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1 Introduction

A fundamental result in fixed point theory is the Banach Contraction Principle. One kind of a generalization

of the Banach Contraction Principle is the notation of cyclical maps [1]. Fixed point theory is an important

tool for solving equations Tx = x for mappings T defined on subsets of metric spaces or normed spaces.

Because a non-self mapping T : A → B does not necessarily have a fixed point, one often attempts to

find an element x which is in some sense closest to Tx. Best proximity point theorems are relevant in this

perspective. The notation of best proximity point is introduced in [2]. This definition is more general than

the notation of cyclical maps, in sense that if the sets intersect, then every best proximity point is a fixed

point. A sufficient condition for the uniqueness of the best proximity points in uniformly convex Banach
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spaces is given in [2]. It turns out that many of the contractive type conditions which are investigated for

fixed points ensure the existence of best proximity points. Some results of this kind are obtained in [3–6].

It is interesting that in all investigated conditions for the existence of best proximity the distances between

sets are equal. We have found a new type of condition which warrants the existence and the uniqueness of

the best proximity points for sets with different distances between them. This new type of a map we have

called a p–summing map. We have also shown that this new type of map, the p–summing map, if considered

not as a cyclical map, has a unique fixed point.

2 Preliminary results

In this section we give some basic definitions and concepts which are useful and related to the best proximity

points. Let (X, ∥ · ∥) be a Banach space. Define a distance between two subsets A,B ⊂ X by dist(A,B) =

inf{∥x− y∥ : x ∈ A, y ∈ B}.

Definition 2.1. ( [2], [5])Let A1, A2, . . . , Ap be nonempty subsets of a Banach space (X, ∥ · ∥) and let

T :

p∪
i=1

Ai →
p∪

i=1

Ai. The map T is called a p-cyclic contraction, if it satisfies the following conditions:

(1) T (Ai) ⊆ Ai+1; 1 ≤ i ≤ p, where Ap+i = Ai;

(2) For some k ∈ (0, 1) the inequality ∥Tx − Ty∥ ≤ k∥x − y∥ + (1 − k)dist(Ai, Ai+1) holds for any x ∈ Ai,

y ∈ Ai+1, 1 ≤ i ≤ p. A point ξ ∈ Ai is said to be a best proximity point of T in Ai if ∥ξ−Tξ∥ = dist(Ai, Ai+1).

Definition 2.1 is given for two sets A1 and A2 in [2], and for p–sets in [5].
It is proved in [5], that if a map is a p-cyclic contraction, then it has best proximity points for every set

Ai, 1 ≤ i ≤ p.
We will use the following two lemmas, established in [2], to proving the uniqueness of the best proximity

points.

Lemma 2.1. ( [2]) Let A be a nonempty, closed, convex subset, and B be a nonempty, closed subset of a
uniformly convex Banach space. Let {xn}∞n=1 and {zn}∞n=1 be sequences in A and {yn}∞n=1 be a sequence in
B satisfying:
1) lim

n→∞
∥zn − yn∥ = dist(A,B);

2) for every ε > 0 there exists N0 ∈ N, such that for all m > n ≥ N0, ∥xn − yn∥ ≤ dist(A,B) + ε.
Then for every ε > 0, there exists N1 ∈ N, such that for all m > n > N1, holds ∥xm − zn∥ ≤ ε.

Lemma 2.2. ( [2]) Let A be a nonempty, closed, convex subset, and B be a nonempty, closed subset of a
uniformly convex Banach space. Let {xn}∞n=1 and {zn}∞n=1 be sequences in A and {yn}∞n=1 be a sequence in
B satisfying:
1) lim

n→∞
∥xn − yn∥ = dist(A,B);

2) lim
n→∞

∥zn − yn∥ = dist(A,B);

then lim
n→∞

∥xn − zn∥ = 0.

Theorem 2.1. ( [7]) Let (X, ∥ · ∥) be a Banach space and F : X → R ∪ {+∞} be a lower semicontinuous
function on X that is bounded from below and not identically equal to +∞. Fix ε > 0 and a point x0 ∈ X,
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such that
F (x0) ≤ ε+ inf{F (x) : x ∈ X}.

Then there exists a point v ∈ X, such that ∥x0 − v∥ ≤ 1 and F (v) ≤ F (x0), and for any w ̸= v there holds
the inequality

F (v) ≤ F (w) + ε∥v − w∥.

3 Main Results
Let (X, ∥ · ∥) be a Banach space and Ai ∈ X. We denote P = dist(A1, A2) + dist(A2, A3) + dist(A3, A1).

Definition 3.1. Let Ai, i = 1, 2, 3 be subsets of a uniformly convex Banach space (X, ∥ · ∥). A map

T :
3∪

i=1

Ai →
3∪

i=1

Ai will be called a 3 – cyclic summing contraction if it satisfies the following conditions:

1) T (Ai) ⊆ Ai+1, for every i = 1, 2, 3 and by A4 we understand A1;
2) Let there exists k ∈ (0, 1), such that for any xi ∈ Ai, i = 1, 2, 3 there holds the inequality

∥Tx1 − Tx2∥+ ∥Tx2 − Tx3∥+ ∥Tx3 − Tx1∥

≤ k(∥x1 − x2∥+ ∥x2 − x3∥+ ∥x3 − x1∥) + (1− k)P
(3.1)

Theorem 3.1. Let Ai, i = 1, 2, 3 be closed, convex subsets of a uniformly convex Banach space X and

T :

3∪
i=1

Ai →
3∪

i=1

Ai is a 3 – cyclic summing contraction. Then for any i = 1, 2, 3 there exist unique best

proximity points zi ∈ Ai, such that for any x ∈ Ai the sequence {T 3nx}∞n=1 converges to zi. Moreover
T jzi = zi+j is a best proximity point in Ai+j , j = 1, 2 and zi is a fixed point of the map T 3.

Definition 3.2. Let (X, ∥ · ∥) be a Banach space. A map T : X → X will be called a 3 – summing
contraction if there exists k ∈ (0, 1), such that for any x ̸= y ̸= z there holds the inequality

∥Tx− Ty∥+ ∥Ty − Tz∥+ ∥Tz − Tx∥ ≤ k(∥x− y∥+ ∥y − z∥+ ∥z − x∥). (3.2)

Let us mention that any contraction map T : X → X is a 3–summing map, but obviously there are
3–summing maps that are not contractions. The requirement x ̸= y ̸= z in Defenition 3.2 is necessary
because if we do not impose it, then if we take y = z in (3.2) we will get the classical Banach contraction
condition.

Theorem 3.2. Let X be a Banach space and T : X → X be a 3 – summing contraction. Then T has a
unique fixed point.

It is easy to define a p–summing contraction. Let us mention that all the results in Theorem 3.1 and
Theorem 3.2 are true for a p–summing contraction. Just for the sake of simplicity we decide to state them
and to prove them for a 3–summing contraction.

4 Auxilary Results
Lemma 4.1. Let Ai, i = 1, 2, 3 be closed, convex subsets of a uniformly convex Banach space X and

T :
3∪

i=1

Ai →
3∪

i=1

Ai be a 3 – cyclic summing contraction, then for any x ∈ Ai, i = 1, 2, 3 the iterative

sequence {Tnx}∞n=1 satisfies

lim
n→∞

(
∥Tn+3x− Tn+2x∥+ ∥Tn+2x− Tn+1x∥+ ∥Tn+1x− Tn+3x∥

)
= P (4.3)
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Proof. Let x ∈ Ai. By the chain of inequalities:

∥Tn+3x − Tn+2x∥+ ∥Tn+2x− Tn+1x∥+ ∥Tn+1x− Tn+3x∥

≤ k(∥Tn+2x− Tn+1x∥+ ∥Tn+1x− Tnx∥+ ∥Tnx− Tn+2x∥)

+(1− k)P

≤ k2(∥Tn+1x− Tnx∥+ ∥Tnx− Tn−1x∥+ ∥Tn−1x− Tn+1x∥)

+(1 + k)(1− k)P

≤ k3(∥Tnx− Tn−1x∥+ ∥Tn−1x− Tn−2x∥+ ∥Tn−2x− Tnx∥)

+(1 + k + k2)(1− k)P

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ kn+1(∥T 2x− Tx∥+ ∥Tx− x∥+ ∥x− T 2x∥)

+(1 + k + · · ·+ kn)(1− k)P

= kn+1(∥T 2x− Tx∥+ ∥Tx− x∥+ ∥x− T 2x∥) + (1− kn+1)P

and the fact that Tn+1x, Tn+2x and Tn+3x belong to different sets Ai, i = 1, 2, 3, we get the inequality

P = dist(A1, A2) + dist(A2, A3) + · · ·+ dist(A3, A1)

≤ ∥Tn+3x− Tn+2x∥+ ∥Tn+2x− Tn+1x∥+ ∥Tn+1x− Tn+3x∥

≤ kn+1(∥T 2x− Tx∥+ ∥Tx− x∥+ ∥x− T 2x∥) + (1− kn+1)P

and the proof follows because lim
n→∞

kn = 0. �

Lemma 4.2. Let Ai, i = 1, 2, 3 be closed, convex subsets of a uniformly convex Banach space X and

T :
3∪

i=1

Ai →
3∪

i=1

Ai be a 3 – cyclic summing contraction, then for any x ∈ Ai the inequality

∥T 3n+1x− T 3nx∥ ≤ k3n−1(α(x)− P ) + dist(Ai, Ai+1)

holds, where
α(x) = ∥T 2x− Tx∥+ ∥Tx− x∥+ ∥x− T 2x∥

Proof. If x ∈ Ai, then T 3nx ∈ Ai and T 3n+1x ∈ Ai+1. By the proof of Lemma 4.1 we have

∥T 3n+1x − T 3nx∥+ P − dist(Ai, Ai+1)

≤ ∥T 3n+1x− T 3nx∥+ ∥T 3nx− T 3n−1x∥+ ∥T 3n−1x− T 3n+1x∥

≤ k3n−1(∥T 2x− Tx∥+ ∥Tx− x∥+ ∥x− T 2x∥) + (1− k3n−1)P

thus
∥T 3n+1x− T 3nx∥ ≤ dist(Ai, Ai+1) + k3n−1(α(x)− P ).

�
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Corollary 4.1. Let Ai, i = 1, 2, 3 are closed, convex subsets of a uniformly convex Banach space X and

T :
3∪

i=1

Ai →
3∪

i=1

Ai is a 3 – cyclic summing contraction, then for any x ∈ Ai there holds

lim
n→∞

∥T 3n+1x− T 3nx∥ = dist(Ai, Ai+1).

Lemma 4.3. Let Ai, i = 1, 2, 3 be closed, convex subsets of a uniformly convex Banach space X and

T :

3∪
i=1

Ai →
3∪

i=1

Ai be a 3 – cyclic summing contraction, then for any x, y ∈ Ai the inequality

∥T 3n+1x− T 3n+3y∥ ≤ k3n−1(α(x, y)− P ) + dist(Ai, Ai+1)

holds, where
α(x, y) = ∥x− T 2y∥+ ∥T 2y − Ty∥+ ∥Ty − x∥

Proof. If x, y ∈ Ai, then T 3ny ∈ Ai and T 3n+1x ∈ Ai+1. By the proof of Lemma 4.1 we have

∥T 3n+1x − T 3n+3y∥+ P − dist(Ai, Ai+1)

≤ ∥T 3n+1x− T 3n+3y∥+ ∥T 3n+3y − T 3n+2y∥+ ∥T 3n+2y − T 3n+1x∥

≤ k3n+1(∥x− T 2y∥+ ∥T 2y − Ty∥++∥Ty − x∥) + (1− k3n+1)P

thus
∥T 3n+1x− T 3n+3y∥ ≤ dist(Ai, Ai+1) + k3n+1(α(x, y)− P ).

�

Corollary 4.2. Let Ai, i = 1, 2, 3 be closed, convex subsets of a uniformly convex Banach space X and

T :
3∪

i=1

Ai →
3∪

i=1

Ai be a 3 – cyclic summing contraction, then for any x, y ∈ Ai there holds

lim
n→∞

∥T 3n+1x− T 3n+3y∥ = dist(Ai, Ai+1).

The following lemma can be proved in a similar fashion.

Lemma 4.4. Let Ai, i = 1, 2, 3 be closed, convex subsets of a uniformly convex Banach space X and

T :
3∪

i=1

Ai →
3∪

i=1

Ai be a 3 – cyclic summing contraction, then for any x ∈ Ai and for any k ∈ N there hold:

lim
n→∞

∥T 3n+1x− T 3n±3x∥ = dist(Ai, Ai+1), (4.4)

lim
n→∞

∥T 3nx− T 3n±3x∥ = 0, (4.5)

lim
n→∞

∥T 3n+k+1x− T 3n+k±3x∥ = dist(Ai+k, Ai+1+k), (4.6)

lim
n→∞

∥T 3n+kx− T 3n+k±3x∥ = 0, (4.7)

Lemma 4.5. Let Ai, i = 1, 2, 3 be closed, convex subsets of a uniformly convex Banach space X and

T :
3∪

i=1

Ai →
3∪

i=1

Ai be a 3 – cyclic summing contraction. If for some x ∈ Ai, i = 1, 2, 3, the iterative

sequence {T 3nx}∞n=1 has a cluster point z, then z is a best proximity point of T in Ai.
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Proof. Let lim
j→∞

T 3njx = z. Then by the continuity of the function f(u) = ∥u− v∥, for fixed v ∈ X it follows

that ∥z − Tz∥ = lim
j→∞

∥T 3njx− Tz∥. We will prove first that

lim
j→∞

∥T 3nj−1x− z∥ = lim
j→∞

∥T 3nj−1x− T 3njx∥. (4.8)

By the triangle inequality:

0 ≤
∣∣∥T 3nj−1x− z∥ − ∥T 3nj−1x− T 3njx∥

∣∣ ≤ ∥T 3njx− z∥ (4.9)

it follows that
lim
j→∞

(∥T 3nj−1x− z∥ − ∥T 3nj−1x− T 3njx∥) = 0 (4.10)

If we take k = 2 in (4.6) we get

lim
j→∞

∥T 3nj+3x− T 3nj−1x∥ = dist(Ai, Ai+2). (4.11)

For any x ∈ Ai the inclusions T 3njx ∈ Ai, T
3nj−1x ∈ Ai+2 hold. Then by the inequality

dist(Ai, Ai+2) ≤ ∥T 3nj−1x− T 3njx∥ ≤ ∥T 3nj−1x− T 3nj+3x∥+ ∥T 3nj+3x− T 3njx∥,

and the equalities (4.5) and (4.11) we get

lim
j→∞

∥T 3nj−1x− T 3njx∥ = dist(Ai, Ai+2). (4.12)

Now by (4.10) and (4.12) we found that (4.8) holds true.
We apply consecutively (4.8) to obtain the next chain of inequalities:

∥z − Tz∥+ ∥Tz − T 2z∥+ ∥T 2z − z∥

= lim
j→∞

(∥T 3njx− Tz∥+ ∥Tz − T 2z∥+ ∥T 2z − T 3njx∥)

≤ k lim
j→∞

(∥T 3nj−1x− z∥+ ∥z − Tz∥+ ∥Tz − T 3nj−1x∥) + (1− k)P

= k lim
j→∞

(∥T 3nj−1x− T 3njx∥+ ∥T 3njx− Tz∥+ ∥Tz − T 3nj−1x∥)

+(1− k)P

≤ k2 lim
j→∞

(∥T 3nj−2x− T 3nj−1x∥+ ∥T 3nj−1x− z∥+ ∥z − T 3nj−2x∥)

+(1 + k)(1− k)P

= k2 lim
j→∞

(∥T 3nj−2x− T 3nj−1x∥+ ∥T 3nj−1x− T 3njx∥

+∥T 3njx− T pnj−2x∥) + (1 + k)(1− k)P

≤ k3 lim
j→∞

(∥T 3nj−3x− T 3nj−2x∥+ ∥T 3nj−2x− T 3nj−1x∥

+∥T 3nj−1x− T pnj−3x∥) + (1 + k + k2)(1− k)P

= k3P + (1− k3)P = P.

(4.13)
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Since z ∈ Ai it follows that Tz ∈ Ai+1, T
2z ∈ Ai+2 and hence

P − dist(Ai, Ai+1) = dist(Ai+1, Ai+2) + dist(Ai+2, Ai) ≤ ∥Tz − T 2z∥+ ∥T 2z − z∥.

Consequently by (4.13) we obtain

∥z − Tz∥+ P − dist(Ai, Ai+1) ≤ ∥z − Tz∥+ ∥Tz − T 2z∥+ ∥T 2z − z∥ ≤ P

and therefore we get ∥z−Tz∥ ≤ dist(Ai, Ai+1). The opposite inequality ∥z−Tz∥ ≥ dist(Ai, Ai+1) is obvious
and hence we conclude that ∥z − Tz∥ = dist(Ai, Ai+1). Thus z is a best proximity point of T in Ai. �

Lemma 4.6. Let Ai, i = 1, 2, 3 be closed, convex subsets of a uniformly convex Banach space X and

T :
3∪

i=1

Ai →
3∪

i=1

Ai be a 3 – cyclic summing contraction. If for some x ∈ Ai, i = 1, 2, 3, the iterative

sequence {T 3nx}∞n=1 has a cluster point z, then z is a fixed point for T 3.

Proof. Let lim
j→∞

T 3njx = z. Then from the continuity of the function f(u) = ∥u − v∥, for fixed v ∈ X it

follows that ∥z− T 4z∥ = lim
j→∞

∥T 3njx− T 4z∥ and ∥z− T 5z∥ = lim
j→∞

∥T 3njx− T 5z∥. We will prove first that

lim
j→∞

∥T 3nj−4x− z∥ = lim
j→∞

∥T 3nj−4x− T 3njx∥. (4.14)

By the triangle inequality:

0 ≤
∣∣∥T 3nj−4x− z∥ − ∥T 3nj−4x− T 3njx∥

∣∣ ≤ ∥T 3njx− z∥ (4.15)

it follows that
lim
j→∞

(∥T 3nj−4x− z∥ − ∥T 3nj−4x− T 3njx∥) = 0. (4.16)

For any x ∈ Ai the inclusions T 3njx ∈ Ai, T
3nj−4x ∈ Ai+2 hold and we can write the inequalities

dist(Ai, Ai+2) ≤ ∥T 3nj−4x− T 3njx∥

≤ ∥T 3nj−4x− T 3nj−1x∥+ ∥T 3nj−1x− T 3nj+3x∥+ ∥T 3nj+3x− T 3njx∥.
(4.17)

From (4.7), (4.5) and (4.11) it follows that

lim
j→∞

∥T 3nj−4x− T 3njx∥ = dist(Ai, Ai+2). (4.18)

Now by (4.16) and (4.18) we found that (4.14) holds true. We will omit the proof that

lim
j→∞

∥T 3nj−5x− z∥ = lim
j→∞

∥T 3nj−5x− T 3njx∥, (4.19)

because it is similar to the above one.
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We apply consecutively (4.14), (4.8) and (4.19) to obtain the next chain of inequalities:

∥z − T 4z∥+ ∥T 4z − T 5z∥+ ∥T 5z − z∥

= lim
j→∞

(∥T 3njx− T 4z∥+ ∥T 4z − T 5z∥+ ∥T 5z − T 3njx∥)

≤ k lim
j→∞

(∥T 3nj−1x− T 3z∥+ ∥T 3z − T 4z∥+ ∥T 4z − T 3nj−1x∥)

+(1− k)P

≤ k4 lim
j→∞

(∥T 3nj−4x− z∥+ ∥z − Tz∥+ ∥Tz − T 3nj−4x∥)

+(1− k4)P

= k4 lim
j→∞

(∥T 3nj−4x− T 3njx∥+ ∥T 3njx− Tz∥+ ∥Tz − T 3nj−4x∥)

+(1− k4)P

≤ k5 lim
j→∞

(∥T 3nj−5x− T 3nj−1x∥+ ∥T 3nj−1x− z∥+ ∥z − T 3nj−5x∥)

+(1− k5)P

= k5 lim
j→∞

(∥T 3nj−5x− T 3nj−1x∥+ ∥T 3nj−1x− T 3njx∥

+∥T 3njx− T 3nj−5x∥) + (1− k4)P

≤ k6 lim
j→∞

(∥T 3nj−6x− T 3nj−2x∥+ ∥T 3nj−2x− T 3nj−1x∥

+∥T 3nj−1x− T 3nj−6x∥) + (1− k6)P

= k6P + (1− k6)P = P.

(4.20)

By z ∈ Ai it follows that T
4z ∈ Ai+1, T

5z ∈ Ai+2 and hence

P − dist(Ai, Ai+1) = dist(Ai+1, Ai+2) + dist(Ai+2, Ai) ≤ ∥T 4z − T 5z∥+ ∥T 5z − z∥.

Consequently by (4.20) we obtain

∥z − T 4z∥+ P − dist(Ai, Ai+1) ≤ ∥z − T 4z∥+ ∥T 4z − T 5z∥+ ∥T 5z − z∥ ≤ P.

and therefore we get ∥z − T 4z∥ ≤ dist(Ai, Ai+1). The opposite inequality ∥z − T 4z∥ ≥ dist(Ai, Ai+1) is
obvious and therefore it follows that ∥z − Tz∥ = dist(Ai, Ai+1). Now by Lemma 4.5 we get that

∥z − T 4z∥ = ∥z − Tz∥ = dist(Ai, Ai+1)

and from the uniform convexity of X it follows that T 4x = Tx.
By the inequality

∥T 4z − T 3z∥+ ∥T 3z − T 2z∥+ ∥T 2z − Tz∥

= ∥T 4z − T 3z∥+ ∥T 3z − T 2z∥+ ∥T 2z − T 4z∥

≤ k(∥T 3z − T 2z∥+ ∥T 2z − Tz∥+ ∥Tz − T 3z∥) + (1− k)P

= k(∥T 3z − T 2z∥+ ∥T 2z − Tz∥+ ∥T 4z − T 3z∥) + (1− k)P

8



we get
(1− k)∥T 4z − T 3z∥+ (1− k)(P − dist(Ai, Ai+1)) ≤ (1− k)P,

i.e. ∥T 4z − T 3z∥ ≤ dist(Ai, Ai+1). By the obvious inequality ∥T 4z − T 3z∥ ≥ dist(Ai, Ai+1) it follows that
∥T 4z − T 3z∥ = dist(Ai, Ai+1). Now from

∥z − T 4z∥ = ∥T 3z − T 4z∥ = dist(Ai, Ai+1)

and the uniform convexity of X it follows that T 3z = z. �

Lemma 4.7. If T is a 3–summing contraction then T is continuous.

Proof. Let fix x0 ∈ X and let {yn}∞n=1 and {zn}∞n=1 be two sequences, that are convergent to x0. Then for
any ε > 0 there is n0 ∈ N, such that for every n ≥ n0 there holds ∥x− yn∥+ ∥yn − zn∥+ ∥zn − yn∥ < ε. By
the inequalities

∥Tx0 − Tyn∥ ≤ ∥Tx0 − Tyn∥+ ∥Tyn − Tzn∥+ ∥Tzn − Tx0∥ ≤ k(∥x0 − yn∥+ ∥yn − zn∥+ ∥zn − x0∥) < ε

it follows that T is continuous at x0. �

5 Proof of Main Results
Proof of Theorem 3.1. First we will show that for any x ∈ Ai the sequence {T 3nx}∞n=1 is convergent, i.e. it
is enough to prove that the sequence {T 3nx}∞n=1 is a Cauchy sequence.

Claim 5.1. For any ε > 0 there exists n0, such that for any m > n ≥ n0 there holds the inequality

∥T 3mx− T 3n+1x∥+ ∥T 3n+1x− T 3n+2x∥+ ∥T 3n+2x− T 3mx∥ < P + ε (5.21)

Proof of Claim 5.1. Suppose the contrary, i.e. there is ε > 0 such that for every k ∈ N there are
mk > nk ≥ k so that

∥T 3mkx− T 3nk+1x∥+ ∥T 3nk+1x− T 3nk+2x∥+ ∥T 3nk+2x− T 3mkx∥ ≥ P + ε. (5.22)

Choose mk to be the smallest integer satisfying (5.22). Now from Lemma 4.5 we have that

lim
k→∞

∥T 3mkx− T 3mk−3x∥ = 0

and by
P + ε ≤ ∥T 3mkx− T 3nk+1x∥+ ∥T 3nk+1x− T 3nk+2x∥+ ∥T 3nk+2x− T 3mkx∥

≤ ∥T 3mkx− T 3mk−3x∥+ ∥T 3mk−3x− T 3nk+1x∥

+∥T 3nk+1x− T 3nk+2x∥+ ∥T 3nk+2x− T 3mkx∥
we get

P + ε ≤ lim
k→∞

(∥T 3mkx− T 3nk+1x∥+ ∥T 3nk+1x− T 3nk+2x∥+ ∥T 3nk+2x− T 3mkx∥) ≤ P + ε.

Thus
lim
k→∞

(∥T 3mkx− T 3nk+1x∥+ ∥T 3nk+1x− T 3nk+2x∥+ ∥T 3nk+2x− T 3mkx∥) = P + ε

9



Now from the triangular inequality we have

∥T 3mkx − T 3nk+1x∥+ ∥T 3nk+1x− T 3nk+2x∥+ ∥T 3nk+2x− T 3mkx∥

≤ ∥T 3mkx− T 3mk+3x∥+ ∥T 3mk+3x− T 3nk+4x∥

+∥T 3nk+4x− T 3nk+1x∥

+ ∥T 3nk+1x− T 3nk+4x∥+ ∥T 3nk+4x− T 3nk+5x∥

+∥T pnk+5x− T pnk+2x∥

+ ∥T 3nk+2x− T 3nk+5x∥+ ∥T 3nk+5x− T 3mk+3x∥

+∥T 3mk+3x− T 3mkx∥

(5.23)

and by Lemma 4.4, taking a limit in (5.23) and applying condition (3.1) three times we get we get

lim
k→∞

(∥T 3mkx − T 3nk+1x∥+ ∥T 3nk+1x− T 3nk+2x∥+ ∥T 3nk+2x− T 3mkx∥)

≤ limk→∞(∥T 3mk+3x− T 3nk+4x∥+ ∥T 3nk+4x− T 3nk+5x∥

+∥T 3nk+5x− T 3mk+3x∥)

≤ k3 limk→∞(∥T 3mkx− T 3nk+1x∥+ ∥T 3nk+1x− T 3nk+2x∥

+∥T 3nk+2x− T 3mkx∥) + (1− k3)P

i.e.
P + ε ≤ k3(P + ε) + (1− k3)P,

which is a contradiction and Claim 5.1 is proved.
Now by Claim 5.1 we have that for any ε > 0 there is n0, such that

∥T 3mx− T 3n+1x∥ < dist(Ai, Ai+1) + ε

for every m > n ≥ n0 and by Corollary 4.1 and Lemma 2.1 we have that the sequence {T 3nx}∞n=1 is a
Cauchy sequence. Thus limn→∞ T 3nx = z and z is a best proximity point of T in Ai. �

For the next proof we will follow the the idea in [8], how to use a variational principle to prove a fixed
point theorem.

Proof of Theorem 3.2. Let us define the function F : X → R by

F (x) = ∥Tx− x∥+ ∥T 2x− Tx∥+ ∥T 2x− x∥.

Since by Lemma 4.7 the function T is continuous and so is F . It is easy to see that F is bounded form
below and not identically +∞. Choose ε0 > 0, such that k + ε < 1. There exists x0 ∈ X, such that
F (x0) < ε0 + inf{F (x) : x ∈ X}, because F is continuous and bounded from below. Therefore we can apply
Theorem 2.1. By Theorem 2.1 there is v ∈ X, such that ∥x0 − v∥ ≤ 1 and for every w ∈ X there holds the
inequality

F (v) ≤ F (w) + ε∥v − w∥.

Suppose that T does not have a fixed point then F (v) > 0 for every v ∈ X. Put w = Tv. Then we get the
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inequality F (v) ≤ F (Tv) + ε∥v − Tv∥, i.e.

F (v) = ∥Tv − v∥+ ∥T 2v − Tv∥+ ∥T 2v − v∥

≤ ∥T 2v − Tv∥+ ∥T 3v − T 2v∥+ ∥T 3v − Tv∥+ ε∥v − Tv∥

≤ k(∥Tv − v∥+ ∥T 2v − Tv∥+ ∥T 2v − v∥) + ε∥v − Tv∥

= (k + ε)∥Tv − v∥+ k(∥T 2v − Tv∥+ ∥T 2v − v∥).

By the last chain of inequalities we get

(1− k − ε)∥Tv − v∥+ (1− k)(∥T 2v − Tv∥+ ∥T 2v − v∥) ≤ 0,

which is a contradiction and therefore Tv = v.
Let us suppose that T has two fixed points x ̸= y. Let z ∈ X, be fixed and different from x, y. There is

s0 ∈ N, such that ks0 <
∥x− y∥

∥x− y∥+ ∥y − z∥+ ∥z − x∥
. Then for any s ≥ s0 by 3.2 we get

∥x− y∥ = ∥T sx− T sy∥ ≤ ∥T sx− T sy∥+ ∥T sy − T sz∥+ ∥T sz − T sx∥

≤ k(∥T s−1x− T s−1y∥+ ∥T s−1y − T s−1z∥+ ∥T s−1z − T s−1x∥)

≤ ks(∥x− y∥+ ∥y − z∥+ ∥z − x∥),

which is a contradiction and thus T has a unique fixed point. �
We would like to illustrate Theorem 3.1 with two example:

Example 5.1. Consider the Euclidian space (R3
2, ∥ · ∥2), endowed with the Euclidian norm ∥(x, y, z)∥2 =√

x2 + y2 + z2. Let X ⊂ R3
2 be X = {(x, y, z) : x ∈ [4, 5], y, z = 0}, Y ⊂ R3

2 be Y = {(x, y, z) : y ∈
[1, 2], x, z = 0}, Z ⊂ R3

2 be Z = {(x, y, z) : z ∈ [1, 2], x, y = 0}. Define the 3–cyclic map T : X → Y ,
T : Y → Z, T : Z → X by

T (x, 0, 0) =

(
0,

x

8
+

1

2
, 0

)
, x ∈ [4, 5]

T (0, y, 0) =

(
0, 0,

y

8
+

7

8

)
, y ∈ [1, 2]

T (0, 0, z) =

(
z

8
+

31

8
, 0, 0

)
, z ∈ [1, 2].

It is easy to check that

max


√(

x

8
+

1

2

)2

+

(
y

8
+

7

8

)2

− 1

2

√
(x2 + y2) : x ∈ [4, 5], y ∈ [1, 2]

 =
√
2−

√
17

2
,

max


√(

x

8
+

1

2

)2

+

(
z

8
+

31

8

)2

− 1

2

√
(x2 + z2) : x ∈ [4, 5], z ∈ [1, 2]

 =

√
17

2
,

max


√(

y

8
+

7

8

)2

+

(
z

8
+

31

8

)2

− 1

2

√
(y2 + z2) : x ∈ [1, 2], z ∈ [1, 2]

 =
√
17−

√
2

2
.
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Thus we get that for every x ∈ X, y ∈ Y , z ∈ Z there holds the inequality:

∥Tx− Ty∥2 + ∥Ty − Tz∥2 + ∥Tz − Tx∥2 ≤ 1

2
(∥x− y∥2 + ∥y − z∥2 + ∥z − x∥2) +

1

2
P,

because P = dist(X,Y ) + dist(Y, Z) + dist(Z,X) = 2
√
17 +

√
2. The distances between the three sets

are different. The map T is not a cyclical contraction. Indeed, there exists ε0, δ0 > 0, such that for any
z, y ∈ [1, 1 + δ0] we have

∥Tz − Ty∥2 ≥
√
17− ε0 >

√
2 + ε0 ≥ 1

2
∥z − y∥2 +

1

2
dist(Z, Y ).

Example 5.2. Consider the Banach space (R3
2, ||| · |||), where ||| · ||| = ∥ · ∥2 + ∥ · ∥1 and ∥(x, y, z)∥1 = |x|+

|y|+ |z|. Let X ⊂ R3
2 be X = {(x, y, z) : x ∈ [4, 5], y, z = 0}, Y ⊂ R3

2 be Y = {(x, y, z) : y ∈ [1, 2], x, z = 0},
Z ⊂ R3

2 be Z = {(x, y, z) : z ∈ [1, 2], x, y = 0}. Define the 3–cyclic map T : X → Y , T : Y → Z, T : Z → X
by

T (x, 0, 0) =

(
0,

x

8
+

1

2
, 0

)
, x ∈ [4, 5]

T (0, y, 0) =

(
0, 0,

y

8
+

7

8

)
, y ∈ [1, 2]

T (0, 0, z) =

(
z

8
+

31

8
, 0, 0

)
, z ∈ [1, 2].

It is easy to check for every x ∈ X, y ∈ Y , z ∈ Z that

max

{
|||Tx− Ty||| − 1

2
|||x− y||| : x ∈ [4, 5], y ∈ [1, 2]

}
= −1

2
+
√
2−

√
17

2
,

max

{
|||Tx− Tz||| − 1

2
|||x− z||| : x ∈ [4, 5], z ∈ [1, 2]

}
=

5

2
+

√
17

2
,

max

{
|||Ty − Tz||| − 1

2
|||y − z||| : y ∈ [1, 2], z ∈ [1, 2]

}
= 4 +

√
17−

√
2

2

and P = 2
√
17 +

√
2 + 12. Therefore there holds the inequality

|||Tx− Ty|||+ |||Ty − Tz|||+ |||Tz − Tx||| ≤ 1

2
(|||x− y|||+ |||y − z|||+ |||z − x|||) + 1

2
P.

It remains to show that the space (R3, ||| · |||) is uniformly convex. Let us consider its dual space
(R3, ||| · |||∗). The norm ||| · ||| is strictly convex, then ||| · |||∗ is Geteaux differentiable [9, 10]. The space
(R3, ||| · |||∗) is finite dimensional and therefore ||| · |||∗ is uniformly Frechet differentiable and consequently
||| · ||| is uniformly convex [9, 10].

The distances between the three sets are different. The map T is not a cyclical contraction. Indeed, there
exist ε0, δ0 > 0, such that for any z, y ∈ [1, 1 + δ0] we have

|||Tz − Ty||| ≥
√
17 + 5− ε0 >

√
2 + 2 + ε0 ≥ 1

2
∥z − y∥+ 1

2
dist(Z, Y ).
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