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Abstract. Some accelerated overrelaxation (AOR) iterative me-
thods based on the Nekrassov–Mehmke procedure for finding solution
of linear system of algebraic equations Ax = b are given by the decom-
position A = Tm − Em − Fm, where Tm is a banded matrix of band-
width 2m + 1. We study the convergence of the new methods, based on
the ideas given in [1], [2] and [3]. An interesting numerical example is
presented.
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1. Introduction

Let us consider the linear system Ax− b = 0, (det A 6= 0), or

(1) ai1x1 + ai2x2 + · · · + ainxn − bi = 0, i = 1, 2, . . . , n.

Suppose that the matrix A is strictly diagonally dominant (SDD), i.e.

|aii| >
n∑

j 6=i

|aij |, i = 1, 2, . . . , n.

In this paper we propose new iterative algorithms based on the classical
methods of Nekrassov–Mehmke.
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Using the Nekrassov–Mehmke iteration scheme, (or Gauss–Seidel scheme),
see Nekrassov [4], Mehmke [5] and Nekrassov and Mehmke [6], the sequence of
consecutive approximations xk

i , is computed in this way:

(2) xk+1
i = −

i−1∑

j=1

aij

aii
xk+1

j −
n∑

j=i+1

aij

aii
xk

j +
bi

aii
,

i = 1, 2, . . . , n;
k = 0, 1, 2, . . . .

Here after, we shall call the above scheme the Nekrassov–Mehmke 1–
method (NM1). In a number of cases the success of the procedures of type (2)
depends on the proper ordering of the equations (and xi, i = 1, . . . , n) in
system (1).

In spite of this fact the following modification of the Nekrassov–Mehmke
method is known (see Faddeev D. and Faddeeva V. [7]):

(3) xk+1
i = −

i−1∑

j=1

aij

aii
xk

j −
n∑

j=i+1

aij

aii
xk+1

j +
bi

aii
,

i = n, n− 1, . . . , 1;
k = 0, 1, 2, . . . .

Here after, we shall call the above scheme the Nekrassov–Mehmke 2–
method (NM2).

In [7] Faddeev D. and Faddeeva V. especially pointed out that of certain
interest are such iteration processes in which cycles studied in two Nekrassov–
Mehmke methods (NM1) and (NM2) are alternated.

The (NM2)-method does not possess better convergence in comparison
with method (NM1).

But under circumstances, if matrix A is positive definite then the eigen-
values of matrix G in the matrix equations x = Gx + t are real and this allows
to apply different methods for improving rate of convergence, i.e. Abramov’s
technique [8].

Let A = (aij) be an n × n matrix and Tm = (tij) be a banded matrix of
bandwidth 2m + 1 defined as

tij =

{
aij , |i− j| ≤ m,

0, otherwise.
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Let

Tm =




a11 · · · a1,m+1

...
. . . . . .

am+1,1
. . . an−m,n

. . . . . .
...

an,n−m · · · an,n




,

Em =



−am+2,1

...
. . .

−an,1 · · · −an,n−m−1




,

Fm =




−a1,m+2 · · · −a1,n

. . .
...

−an−m−1,n




.

Applying the Nekrassov–Mehmke method (NM1) to the system Ax = b
with the decomposition A = Tm − Em − Fm, i.e.

(4) xk+1 = (Tm − Em)−1Fmxk + (Tm − Em)−1b, k = 0, 1, 2, . . . .

Salkuyeh proved in [1] that the generalized Nekrassov–Mehmke method
(GNM1) is convergent for any initial point x0.

The following generalization of the (NM2) method–generalized Nekrassov–
Mehmke method (GNM2) is proposed by Zaharieva, Kyurkchiev and Iliev in [9]:

(5) xk+1 = (Tm − Fm)−1Emxk + (Tm − Fm)−1b, k = 0, 1, 2, . . . .

Let ω be a parameter such that the matrix Tm − ωEm be nonsingular.
In [2] Salkuyeh considers the following Successive Over Relaxation Gene-

ralized Nekrassov–Mehmke method (GNM1) – (SORGNM1):

xk+1 = (Tm − ωEm)−1
(
ωFm + (1− ω)Tm

)
xk

+ (Tm − ωEm)−1ωb, k = 0, 1, 2, . . . .
(6)

which is based on method (4) and proves the following convergence theorem
for method (6).
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Theorem A [2]. Let A and Tm be symmetric positive definite (SPD)
matrices. Then for every 0 < ω < 2, the method (6) converges.

2. Main results

Let ω be a fixed parameter so that the matrix Tm − ωFm be nonsingular.
In this paper the following Successive Over Relaxation Generalized Nekrassov–
Mehmke method (GNM2) – (SORGNM2) is proposed:

xk+1 = (Tm − ωFm)−1(ωEm +
(
1− ω)Tm

)
xk + (Tm − ωFm)−1ωb

= Gxk + (Tm − ωFm)−1ωb, k = 0, 1, 2, . . .
(7)

based on method (5).
We give a convergence theorem for method (7).

Theorem 1. Let A and Tm be (SPD) matrices. Then for every 0 < ω < 2,
the method (7) converges with any initial guess x0.

Proof. The proof follows the ideas given in [10] (see, Ostriwski-Reich’s
theorem) and [2].

Obviously Em = FT
m, since A is symmetric.

We prove that the matrix

S =
1
ω

Tm − Fm

is nonsingular.
By contradiction, let S be singular. i.e. Sx = 0 for the nonzero vector x.

In this case xT Sx = 0. Matrix A is an (SPD) matrix and

0 < xT Ax = xT (Tm − Fm − FT
m)x = xT Tmx− 2xT Fmx,

xT Fmx <
1
2
xT Tmx,

xT Sx =
1
ω

xT (Tm − ωFm)x =
1
ω

(xT Tmx− ωxT Fmx) >
1
ω

(
1− ω

2

)
xT Tmx.

The matrix Tm is (SPD). Hence xT Tmx > 0. On the other hand 1−ω

2
> 0.

Therefore xT Sx > 0, which is a contradiction. We have

S + ST −A =
1
ω

Tm − Fm +
1
ω

Tm − FT
m − (Tm − Fm − FT

m) =
(

2
ω
− 1

)
Tm.
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The matrix Tm is (SPD),
2
ω
− 1 > 0, then the matrix S+ST −A is (SPD).

Let
R = A−1(2S −A).

We show that if λ is an eigenvalue of R, then Re λ > 0. Let (λ, x) be an
eigenpair of R. We have

A−1(2S −A)x = λx,

(2S −A)x = λAx,

(8) xT (2S −A)x = λxT Ax,

(9) xT (2ST −AT )x = xT (2ST −A)x = λxT Ax,

By adding the two sides of (8) and (9), we get

xT (2ST −A + 2S −A)x = (λ + λ)xT Ax,

xT (ST −A + S)x =
λ + λ

2
xT Ax = Reλ xT Ax.

Both A and S + ST − A are (SPD) matrices, hence we conclude that
Re λ > 0.

It can be easily seen that R + I is nonsingular. Therefore,

(R− I)(R + I)−1 = (A−1(2S −A)− I)(A−1(2S −A) + I)−1

= (2A−1S − I − I)(2A−1S − I + I)−1

= 2(A−1S − I)
1
2
(A−1S)−1 = I − S−1A

= I −
(

1
ω

Tm − Fm

)−1

(Tm − Em − Fm)

= (Tm − ωFm)(Tm − ωFm)−1

− ω(Tm − ωFm)−1(Tm − Em − Fm)

= (Tm − ωFm)−1(Tm − ωFm − ωTm + ωEm + ωFm)

= (Tm − ωFm)−1 ((1− ω)Tm + ωEm) = G.

Let (µ, x) be an eigenpair of the matrix G.
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Then
(R− I)(R + I)−1x = µx.

By setting z = (R + I)−1x, we see that z 6= 0. Hence,

x = (R + I)z,

(R− I)z = µ(R + I)z,

(1− µ)Rz = (1 + µ)z.

We have µ 6= 1, since z 6= 0. Hence,

Rz =
1 + µ

1− µ
z.

This relation shows that λ =
1 + µ

1− µ
is an eigenvalue of R. As a result we

have µ =
λ− 1
λ + 1

and

|µ|2 = µ µ =
|λ|2 + 1− 2Reλ

|λ|2 + 1 + 2Reλ
.

Having in mind that Reλ > 0, we conclude that

|µ| < 1 → ρ(G) < 1.

This completes the proof.
¤

For other results, see [11], [13], [12], [14] and [15].

Now, similar to the classical (AOR) method [16] its generalized version is
defined as following (see, Salkuyeh in [3]) Generalized Accelerated Over Relax-
ation Method – (GAOR), based on the Nekrassov–Mehmke method (GNM1):

(10)
xk+1 = (Tm − γEm)−1 ((1− ω)Tm + (ω − γ)Fm + ωFm) xk

+ ω(Tm − γEm)−1b, k = 0, 1, 2, . . . ,

based on method (6), where 0 ≤ γ < ω ≤ 1.
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Let G
(m)
AOR(γ, ω) be the iteration matrix of the method (10), i.e.

G
(m)
AOR(γ, ω) = (Tm − γEm)−1 ((1− ω)Tm + (ω − γ)Fm + ωFm) .

Procedure (10) is valid in the case where A is an M -matrix.
A matrix A = (aij) is said to be an M - matrix, if aii > 0 for i =

1, 2, . . . , n, aij ≤ 0 for i 6= j, A is nonsingular and A−1 ≥ 0.
In [3] Salkuyeh proves the following convergence theorem for method (10).

Theorem B [3]. If A is an M matrix and 0 ≤ γ < ω ≤ 1 with ω 6= 0,
then the method (10) is convergent, i.e.

ρ
(
G

(m)
AOR(γ, ω)

)
< 1.

We propose the following method Generalized Accelerated Over Relaxation
Method – (GN

AOR), based on Nekrassov–Mehmke method (GNM2):

(11)
xk+1 = (Tm − γFm)−1 ((1− ω)Tm + (ω − γ)Fm + ωEm) xk

+ ω(Tm − γFm)−1b, k = 0, 1, 2, . . . ,

based on method (7), where 0 ≤ γ < ω ≤ 1.
Let G

N,(m)
AOR (γ, ω) be the iteration matrix of method (11), i.e.

G
N,(m)
AOR (γ, ω) = (Tm − γEm)−1 ((1− ω)Tm + (ω − γ)Fm + ωFm) .

We give a convergence theorem for method (11).

Theorem 2. If A is an M matrix and 0 ≤ γ < ω ≤ 1 with ω 6= 0, then
method (11) is convergent, i.e.

ρ
(
G

N,(m)
AOR (γ, ω)

)
< 1.

Proof. The proof follows the ideas given in [3]. For the GN
AOR method we

have Am = MN
m −NN

m , where

MN
m = Tm − γFm,

NN
m = (1− ω)Tm + (ω − γ)Fm + ωEm,
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and A ≤ MN
m ,

(
MN

m

)−1 ≥ 0 and MN
m is an M - matrix.

On the other hand (see, [18], [3]),

ρ
(
(Tm)−1

Fm

)
< 1.

For 0 ≤ γ ≤ 1,
ρ

(
γ (Tm)−1

Fm

)
< 1

and therefore,
(
MN

m

)−1
NN

m = (Tm − γFm)−1 [(1− ω)Tm + (ω − γ)Fm + ωEm]

=
(
I − γT−1

m Fm

)−1 [
(1− ω)I + (ω − γ)T−1

m Fm + ωT−1
m Em

]

≥ 0.

We note that ω A = MN
m − NN

m is a weak regular splitting of ω A. From
the result by Wang and Song [18], we observe that

ρ
((

MN
m

)−1
NN

m

)
= ρ

(
G

N,(m)
AOR (γ, ω)

)
< 1

and this completes the proof.
¤

For other results, see [17], [18], [19], [20] and [21].

3. Numerical example

Consider the M -matrix (example by Salkueh [3]):

A =




4 −2 −1 −2
−1 5 −5 −1
−2 −1 9 −1
−1 −1 −1 5


 .

Let m = 1, γ = 0.5, ω = 0.9. For method (11) we have

MN
1 =




4 −2 −0.5 −1
−1 5 −5 −0.5
0 −1 9 −1
0 0 −1 5



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NN
1 =




0.4 −0.2 0.4 0.8
−0.1 0.5 −0.5 0.4
1.8 −0.1 0.9 −0.1
0.9 0.9 −0.1 0.5




(
MN

1

)−1
=




0.283321 0.133285 0.0997815 0.089949
0.0640932 0.256373 0.153678 0.0691916
0.00728332 0.0291333 0.1311 0.0305899
0.00145666 0.00582666 0.02622 0.206118




(
MN

1

)−1
NN

1 =




0.360561 0.0809541 0.127495 0.314967
0.338893 0.162272 0.028842 0.173052
0.263511 0.027531 0.103277 0.019665
0.232702 0.185506 0.000655499 0.103933




For the eigenvalues of the matrix
(
MN

1

)−1
NN

1 we have:

0.132076,
0.701942,
−0.0519868 + 0.0406157 I,
−0.0519868− 0.0406157 I,

and for the spectral radius of
(
MN

1

)−1
NN

1 :

ρ
(
G

N,(1)
AOR (0.5, 0.9)

)
= 0.701942 < 1.

The result shows that Theorem 2 holds true.

4. Concluding remarks

Remark 1. We shall point out that in the case of symmetry, methods
(6) and (7) are equivalent.

Remark 2. This is not the case, when A is an M - matrix. For method
(10) Salkueh proved that

ρ
(
G

(1)
AOR(0.5, 0.9)

)
= 0.677571 < 1.
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In our case,
ρ

(
G

N,(1)
AOR (0.5, 0.9)

)
= 0.701942 < 1.

For m = 2 (see, Salkueh),

ρ
(
G

(2)
AOR(0.5, 0.9)

)
= 0.5053 < 1.

From (11) we have

ρ
(
G

N,(2)
AOR (0.5, 0.9)

)
= 0.495377 < 1,

i.e.
ρ

(
G

N,(2)
AOR (0.5, 0.9)

)
< ρ

(
G

(2)
AOR(0.5, 0.9)

)
,

which shows that the method (11) has its right of existence.
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ВЪРХУ НЯКОИ ИТЕРАЦИОННИ АЛГОРИТМИ ЗА
РЕШАВАНЕ НА СИСТЕМИ ОТ ЛИНЕИНИ УРАВНЕНИЯ

Десислава Захариева, Анна Малинова

Резюме. Изследвани са някои итерационни методи за числено реша-
ване на системи линейни уравнения, базиращи се на метода на Nekrassov–
Mehmke (обратен ход) от тип горна релаксация с два параметъра ω, γ
приложени за лентови матрици с ширина 2m + 1. Доказани са теореми за
сходимост и е показано с подходящ пример, че в случая на M - матрици,
методите имат право на съществуване.
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