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Abstract. The notation of eventual ϕ0-stability of nonlinear sys-
tems of ordinary differential equations in terms of two measures is intro-
duced. Our technique depends on Lyapunov direct method. Perturbing
cone-valued Lyapunov functions have been applied and comparison scalar
ordinary differential equations have been employed.
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1. Introduction

Lakshmikantham and Leela [7] initiated the development of theory of
differential inequalities through cones and cone-valued Lyapunov function me-
thod. Furthermore the same authors in [5], [8] used the comparison principal
to improve and extend different types of stability, say eventual stability and
(h0, h)-stability for the differential systems.

Akpan and Akinyele [1] discussed ϕ0-stability notions of the comparison
system. Hristova [4] introduced a new notion of stability called ϕ0-stability in
terms of two measures for the differential systems.

In [2] the authors extended the notion of (h0, h)-stability to the so-called
(h0, h)-eventual stability.

In the present paper eventual ϕ0-stability of ordinary differential systems
in terms of two measures is studied. Cone-valued Lyapunov functions are
employed as well as comparison results.
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2. Preliminary notes and definitions

Consider the system of nonlinear differential equations

(1) ẋ = f(t, x) for t ≥ t0,

where x ∈ Rn and f ∈ C[R+ ×Rn, Rn].
We denote by x(t; t0, x0) the solution of the system (1) with initial con-

dition x(t0; t0, x0) = x0.
Consider the following sets

K = {a ∈ C[R+, R+] : a(s) is strictly increasing and a(0) = 0};
G = {H ∈ C[R+×R+, R+] : inf

s∈R+
H(t, s) = 0 for each t ∈ R+};

Z = {σ ∈ C[R+, R+] : σ(t) is strictly decreasing and σ(t)→0 as t→∞}.

Definition 1. ([1]). A proper set K ⊂ Rn is called a cone if

(i) λK ⊂ K, λ > 0;
(ii) K +K ⊂ K;
(iii) K = K;
(iv) K0 6= ∅ ;
(v) K ∩ (−K) = {0}.

The set
K∗ = {ϕ ∈ Rn : (ϕ, x) ≥ 0, x ∈ K}

is called a joint cone, if K∗ is a cone.

Let ρ be a positive constant, ϕ0 ∈ K and H ∈ G. Define the sets:

S̃(H, ρ, ϕ0) = {(t, x) ∈ R+×K : H(t, (ϕ0, x)) < ρ};
S̃c(H, ρ, ϕ0) = {(t, x) ∈ R+×K : H(t, (ϕ0, x)) ≥ ρ}.

We will study eventual ϕ0-stability in terms of two measures of ordinary
differential systems. In the case when cone-valued Lyapunov functions are
applied both measures are from the set G. In this case we will introduce
the definition of a new type of stability, that combines the ideas of eventual
stability in terms of two measures of ordinary differential equations ([2]) and
ϕ0-stability ([1]).

Definition 2. Let ϕ0 ∈ K∗, H, H0 ∈ G. The system (1) is said to be:
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(S1) (H0,H)-eventually uniformly ϕ0-stable if for every ε > 0 and for any
t0 ∈ R+, there exist a δ = δ(ε) > 0 and a τ = τ(ε) > 0 such that

H0

(
t0, (ϕ0, x0)

) ≤ δ implies H
(
t, (ϕ0, x(t; t0, x0))

)
< ε for t ≥ t0 ≥ τ(ε),

where x(t; t0, x0) is any solution of system (1);
(S2) (H0,H)-eventually quasi-uniformly asymptotically ϕ0-stable, if for

every ε > 0 and for any t0 ∈ R+, there exist positive numbers δ0, τ0 and
T = T (ε) such that

H0(t0, (ϕ0, x0)) ≤ δ0 implies H
(
t, (ϕ0, x(t; t0, x0))

)
< ε for t ≥ t0+T, t0 ≥ τ0;

(S3) (H0,H)-eventually uniformly asymptotically ϕ0-stable if (S1) and
(S2) hold together.

In our further investigations we will use two different comparison scalar
ordinary differential equations:

(2) u̇ = g1(t, u), t ≥ t0,

and

(3) v̇ = g2(t, v), t ≥ t0,

where u, v ∈ R, gi(t, 0) ≡ 0 (i = 1, 2).
We will use some properties of the functions from the class G.

Definition 3. ([3]). Let H, H0 ∈ G. Then we say that a function H0(t, x)
is uniformly finer than a function H(t, x), if there exist a constant δ > 0 and
a function a ∈ K such that

H0(t, x) < δ implies H(t, x) ≤ a
(
H0(t, x)

)
.

We will use the following class of functions:

Definition 5. ([4]). We will say that the function V (t, x) : R+×Rn → K
belongs to the class L, if:

1. V (t, x) is continuous function for any t ∈ R+ and x ∈ K;
2. Function V (t, x) is component-wisely Lipshitz in x relatively to K.

Definition 4. ([4]). Let ϕ0 ∈ K∗, H ∈ G. Function V (t, x) ∈ L is said
to be ϕ0-strongly H-decrescent, if there exist a constant δ > 0 and a function
a ∈ K such that the inequality

H(t, (ϕ0, x)) < δ implies (ϕ0, V (t, x)) ≤ a
(
H(t, (ϕ0, x))

)
.
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Let t ≥ t0, x ∈ Rn. We define the derivative of the function V (t, x) ∈ L
along the trajectory of the solution of (1) as follows

D +
(1)V (t, x) = lim

ε→0+
sup(1/ε)

{
V

(
t + ε, x + εf(t, x)

)− V (t, x)
}

.

In the further investigations we will use the following comparison result:
Lemma 1. (Theorem 1.4.1., 5). Let E ⊂ R×R be an open set and:
1. Function g1 ∈ C[E, R].
2. Function m ∈ C[[t0, t0 + a)×R ∩ E,R] satisfies the inequalities

ṁ ≤ g1(t,m), t ∈ [t0, t0 + a), m(t0) ≤ u0.

3. Function r∗(t) = r∗(t; t0, u0) is the maximal solution of (2) through
the point (t0, u0), defined for t ∈ [t0, t0 + a).

Then
m(t) ≤ r∗(t), t ∈ [t0, t0 + a).

3. Main results

We will obtain sufficient conditions for eventual uniform ϕ0-stability and
eventual uniform asymptotic ϕ0-stability of system of ordinary differential
equations in terms of two measures. We will employ two different types of
Lyapunov functions from the class L. The proof is based on the second method
of Lyapunov with perturbing Lyapunov functions combined with comparison
results for scalar ordinary differential equations.

Theorem 1. Let the following conditions be fulfilled:
1. Function f ∈ C[R+×Rn,K].
2. Function H0, H ∈ G, H0 is uniformly finer than H.
3. Function ϕ0 ∈ K∗.
4. There exists a function V1 ∈ L that is ϕ0-strongly H0-decrescent and

(i)
(
ϕ0, D

+
(1)V1(t, x)

) ≤ g1

(
t, (ϕ0, V1(t, x))

)
for (t, x) ∈ S̃(H, ρ, ϕ0),

where g1(t, u) ∈ C[R+×R,R], g1(t, 0) ≡ 0 and ρ = const > 0.
5. For any number µ > 0 there exists a function V

(µ)
2 ∈ L and

(ii) b
(
H(t, (ϕ0, x))

) ≤ (
ϕ0, V

(µ)
2 (t, x)

) ≤ a
(
H0(t, (ϕ0, x))

)

for (t, x) ∈ S̃(H, ρ, ϕ0) ∩ S̃c(H0, µ, ϕ0), where a, b ∈ K and b(u) → ∞ as
u →∞.
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(iii) for any point (t, x) ∈ S̃(H, ρ, ϕ0) ∩ S̃c(H0, µ, ϕ0) the inequality
(
ϕ0,

{
D +

(1)V1(t, x) + D +
(1)V

(µ)
2 (t, x)

})
≤ g2

(
t,

(
ϕ0, V1(t, x) + V

(µ)
2 (t, x)

))

holds, where g2 ∈ C[R+×R, R], g2(t, 0) ≡ 0;
6. The conditions 2, 4 and 5 are satisfied for 0 < r < H(t, (ϕ0, x))

and t ≥ θ(r), where θ ∈ Z for 0 < r < ρ.
7. For any initial point (t0, x0) ∈ R+×Rn the solutions of the system (1)

exist on [t0,∞).
8. For any initial point (t0, u0) ∈ R+× R the solutions of the scalar

differential equations (2) and (3) exist on [t0,∞).
9. The zero solution of the scalar differential equation (2) is uniformly

stable.
10. The zero solution of the scalar differential equation (3) is eventually

uniformly stable.
Then the system of differential equations (1) is (H0,H)-eventually uni-

formly ϕ0-stable.
Proof. Since the function V1(t, x) is ϕ0-strongly H0-decrescent, there exist

a constant ρ1 ∈ (0, ρ) and a function Ψ1 ∈ K such that

(4) H0(t, (ϕ0, x)) < ρ1 implies (ϕ0, V1(t, x)) ≤ Ψ1

(
H0(t, (ϕ0, x))

)
.

Since H0(t, x) is uniformly finer than H(t, x), there exist a constant ρ0 ∈
(0, ρ1) and a function Ψ2 ∈ K such that

(5) H0(t, x) < ρ0 implies H(t, x) ≤ Ψ2

(
H0(t, x)

)
,

where Ψ2(ρ0) < ρ1.
Let ε > 0 be a positive number such that ε < ρ and t0 ∈ R+ be a fixed

number.
Since the zero solution of (3) is eventually uniformly stable, then given

b(ε) ∈ K, there exist τ1 = τ1(ε) > 0 and δ1(ε) > 0 such that the inequality

(6) |v0| < δ1 implies |v(t; t0, v0)| < b(ε), t ≥ t0 ≥ τ1(ε),

where v(t; t0, v0) is any solution of (3) with an initial condition v(t0) = v0.
Since the functions a ∈ K and Ψ2 ∈ K we can find δ2 = δ2(ε) > 0,

δ2 < ρ0, such that the inequalities

(7) a(δ2) <
δ1

2
, Ψ2(δ2) < ε1

hold.
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Since the zero solution of (2) is uniformly stable, then given δ1/2 > 0 and
t0 ∈ R+, there exists a δ3 = δ3(ε) > 0 such that

(8) |u0| < δ3 implies |u(t; t0, u0)| < δ1

2
, t ≥ t0,

where u(t; t0, u0) is any solution of (2) with an initial condition u(t0) = u0.
Since the function Ψ1 ∈ K there exists δ4 = δ4(δ3) = δ4(ε) > 0 such that

for |u| < δ4 the inequality
(9) Ψ1(u) < δ3

holds.
We choose u0 =

(
ϕ0, V1(t0, x0)

)
. From inequalities (4) and (8) follows that

there exists δ5 = δ5(ε) > 0, δ5 < min(δ4, ρ1), such that H0

(
t0, (ϕ0, x0)

)
< δ5

implies
(
ϕ0, V1(t0, x0)

) ≤ Ψ1

(
H0(t0, (ϕ0, x0))

)
< δ3. We set δ = min(δ2, δ5)

and now let the point x0 ∈ Rn be such that

(10) H0

(
t0, (ϕ0, x0)

)
< δ.

From inequalities (5) and (9) we get

(11) H
(
t0, (ϕ0, x0)

) ≤ Ψ2

(
H0(t0, (ϕ0, x0))

) ≤ Ψ2(δ) < Ψ2(δ2) < ε.

Going through as in the proof of Theorem 3.14.1 of [5], we define
τ2(ε) = θ(δ(ε)), and let τ = τ(ε) = max

[
τ1(ε), τ2(ε)

]
.

To prove the theorem, it must be shown that

(12) H0

(
t0, (ϕ0, x0)

)
< δ implies H

(
t, (ϕ0, x(t; t0, x0))

)
< ε, t ≥ t0 ≥ τ(ε).

Suppose this is false. Therefore, there exists a point t∗ > t0 such that for
t ∈ [t0, t∗) and t0 ≥ τ(ε) the following inequalities are valid

(13) H(t∗, (ϕ0, x(t∗; t0, x0))) ≥ ε, H(t, (ϕ0, x(t; t0, x0))) < ε.

From the continuity of the solution x(t; t0, x0) at point t∗ it follows that
H

(
t∗, (ϕ0, x(t∗; t0, x0))

)
= ε.

Define x(s) = x(s; t0, x0), s ∈ [t0, t∗].
If we assume that H0

(
t∗, (ϕ0, x(t∗))

) ≤ δ2 < ρ, then from the choice of δ2

follows

H
(
t∗, (ϕ0, x(t∗))

) ≤ Ψ2

(
H0(t∗, (ϕ0, x(t∗)))

) ≤ Ψ2(δ2) < ε,

which contradicts (13).
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Therefore,

(14) H0

(
t∗, (ϕ0, x(t∗))

)
> δ2, H0

(
t0, (ϕ0, x0)

)
< δ ≤ δ2.

From inequalities (14) follows that there exists a point t∗0 ∈ (t0, t∗) such
that δ2 = H0

(
t∗0, (ϕ0, x(t∗0))

)
and

(15) (t, x(t)) ∈ S̃(H, ε, ϕ0) ∩ S̃c(H0, δ2, ϕ0), t ∈ [t∗0, t
∗).

Let r1(t; t0, u0) be the maximal solution of differential equation (2) where
u0 =

(
ϕ0, V1(t0, x0)

)
.

Define the function p(t) =
(
ϕ0, V1(t, x(t))

)
for t ∈ [t∗0, t

∗]. Then

D+p(t) = lim
ε→0+

sup(1/ε){p(t + ε)− p(t)}

= lim
ε→0+

sup(1/ε)
{(

ϕ0, V1(t + ε, x(t + ε))
)− (

ϕ0, V1(t, x(t))
)}

=
(
ϕ0, lim

ε→0+
sup(1/ε)

{
V1(t + ε, x(t + ε))− V1(t, x(t))

})

=
(
ϕ0, D

+
(1)V1(t, x(t))

) ≤ g1

(
t, (ϕ0, V1(t, x(t)))

)
= g1(t, p(t)).

(16)

According to Lemma 1 we obtain

(17) p(s) =
(
ϕ0, V1(s, x(s))

) ≤ r1(s; t0, u0), s ∈ [t0, t∗].

Condition (10) for the point x0 and inequalities (4), (8) and (17) imply
that

(18)
(
ϕ0, V1(t∗0, x(t∗0))

)
<

δ1

2
.

Consider the function V
(δ2)
2 (t, x) that is defined in condition 5 of Theo-

rem 1 and define the function

(19) m(t, x) = V1(t, x) + V
(δ2)
2 (t, x), t ≥ t∗0.

From inequality (7) and condition (iii) of Theorem 1 follows that

(20)
(
ϕ0, V

(δ2)
2 (t∗0, x(t∗0))

)
< a

(
H0(t∗0, (ϕ0, x(t∗0)))

)
= a(δ2) <

δ1

2
.

From inequalities (18) and (20) we obtain

(21)
(
ϕ0,m(t∗0, x(t∗0))

)
< δ1.
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Define the function q(t) =
(
ϕ0,m(t, x(t))

)
for t ≥ t∗0.

Let t ∈ [t∗0, t
∗]. Then using inclusion (15) and condition (iii) of Theorem 1

we obtain

(22) D+q(t) =
(
ϕ0,

{
D +

(1)V1(t, x(t)) + D +
(1)V

(δ2)
2 (t, x(t))

})
≤ g2(t, q(t)).

According to inequality (22) we get

(23) q(t) =
(
ϕ0,m(t, x(t; t0, x0))

) ≤ r∗(t; t∗0, v
∗
0) for t ∈ [t∗0, t

∗],

where r∗(t; t∗0, v
∗
0) is the maximal solution of (3) through the point (t∗0, v

∗
0),

v∗0 =
(
ϕ0,m(t∗0, x(t∗0; t0, x0))

)
.

From inequality (21) follows that |v∗0 | < δ1 and therefore according to
inequality (6)
(24) r∗(t; t∗0, v

∗
0) < b(ε), t ≥ t∗0.

From inequalities (23) and (24), the choice of the point t∗, and condi-
tion (iii) of Theorem 1 we obtain

b(ε) > r∗(t∗; t∗0, v
∗
0) ≥ (

ϕ0,m(t∗, x(t∗; t0, x0))
) ≥

≥ (
ϕ0, V

(δ2)
2 (t∗, x(t∗; t0, x0))

) ≥ b
(
H(t∗, (ϕ0, x(t∗; t0, x0)))

)
= b(ε).

The obtained contradiction proves the validity of inequality (12).
Inequality (12) proves the (H0,H)-eventual uniform ϕ0-stability of the

considered system of differential equations. ¤
Theorem 2 Let the conditions 1–5 of Theorem 1 be satisfied and let the

following equality g2(t, v) = 0 hold.
Assume that

(H1)
(
ϕ0,

{
D +

(1)V1(t, x) + D +
(1)V

(µ)
2 (t, x)

})
≤ −c

(
H(t, (ϕ0, x))

)

for 0 < r < H(t, (ϕ0, x)) and t ≥ θ(r), where c ∈ K, θ ∈ Z for 0 < r < ρ and
(t, x) ∈ S̃(H, ρ, ϕ0) ∩ S̃c(H0, µ, ϕ0);

(H2)
(
ϕ0, V1(t, x) + V

(µ)
2 (t, x)

) ≤ β
(
H(t, (ϕ0, x))

)

for 0 < r < H(t, (ϕ0, x)) and t ≥ θ(r), where β ∈ K and

(t, x) ∈ S̃(H, ρ, ϕ0) ∩ S̃c(H0, µ, ϕ0).

Then the differential system (1) is (H0,H)-eventually uniformly asymp-
totically ϕ0-stable.
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Proof. Since (H1) implies that
(
ϕ0,

{
D +

(1)V1(t, x)+D +
(1)V

(µ)
2 (t, x)

})
≤ 0 for (t, x) ∈ S̃(H, ρ, ϕ0)∩S̃c(H0, µ, ϕ0).

The conditions 1 – 6 of Theorem 1 and hypotheses (H1) and (H2), yield
by Theorem 1, that the differential system (1) is (H0,H)-eventually uniformly
ϕ0-stable. Let ε > 0 be given. Following [5], choose

(25) δ0 = δ(ρ), τ0 = τ(ρ) and T (ε) = τ(ε) + β(ρ)/c[δ(ε)].

To prove the Theorem 2, it must be shown that H0(t, (ϕ0, x)) < δ0 implies
H

(
t∗, (ϕ0, x(t∗; t0, x0))

)
< δ(ε), t∗ ∈ [t0 + τ(ε), t0 + T (ε)].

Suppose that this is false. Then

(26) δ(ε) ≤ H(t, (ϕ0, x(t))) < ρ, t ∈ [t0 + τ(ε), t0 + T (ε)].

Let

(27) m(t, x) = V1(t, x) + V
(µ)
2 (t, x), t ∈ [t0 + τ(ε), t0 + T (ε)].

By using the inequality (26) and the condition (H1) of Theorem 2, for
t ∈ [t0 + τ(ε), t0 + T (ε)] we get

(28) D+q(t) = {ϕ0, D
+m(t)} ≤ −c

(
H(t, (ϕ0, x(t)))

) ≤ −c[δ(ε)].

By integrating (28) from t0 + τ(ε) to t0 + T (ε), we obtain

(29)
{
ϕ0,m(t0 + T (ε))

} ≤ {
ϕ0,m(t0 + τ(ε))

}− c[δ(ε)][ T (ε)− τ(ε)].

Then from condition (ii) of Theorem 1, hypothesis (H2) of Theorem 2,
(25), (26) and (29), we obtain

0 < b[δ(ε)]
≤ {ϕ0, m(t0 + T (ε))}

≤ β
(
H

(
t0 + τ(ε), (ϕ0, x(t0 + τ(ε); t0, x0))

))− c[δ(ε)]
β(ρ)

c[δ(ε)]
≤ β(ρ)− β(ρ) = 0,

which is a contradiction. Then there exists a t∗ ∈ [t0 + τ(ε), t0 + T (ε)] such
that H

(
t∗, (ϕ0, x(t∗; t0, x0))

)
< δ(ε).

Therefore, the system (1) is (H0,H)-eventually uniformly asymptotically
ϕ0-stable.

¤
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ЕВЕНТУАЛНА ϕ0-УСТОЙЧИВОСТ НА ДИФЕРЕНЦИАЛНИ
СИСТЕМИ ПО ОТНОШЕНИЕ НА ДВЕ МЕРКИ СЪС

СМУТЕНИ ФУНКЦИИ НА ЛЯПУНОВ

Иван К. Русинов

Резюме. Въвежда се понятие за евентуална ϕ0-устойчивост на нели-
нейни системи от обикновени диференциални уравнения по отношение на
две мерки. Техниката ни се опира на директния метод на Ляпунов. При-
ложени са смутени конусозначни функции на Ляпунов и са използвани
обикновени скаларни диференциални уравнения.
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