hold.
Assume that

() (20, { D Vit 2) + DGV E (t2)}) < —e(H(E, (20, 2))

for 0 <r < H(t,(po,z)) and t > 0(r), where c € K, 0 € Z for 0 <r < p and
(t,:l?) € S(Hv P 900) N SC(HOa,U'v(pO);

() (0, Va(t,2) + V' (t,2)) < BH(, (0,2))
for 0 <r < H(t,(¢o,x)) and t > 0(r), where § € K and
(tﬂ .’E) € g(Hv P 900) N gc(HOa Hy 900)

Then the differential system (1) is (Hy, H)-eventually uniformly asymp-
totically po-stable.
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Proof. Since (H;) implies that

(w0, { D Vit 0)+DEVE (L) }) <0 for (t,2) € S(H, p, 90)05° (Ho, 1, 20)-

The conditions 1-6 of Theorem 1 and hypotheses (H;) and (Hz), yield
by Theorem 1, that the differential system (1) is (Hy, H)-eventually uniformly
@o-stable. Let € > 0 be given. Following [5], choose

(25) do =0(p), 10 =1(p) and T(e) =7(c) + B(p)/clo(e)]-

To prove the Theorem 2, it must be shown that Hy(¢, (o, x)) < o implies

H (t*, (go, x(t*; to, 0))) < 8(e), t* € [to + 7(), t0 + T'(e)].
Suppose that this is false. Then

(26) d(e) < H(t, (po,2(1)) < p, t€ [to+7(e),to +T(e)]-
Let
(27) m(t,z) = Vi(t,z) + VW (t,z), te€[to+7(e),to+T(e)].

By using the inequality (26) and the condition (H;) of Theorem 2, for
t € fto+7(e), to + T(e)] we get

(28)  DTq(t) = {po, D*m(t)} < —c(H(t, (g0, x(t)))) < —c[o(e)].
By integrating (28) from ¢o + 7(¢) to to + T'(g), we obtain
(29)  {wo,m(to +T(e)} < {wo,m(to +7(c))} — c[d(e)][T(e) — 7(e)].

Then from condition (#i) of Theorem 1, hypothesis (Hs) of Theorem 2,
(25), (26) and (29), we obtain

0 < b8 (2)]
< {po,m(to +T(c))}
< ﬁ(H(to +7(e), (po, x(to + 7(e); t07$0)))) —c[o(e)]

< B(p) — B(p) =0,

which is a contradiction. Then there exists a t* € [to + 7(g),to + T(¢)] such
that H (t*, (po, z(t*; to,20))) < d(e).

Therefore, the system (1) is (Hp, H)-eventually uniformly asymptotically
po-stable.

O
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EBEHTVYAJIHA 4,-YCTOMYNBOCT HA JU®EPEHIINAJIHU
CHUCTEMMU 110 OTHOIIIEHUE HA ABE MEPKU CbC
CMYTEHU ®YHKINN HA JIAIITYHOB

Nsan K. Pycunos

Pesiome. Boexia ce moHsITHE 32 €BEHTYAJTHA (0)-yCTONIUBOCT HA HEJIHU-
HEIHN CHCTEeMHU OT OOMKHOBEHH AMMEPEHITNATHN YPABHEHUs IO OTHOIIIEHUE Ha
nBe Mepku. Texnukara HU ce ommpa Ha JUPeKTHus Meron Ha Jlsmynos. IIpu-
JIOZKEHN Ca CMYTEHH KOHYCO3HAaYHU beHKHI/H/I Ha HHIIyHOB " Ca HUIIO0JISBaHN
OOMKHOBEHU CKaJIAPHU JIU(DepeHINaIHI YPABHEHUS.
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