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ON SOME (AOR) ITERATIVE ALGORITHMS FOR
SOLVING SYSTEM OF LINEAR EQUATIONS

D. Zaharieva, A. Malinova

Abstract. Some accelerated overrelaxation (AOR) iterative me-
thods based on the Nekrassov—Mehmke procedure for finding solution
of linear system of algebraic equations Az = b are given by the decom-
position A = T,, — E,, — Fi, where T, is a banded matrix of band-
width 2m + 1. We study the convergence of the new methods, based on
the ideas given in [1], [2] and [3]. An interesting numerical example is
presented.
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1. Introduction

Let us consider the linear system Az —b =10, (det A #0), or
(1) CL1'1£ZZ1+0,7;21‘2+"'+ainxn7bi:0, Z:L 27...,71.

Suppose that the matrix A is strictly diagonally dominant (SDD), i.e.
n
\aii\ > Z |aij|, i=1,2,...,n.
J#i

In this paper we propose new iterative algorithms based on the classical
methods of Nekrassov—Mehmke.
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Using the Nekrassov—Mehmke iteration scheme, (or Gauss—Seidel scheme),
see Nekrassov [4], Mehmke [5] and Nekrassov and Mehmke [6], the sequence of
consecutive approximations :z:f, is computed in this way:

: 1a " a b =1, 2
1 iq 1 iq i 1 vy MG
(2) Jff = — E - Jﬁf — E = I? + —, k 6 1’ 2 >
= Qg j=it1 273 Q5 =Y L4 .

Here after, we shall call the above scheme the Nekrassov—Mehmke 1—
method (NM1). In a number of cases the success of the procedures of type (2)
depends on the proper ordering of the equations (and z;, ¢ = 1, ..., n) in
system (1).

In spite of this fact the following modification of the Nekrassov—-Mehmke
method is known (see Faddeev D. and Faddeeva V. [7]):

i—1 n

(3) x’?“:_Z%xk_ Z %$k+1+ﬂ t=n,n—1 ..., 1
b)
Z j=1 ! Jj=i+1 Qi ! Qi /{JZO, 17 27

Here after, we shall call the above scheme the Nekrassov-Mehmke 2-
method (NM2).

In [7] Faddeev D. and Faddeeva V. especially pointed out that of certain
interest are such iteration processes in which cycles studied in two Nekrassov—
Mehmke methods (NM1) and (NM2) are alternated.

The (NM2)-method does not possess better convergence in comparison
with method (NM1).

But under circumstances, if matrix A is positive definite then the eigen-
values of matrix G in the matrix equations x = Gx + t are real and this allows
to apply different methods for improving rate of convergence, i.e. Abramov’s
technique [8].

Let A = (a;;) be an n x n matrix and T, = (¢;;) be a banded matrix of
bandwidth 2m + 1 defined as

aij, |i—jl<m,
tij =

0, otherwise.
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Let
a11 o a1,m+1
Tm = .

m Am+1,1 . Gn—m.n ’
An,.n—m T Ann

Em — —Qm42,1 ,

—Qn,1 T —Qp.n—m—1
—Q1m+2 —Q1n
FnL - —Ap—m—1,n

Applying the Nekrassov—Mehmke method (NM1) to the system Az = b
with the decomposition A =T, — E,, — F},, i.e.

(4) 2" = (T — En) YEpat +(T,, — E,) 7, k=0,1,2,....

Salkuyeh proved in [1] that the generalized Nekrassov—Mehmke method
(GNM1) is convergent for any initial point z°.

The following generalization of the (NM2) method—generalized Nekrassov—
Mehmbke method (GNM2) is proposed by Zaharieva, Kyurkchiev and Iliev in [9]:

(5) 2" = (T, — Fon) 'Epa® + (T, — F) ™', k=0,1,2,....

Let w be a parameter such that the matrix 7T, — wF,, be nonsingular.
In [2] Salkuyeh considers the following Successive Over Relazation Gene-
ralized Nekrassov—Mehmke method (GNM1) — (SORGNM1):
2f T = (T, — wE,,) ™! (me +(1- w)Tm):ck

(6) .
+ (T, —wEp) " wb, k=0,1,2,....

which is based on method (4) and proves the following convergence theorem
for method (6).
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Theorem A [2]. Let A and T,, be symmetric positive definite (SPD)
matrices. Then for every 0 < w < 2, the method (6) converges.

2. Main results

Let w be a fixed parameter so that the matrix 7T, — wF,, be nonsingular.
In this paper the following Successive Over Relaxation Generalized Nekrassov—
Mehmke method (GNM2) — (SORGNM2) is proposed:

M = (T — wF)  HWEm + (1= 0)Ty)a* + (T — wF) " wb

7
@) = Gk + (T, — wF,,) " twb, k=0,1,2,...

based on method (5).
We give a convergence theorem for method (7).

Theorem 1. Let A and T,,, be (SPD) matrices. Then for every 0 < w < 2,

the method (7) converges with any initial guess x°.

Proof. The proof follows the ideas given in [10] (see, Ostriwski-Reich’s
theorem) and [2].

Obviously E,, = FL since A is symmetric.

We prove that the matrix

1
S= =Ty~ Fn
w

is nonsingular.
By contradiction, let S be singular. i.e. Sz = 0 for the nonzero vector x.
In this case 7Sz = 0. Matrix A is an (SPD) matrix and

0 < 2T Az = 27(T,, — F,, — Fg;)x =TT 0 — 22T F,,x,
T L 7
' Fpx <z Ty,

1 1 1 w
Ta, L. T _ _ T T T W &
xSt = ~ (T, — wFp)x ” (2" T — wa’ Frpx) > " (1 2) " T

The matrix T}, is (SPD). Hence 7 T}, > 0. On the other hand 1—% > 0.

Therefore 27 Sz > 0, which is a contradiction. We have

1 1 2
S+ST—A:Tm—Fm+Tm—F£—(Tm—Fm—F£)=<—1)Tm.
w w w
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The matrix T, is (SPD), 2 1 > 0, then the matrix S+S7 — A is (SPD).
w

Let
R=A"'(25 - A).

We show that if A is an eigenvalue of R, then Re A > 0. Let (A, z) be an
eigenpair of R. We have

ATH2S — Az = Ax,

(28 — A)x = Nz,
(8) 2728 — Az = X2 Az,

(9) 27287 — ATz = 27(28T — A)x = X7 Az,
By adding the two sides of (8) and (9), we get

2T (28T — A+2S — A)z = (A + \)aT Az,

2T(ST — A+ S)z = % T Ax = Re Ao Ax.

Both A and S + ST — A are (SPD) matrices, hence we conclude that
Re X > 0.

It can be easily seen that R + I is nonsingular. Therefore,

(R—D(R+I)'=(A"128-A) -D(A'25-A) +D)!
=0A'S—T-DNERA'S—T+1)7!

_ oA s — 1)%(/1—15)—1 _-5'4

1 —1
=1- (Tm - Fm) (Tm - Em - Fm)
w

= (T, — wF ) (T — wFy,) 7t

— (T — wFy) Ty — By — i)
= (Trn — wFy) N Ty — wFyy — Wl + wEy, + wFy,)
= (T, —wF,) (1 =)y +wEy,) = G.

Let (u,x) be an eigenpair of the matrix G.
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Then
(R—D)(R+ 1)tz = pa.
By setting z = (R + I) 'z, we see that z # 0. Hence,

x=(R+1)z,
(R—D)z=p(R+ 1)z,

(1—-p)Rz= (14 p)z.

We have p # 1, since z # 0. Hence,

1
Rz = +'uz.
L—p
. . 1+p . .
This relation shows that A = 1 is an eigenvalue of R. As a result we
—p
A—1
h = d
ave i F1 an
9 _ |)\|2+1—2Re)\
Il = p = 2R

A2+ 1+2ReA

Having in mind that Re A > 0, we conclude that

<1 —p(G) <1

This completes the proof.

For other results, see [11], [13], [12], [14] and [15].

Now, similar to the classical (AOR) method [16] its generalized version is
defined as following (see, Salkuyeh in [3]) Generalized Accelerated Over Relaz-

ation Method — (G aor), based on the Nekrassov—Mehmke method (GNM1):
ot = (T, —vE,) " (1 = w) T + (w — 7)) Fo + wFy,) 2F
(10)

+w(T — vEm) b, k=0,1,2,...

based on method (6), where 0 < v < w < 1.
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Let GZQR(% w) be the iteration matrix of the method (10), i.e.

G;@R(Va w) = (Tm - ’YETTL)_l ((1 - w)T’m + (w - V)F’rn + wF?n) .
Procedure (10) is valid in the case where A is an M - matrix.
A matrix A = (a;;) is said to be an M -matrix, if a; > 0 for ¢ =
1,2,...,n,a;; <0fori#j, Ais nonsingular and A=! > 0.
In [3] Salkuyeh proves the following convergence theorem for method (10).

Theorem B [3]. If A is an M matriz and 0 < v < w < 1 with w # 0,
then the method (10) is convergent, i.e.

P <GS4778R(77W)) <1
We propose the following method Generalized Accelerated Over Relaxation
Method — (G ), based on Nekrassov-Mehmke method (GNM2):
o = (T, —vF) (1 — )T + (w — ) Fy + wEy,) 2F
(11)
+w(Ty, — vFy) 71, k=0,1,2,...,

based on method (7), where 0 <y < w < 1.
Let ng(?)(w,w) be the iteration matrix of method (11), i.e.

N,(m _
GASR (71:@) = (T = 1) ™ (1= )T + (@ = ) Fn + 0F).
We give a convergence theorem for method (11).

Theorem 2. If A is an M matriz and 0 < v < w < 1 with w # 0, then
method (11) is convergent, i.e.

p (GASH (hw)) < 1.

Proof. The proof follows the ideas given in [3]. For the GY,; method we
have A,, = MY — NN where

Ny =1 =w)Tn + (W =) Fn +wEn,
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and A < MY, (Mn]\{)fl >0 and MY is an M - matrix.
On the other hand (see, [18], [3]),
p ()™ F) < 1.

For 0 <~ <1,
p (’y (Tm)f1 Fm> <1

and therefore,

(MN) ' NN = (T, = ¥F) " (1 = )T + (@ = 7)o + 0B

m m
— (I =T F) " (1= ) + (0 = )T Foy + wT B
> 0.

We note that w A = MY — N is a weak regular splitting of w A. From
the result by Wang and Song [18], we observe that

o (M) NY) = (GNER () <1

and this completes the proof.

For other results, see [17], [18], [19], [20] and [21].
3. Numerical example

Consider the M - matrix (example by Salkueh [3]):

4 -2 -1 =2
-1 5 -5 -1
-2 -1 9 -1
-1 -1 -1 5

Let m =1, v =0.5, w = 0.9. For method (11) we have

A:

4 -2 —-05 -1
-1 5 -5 —=0.5
0 -1 9 -1
0 0 -1 5

MY =
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04 -02 04 0.8
-01 05 -05 04
1.8 —-01 09 -0.1
0.9 09 -01 05

NV =

0.283321 0.133285  0.0997815  0.089949

(MN)—l _ 0.0640932  0.256373  0.153678  0.0691916
! 0.00728332  0.0291333 0.1311 0.0305899
0.00145666 0.00582666  0.02622  0.206118

0.360561 0.0809541  0.127495  0.314967
0.338893  0.162272 0.028842  0.173052
0.263511  0.027531 0.103277  0.019665
0.232702  0.185506  0.000655499 0.103933

(M) N =

For the eigenvalues of the matrix (M N )71 N we have:

0.132076,

0.701942,

—0.0519868 + 0.0406157 I,

—0.0519868 — 0.0406157 I,
and for the spectral radius of (MIN)_1 N{:

p (GA8R(05,0.9)) = 0.701942 < 1.

The result shows that Theorem 2 holds true.
4. Concluding remarks

Remark 1. We shall point out that in the case of symmetry, methods
(6) and (7) are equivalent.

Remark 2. This is not the case, when A is an M - matrix. For method
(10) Salkueh proved that

p (GU0R(0.5,09)) = 0.677571 < 1.
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In our case,

p (G%g (0-5,0.9)) =0.701942 < 1.

For m = 2 (see, Salkueh),
p (GH0r(0:5,09)) = 0.5053 < 1.
From (11) we have
P (GZ’O(;? (0.5, 0.9)) — 0.495377 < 1,

i.e.

0 (GX87(05,09)) < p (654(05,09)) .

which shows that the method (11) has its right of existence.
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BbPXY HAKON NTEPAIIMOHHN AJITOPUTMUN 3A
PEIITABAHE HA CUCTEMMU OT JIMHEVHUW YPABHEHU A

Hecucnasa 3axapuesa, Auna Majunosa

Peszrome. U3ciieiBanu ca HIKOU UTEPANMOHHA METOJIU 34 UUCJIEHO Pella-
BaHe Ha CHCTEeMHU JIMHEITHU ypaBHeHUsI, 6ba3upary ce Ha MeTojia Ha Nekrassov—
Mehmke (obpareH xoj) OT THI TOPHA DPeJakcalysi ¢ JiBa IapaMerbpa w,
MIPUJIOYKEHN 3a JIEHTOBU MaTpuIy ¢ mupuHa 2m + 1. Jlokazanu ca Teopemu 3a
CXOIMMOCT U € TIOKA3aHO C IOIXOISI IIPUMED, 9e B ciry4das ua M - marpuim,
METOJINTE UMAT IIPABO HA ChINECTBYBAHE.
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