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Abstract 

We present a new approach to the teaching of Synthetic Geometry in schools and universities with the 

help of DGS. The introduction of new elements into DGS helps to optimize the teaching process. These 

new elements are infinite points in the extended Euclidean plane and the “Swap finite & infinite points” 

function. We give examples of the usage of these new elements in Projectivity, Homology, Conic Sec-

tions, Plane Sections of Polyhedra, and in the application of Pappus’ Theorem and Desargues’ Theo-

rem. These new features increase the benefits of DGS in teaching and learning Geometry. We optimize 

the education process by saving time involved in drawing, generalizing large groups of problems, stimu-

lating and helping investigations, and forming a creative style of thinking. 

 

1. Introduction 

Dynamic Geometry Software (DGS) has been widely used for teaching and learning Euclidean ge-

ometry. Cinderella has made a significant step in the teaching of non-Euclidean Geometry (spheri-

cal and hyperbolic). Recent results in different fields of pure mathematical geometry of Banach 

spaces [2, 3], partial differential equations [9], topology [19] and number theory [22] were proven 

with the help of the fundamental theorems of Projective Geometry. Projective Geometry is used in 

applied science to prove results in mechanics [20], in composition analysis of building structure 

[21] and in coding theory and cryptography [4, 14]. All these show the need for a deeper study of 

Projective Geometry at university and at school. We hope that our specialized DGS Sam with its 

new “Swap finite & infinite points” function  will optimize teaching and learning of geometry, and 

that it will enrich teachers’ capabilities of replacing the old principle “learn and repeat” with a new 

“learn and create” principle.  

An important goal for the mathematical teacher is to present challenging problems to the 

student so that the student can show his ideas to deal with tasks. The use of technological tools 

seems to offer a good solution to this problem. Significant attempts were made over the last twenty 

years to implement computer algebra systems in the teaching process of mathematics in schools 
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and in universities. There are several types of computer algebra system that are currently used in 

classrooms. The first type of system is general, which includes as many tools as possible for solv-

ing mathematical problems. We would like to mention Mathematica, Maple, MatLab. A second 

type are Dynamic Geometry Systems. This type of system has been developed primarily for the 

needs of algebra and geometry classes. We would like to mention Cinderella, GeoGebra, GeoNext, 

Sketchpad. These are very powerful systems for modeling problems and suggesting solutions. Re-

cent features of GeoGebra also make it possible to present geometric and numeric visualizations of 

formulas in algebra and calculus. Another type of system is the family of specialized systems that 

have been developed to help the teaching process of specific mathematical courses. For example, 

the Interactive Platform for Learning Calculus (PIAC) [1] is a tool designed for the needs of a spe-

cific subject. 

 

2. Learning Environment 

The Dynamic Geometric Software Sam is specialized educational software that was created for the 

needs of a course in Synthetic Geometry at Plovdiv University “Paisii Hilendarski”. It is written in 

C # using the .NET Framework 4 environment. That is why the user has to install .NET Frame-

work 4 before running the Sam program. The first version was developed for the interactive 

training of students in “Mutual intersection of polyhedra” [10, 11]. With the help of this software 

and our classification of the pierce points of surrounding edges we were able turn training into a 

creative process [11]. Observing the increased interest of students in this traditionally difficult area, 

we extended the software so that it could be applied to a more comprehensive range of areas in 

Synthetic Geometry. In particular, we implemented two new features; infinite points and the “Swap 

finite & infinite points” function. The software has helped us to overcome the usual difficulties as-

sociated with learning Synthetic Geometry. 

2.1. Infinite Elements and the “Swap finite & infinite points” Function. 
2.1.1. Infinite Elements 

The abstract axiomatic construction of projective spaces can be realized in different models. The 

widespread model is the Euclidean one, where most of the sketches are drawn. This model is creat-

ed by extending Euclidean space with infinite elements. We would like to mention just a few facts 

about extended Euclidean space. 

Following [6, p.8] we accept that it is convenient to use the name range for the set of all 

points on a line, and pencil for the set of all lines that lie in a plane and pass through a point. 

The set of all lines, which are parallel to a fixed line g and the line g are called an infinite 

point, which is denoted by G∞ or Ug. Any Euclidean line is incident with exactly one infinite point. 

So with every pencil of parallel lines an infinite point is associated, which signals their direction. 

The set of all planes, which are parallel to a fixed plane α and the plane α are called an infi-

nite line. Any Euclidean plane is incident with exactly one infinite line and is denoted by uα. All in-

finite points, which are incident with the plane α and only they, are incident with the infinite line uα. 

As all the investigations in this work are in the Euclidean model of the projective plane we will de-

note its infinite line with ω. For the precise definition of the projective space one can see [4, 5, 6]. 

It is well known that the infinite elements (points and line) play a crucial role in the Euclid-

ean model of the projective space and all the sketches of the problems are made in the extended 

Euclidean plane. This is what inspired us to introduce new objects for DGS - an arbitrary infinite 

point and the infinite point of a given line. They are included as instruments in DGS Sam. 

 

2.1.2.  DGS Sam  
Each drawn object appears in the list (tree diagram) on the left of the drawing with a brief descrip-

tion, including the label (or <no name>, if there is not any) and a list of its parents. 
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Free objects have no parents, that is, they are not dependent on any object. Their labels are 

not preceded by any sign in the tree diagram. 

Dependent objects are defined on the basis of other objects (their parents). Their labels are 

preceded by “+” sign in the tree diagram. By clicking on the sign “+” the sub-list with their parents 

appears.  

There are objects with limited motion (an arbitrary point on a given line, an arbitrary line 

through a given point). 

Example: The points R and Q are free (Figure 1). The line g=RQ is dependent and its parents are 

the points R and Q. The line x has only one parent, the point R, and that is why one can rotate x 

around R using the right button of the mouse. 

 

 
    Figure 1 “Free objects” 

 

The user can change the direction of the free infinite point by rotation. Rotation is effected 

by clicking the right button of the mouse and rotating the vector to the desired position.  

It is well known how to draw a line through two points: choose the “line through two 

points” instrument and select both of the points. The order of point selection is not important. It 

does not matter which of them is first. The procedure is the same whether the two points are finite 

or one of them is infinite.  

Let us note that in the present version of DGS Sam we cannot construct a line through two 

infinite points. 

One of the advantages of DGS Sam is the possibility of presenting the solution “step by 

step” or in stages (chosen by the user) with accompanying comments, prepared by the user. This 

facility may be accessed through the presentation panel at the bottom left part of the screen (an en-

larged screenshot is shown on Figure 2.2) 

To prepare the presentation of a dynamic sketch, the teacher marks a phase by selecting a 

stage from the list (tree diagram) and by checking the “The chosen object is a phase” button. The 

teacher also decides how much detail should be presented to the audience. The teacher may also 

write comments for every phase via the “View and edit phases” window which is accessed with the 

“Phases” button. The presentation is controlled by play buttons. These buttons allow the teacher to 

move one step forward or backward through the construction steps. This tool is very useful because 

it helps the teacher focus the students’ attention on particular constructions. 
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        Figure 2.1 “DGS Sam”                                                Figure 2.2 “Presentation panel” 

2.1.3. Swap Finite and Infinite Points 

The next new feature of the Dynamic Geometry Systems that we have introduced is the “Swap fi-

nite & infinite points” function, which we will refer to in the text by SFIP.  This function is ac-

cessed via the “Special” menu item. A window with two lists of all the free finite points and all the 

free infinite points appears (Figure 3.1). By double clicking or by using the buttons “>>”and “<<” 

the user can select which two points (one finite and one infinite) are to be swapped. The swapping 

is effected by clicking on the button “OK”.  

For example, Figure 3.1 presents the free finite points U, A, B, the free infinite point U∞  

and the lines g=AB, a=AU∞ , b=BU∞ , c=CU∞ , where C is an arbitrary point on the line g. After 

applying SFIP function to the points U∞ and U from Figure 3.1, all objects dependent on U∞ will be 

redefined so as to be dependent on U instead. Thus, we obtain Figure 3.2 where one can see how 

the lines g=AB, a=AU∞ , b=BU∞ , c=CU∞  are converted to lines a=AU , b=BU , c=CU, respec-

tively. If SFIP is applied a second time to the same pair of points, then the original figure is ob-

tained. 

 

         
 Figure 3.1                                                                                      Figure 3.2 

 

This special function gives the opportunity to generate automatically new problems with 

their solutions. Thus the new function optimizes a lot of the drawing work. On the other hand, by 

discovering invariant relations between the investigated objects and generalizing of some problems 

and their solutions, the SFIP function provokes and facilitates a research style of thinking.  
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Definition 1: The problems, which are generated from a problem A with the help of the SFIP func-

tion, will be called satellites of problem A and be denoted in the paper by A*, A**, etc. 

 

Note that a pencil of parallel lines can be constructed by procedures which are standard for 

all DGS: the user has chosen to construct the lines with the “a line parallel to another line” instru-

ment . The benefit of the first construction is that the user can use the function “Swap finite & infi-

nite points”.  

Remark 1: For the user’s convenience we will note that sometimes after using the SFIP function 

this may happen:  

1.1 The lines of a pencil overlap. Then it is necessary to separate these lines by hand. This is 

achieved by clicking on the lines and activating translation (by the left button of the mouse if 

the center of the pencil is an infinite point) or rotation (by the right button of the mouse if the 

center of the pencil is a finite point); 

1.2 Some of the points may appear close together. Then it is necessary to separate these points by 

hand. This is achieved by:  a) clicking on any free point of this set using the list (tree diagram) 

on the left side of the screen;  b) dragging the selected point.  

Remark 2: After applying the SFIP function it is possible that some objects will not be visible on 

the screen. This depends on the location of the free objects. In this case it is enough to select the 

missing object in the “tree diagram” and to choose from the right side of the screen the “Center 

shape on the screen” function (Figure 2.1). It is convenient to mark a free object, because the user 

can move it so that the whole sketch fits on the screen. 

 

2.2. Connected Figures 

 

Definition 2: We will call the figures that are obtained by applying the“Swap finite & infinite 

points” function connected figures. 

 

By Definition 2 it follows that the pencils U∞  and U from the Figure 3.1 and Figure 3.2 are 

connected figures. 

Consider the parallelogram from Figure 4.1. The free points in its construction are: A, U∞,  

V ∞ . The points B and D are arbitrary points from the lines a=AU∞  and  b=AV∞  , respectively. C is 

the intersection point of the lines d=DU∞  and  c=BV∞  . At the end the sides are constructed as 

segments. The sequence of the constructions can be traced through the presentation panel.  

 

Definition 3: The parallelogram ABCD (Figure4.1) will be called a universal parallelogram. 

 

If U, V are arbitrary free finite points then SFIP can transform a universal parallelogram into 

a trapezium (by swapping the points V∞  and  V; see Figure 4.2) or into a quadrilateral (by swapping 

the points U∞  and  U ; see Figure 4.3). Thus, the parallelogram, the trapezium and the quadrilat-

eral are connected figures. Each of these figures can be transformed into the other ones by SFIP. 

 

           
    Figure 4.1                                              Figure 4.2                            Figure 4.3 
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The constructions that were made for one of the connected figures are carried over to the 

new ones (Figures 5.1, 5.2, 5.3). This fact is important as it has the following benefits:  

1) it saves a lot of drawing work;  

2) it helps to identify invariant relations;  

3) it generalizes some problems and their solutions. 

 
                 Figure 5.1                            Figure 5.2                              Figure. 5.3 

 

Let ABCD A1B1C1D1  be an arbitrary parallelepiped. Its edges pass through three different 

infinite points U∞, V∞, W∞. It is naturally to expect that the consecutive swapping of the points U∞, 

V∞, W∞ with the free finite points U, V, W  will transform the parallelepiped into a prism, a truncat-

ed pyramid, a pyramid with a base, a parallelogram, trapezium, quadrilateral or triangle.  

How can one construct a parallelepiped so that to apply the SFIP function? 

Let the base ABCD be a universal parallelogram with infinite points on its sides U∞, V∞  

(Figure 6.1). The surrounding edges lie on the lines A W∞ , B W∞ , C W∞ , D W∞ . Thus the free 

points are: A, U∞, V∞ , W∞ . The vertex A1  is an arbitrary point on the line  A W∞ .  

There are two possibilities for the construction of the second base, each with its applica-

tions: 

First construction: The “a line through a point and parallel to a line” instrument is used for 

the construction of the second base A1B1C1D1, i.e. :  1) The lines a9  passes through  the point  A1 

and it is parallel to the line a1 = AB ; 2) The lines a10  passes through  the point  A1 and it is parallel 

to the line a2 = AD ; 3) The points  B1= a9   ∩ BW∞  , D1= a10   ∩ DW∞  ; 4)  The lines a11  passes 

through  the point  B1 and it is parallel to the line a5 = BC ; 5) The lines a12  passes through  the 

point  D1 and it is parallel to the line a4 = CD ; 6)  The point C1= a11   ∩ a12  (Figure 6.1 ). 

At the end the edges are constructed again as segments. 

The sequence of the constructions can be traced through the presentation panel. 

The rotation of the infinite points U∞, V∞, W∞, which is activated by the right button of the 

mouse, can be used to change the angles between the edges. Moving the points B, D,  A1 changes 

the length of the edges. 

Definition 4: The parallelepiped ABCDA1B1C1D1  (Figure 6.1) will be called a universal parallel-

epiped. 
Let U, V, W  be arbitrary free finite points. Now we can apply the SFIP function. 

Applying the SFIP function the parallelepiped transforms instantly into a prism, a truncated 

pyramid, or a pyramid; with a parallelogram, trapezium, quadrilateral or triangular base, with a 

special positioning of a chosen vertex (Figures 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6). 

Several examples are shown in Figures 6.1 to 6.6. Thus all these parallelepipeds, prisms, 

truncated pyramids, pyramids are connected figures. 
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                   Figure 6.1                                                            Figure 6.2                              

                                               

                      
                 Figure 6.3                                                          Figure 6.4    

             
               Figure 6.5                                                           Figure. 6.6 

 

This way of showing school students different types of prisms and pyramids holds their at-

tention and creates interest in the topic.  

Second construction: Now let the second base A1B1C1D1  of the parallelepiped  ABCD 

A1B1C1D1  be constructed by using the instrument “line through two points”, i.e. :  1) The lines 

A1U∞ and A1V∞  are drawn;  2) The points  B1= A1U∞ ∩ BW∞  and D1= A1V∞ ∩ DW∞  are found;  

3) The point C1= B1V∞ ∩ D1U∞  is determinate  (Figure 6.7 ). 

 

              
           Figure  6.7                                                    Figure 6.8 
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Let U, V, W be arbitrary finite points. Let us swap by the SFIP function U∞ with U, and V∞ 

with V. As a result we obtain the Figure 6.8 . It is not difficult to see that these connected figures 

present the parallelepiped ABCD A1B1C1D1  in an arbitrary axonometry (Figure 6.7 ) and in perspec-

tive (Figure 6.8 ).  Another pair of connected figures are shown in Figures 6.9, and 6.10.  

Moving the free points U∞  and V∞  in Figures 6.7, 6.9  changes the parameters of the axo-

nometry. Moving the free points U and V in Figures 6.8, 6.10  changes the observer’s position.  

This application could be very useful for lecturers and students, because it presents the tran-

sition from axonometry in perspective and back in the shortest time, and at the same time it ex-

plains the relationship between them. 

 
                                  Figure 6.9 

 

 
                                 Figure 6.10 

 

The first construction also refers to any auxiliary sketches that are needed for the solutions of 

the problems in 3-dimensional geometry for cylinders, truncated conics, conics, for inscribed and 

circumscribed polyhedrons. The bases of the circle conics and cylinders in the sketches are ellipses 

that are created with a couple of conjugated semi-diameters. They are drawn with the “ellipse with 

center and conjugated semi-diameters” instrument by pointing at the center and the end points of 

the conjugated semi-diameters. The movement of any of these three points changes the ellipse. 

Some examples can be seen in Figures 7.1, 7.2 and 7.3 showing that the “Swap finite & infinite 

points” function can be applied to points for which tangential lines are constructed towards ellipses 

or circles. Here the length of AA0 is determined from distance by the segment XY, because A0  is  the 

intersecting point of the line A U∞ and the circle k (A, r=XY). 
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Figure 7.1                                       Figure 7.2                                          Figure 7.3 

 

3. Main Benefits of the Use of the Infinite Elements and the SFIP Function 

The main benefits of using Dynamic Geometry Software Sam are: 

a) Its first benefit is the one common to all Dynamic Geometry Systems; the sketch can be present-

ed in the most suitable way on-screen or a sheet of paper without the need of being drawn again. 

Dynamic transformations are possible throughout the presentation, showing students, which proper-

ties are preserved and which are not; 

b) Its interface is free of special drawing macros, and thus stimulates student to learn and to re-

member basic constructions in geometry; 

c) Its new “infinite points” elements allow students to reach beyond the level of abstraction easily 

and naturally; 

d) Its special SFIP function, that optimizes drawing, saves a lot of time in the classroom and at 

home. The user can construct one case of the problem and then look at the connected figures and 

follow their construction step by step; 

e) Its special SFIP function helps to immediately show common properties between the connected 

figures and any differences that appear; 

f) Its special SFIP function helps create new problems, stimulate the investigative curiosity of stu-

dents, and generalize these problems; 

h) DGS Sam with its new features allows a joint discussion of Euclidean and Projective Geome-

tries. Thus it connects studying geometry at university and at secondary school. 

 

The evidence for these benefits will be presented by examples in the next part of the paper.  

 

4. Applications of the Infinite Elements and the SFIP Function in the Classes in 

Geometry 

The purpose of this section is to demonstrate, through selected examples from our course on 

Synthetic Geometry for universities and secondary schools, benefits of the introduction of new el-

ements into DGS. The fact that affinity is collineation which preserves the infinite line is essentially 

used in the sequel. 

We used our software in our classes on Synthetic Geometry at Plovdiv University “Paisii 

Hilendarski” and its affiliated college at Smolyan for students of Mathematics and Informatics Ped-

agogy, Physics and Mathematics Pedagogy and Mathematics. Over years we have observed that us-

ing this software students have increased their interest in the area.  

Our experience has confirmed that students with excellent mathematics are confident in us-

ing computers, and have a positive attitude to learning mathematics with computers. It is interesting 

to point out that it is possible to create a positive attitude to learning mathematics in students with 
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negative attitudes toward mathematics and a low mathematical achievement through learning 

mathematics with computers.  

We have made several demonstrations in secondary schools. 

 

4.1. Applications in the University Classes 
We would like to share our experience with the application of the “Swap finite & infinite points” 

function in classes on Synthetic Geometry. 

 

4.1.1. Applications in Projectivity 

The Fundamental Theorem of Projective Geometry: If A, B, C are three distinct objects of the 

one-dimensional figure f and A, B, C are three distinct objects of the one-dimensional figure f, 

then there exists exactly one projectivity φ: f →f such that φ (ABC) =ABC. 

The figures f and f can be a range of points or a pencil of lines. They can be different or co-

incident. The students have to know how to find the objects X = φ(X) and Y= φ
-1

(Y), where  

Xf and Y f. 

Pappus’ Theorem:  Let be given two lines g and g . If  A, B, C  g and A , B , C   g , then the 

points P=BC   CB , Q=AC   CA , R=AB   BA  are collinear. 

 

 
                     Figure 8 “Pappus’ Theorem” 

 

Problem 1. Let φ be a projectivity of the range g onto the rang gso that φ (A B C) =ABC, 

where A, B, C are points on the range g and  A, B, C are points on the range g.  

i) Find the points X = φ(X) and Y= φ
-1

(Y), where Xg  and  Y g are arbitrary points.  

ii) Describe the curves of the second class, generated by the projectivity φ: g → g, when X is 

variable. 

Solution: It is well known that Pappus’ Theorem and its dual theorem present the most symmetric 

constructions for finding the points X and Y. That is why we will present a solution, where the con-

struction will be based on Pappus’ Theorem. The main element in this construction is the axis of 

projectivity u= (AB ∩AB) (BC ∩BC) = 1-2 (Figure 9.1). Since φ= π2 o π1 , where u
B

g
^

'
:1   and   

'
^

:2 g
B

u  are  perspectivities,  then φ(X)=π2◦π1 (X)=π2 (3)=X´ or  X =3B ∩ g, where 3=XB ∩ u; 

φ
-1

(Y´)=(π1 ) 
-1 

◦ (π2)
-1

 (Y´)=(π1 ) 
-1

(4 )=Y or  Y= 4B ∩g, where 4=BY ∩ u. We have found also the 

points U = φ (U∞) =6A ∩ g, where 6= U∞ A ∩ u and  V = φ
-1

(V∞)=7C ∩ g, where 7= V∞  C ∩ u.  

The constructions can be traced by the presentation of  Figure 9.1. Moving the point X along the 
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line g (the point Y´ along the line g´) the students observe finding the image X´ (the preimage Y) for 

an arbitrary point. □ 

 

             
     Figure 9.1                                                                               Figure 9.2 

 

By swapping of the finite point B with the infinite point U∞ on the line g and the finite point 

B with the infinite point V∞ on the line g  we obtain the following satellites of Problem 1 with 

their solutions: 

Problem 1* Let φ be a projectivity of the range g onto the range g, so that φ is defined in one of 

the following ways: 

a) φ (A U∞  C ) = A B C;  

b) φ (A B C) = A V∞ C; 

c) φ (A U∞ C) = A V∞ C (Figure 9.2). 

Find the points X=φ(X) and Y= φ
-1

(Y), where Xg and Yg are arbitrary points.  

Describe the curves of the second class, generated by the projectivity φ: g →g, when X is variable. 

The teacher (using a projector) and the students (everyone uses a computer) solve Problem 1 

together. At the end the students present the solution applying dynamics to the free points X or Y 
and comment on the strategy of the choice of free objects. They produce satellite tasks with the 

SFIP function and they just follow the presentation and explain the constructions that were done. 

They move some of the free objects g, g’ A, B, C, A’, B’, C’ and obtain a different view of the 

sketches, but the construction is the same.  

Before introducing the SFIP function it was necessary to draw each of the satellite tasks, 

starting from a blank file.  

During the debates on the talk “Interactive training on Synthetic Geometry in Dynamic En-

vironment” [24], where we presented Problem 2, Prof. P. Rusev suggested a visualization of the 

curves of the second class, generated by the projectivity φ: g →g, to be made. We accepted and 

developed this idea because it is believed that the visualization of non-degenerate and degenerate 

curves of the second class is missing from the classroom. Their visualization would help in the un-

derstanding of the concept a curve of the second class in terms of Steiner’s definition and would in-

crease the interest towards it. 

In this way the second part is related to the application of the projectivities in the theory of 

conic sections. In order to describe the curves of the second class it is enough to sketch the connect-

ing lines of the pairs of corresponding points for the projectivity φ. According to Steiner’s defini-

tion these lines exactly describe the second class curve K (g, g ; φ) when the point Х describes the 

range g (Figure 10.1). The projectivity φ is a similarity in the case c) and the second class curve K 

is a set of tangents to a parabola (Figure 10.2). Naturally, the next interesting thing to teach students 

is the process for generating degenerated curves of the second class. We illustrate cases where the 

projectivity φ: g→g  from the Figures 10.1 and 10.2 is transformed into a perspectivity in Figures 
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10.3 and 10.4, respectively. It is enough to choose A=A = g∩g =O. The “Swap finite & infinite 

points” function of DGS Sam offers the possibility for fast and complete investigation and visuali-

zation of the curves of the second class. 

 

           
         Figure 10.1                                                          Figure 10.2 

 

           
        Figure 10.3                                                          Figure 10.4 

 

It is possible to hide parts of the construction with an appropriate choice of colors of lines 

and background so that only a curve of the second class remains on screen. We suggest some of 

these solutions (Figures 10.1, 10.2, 10.3 and 10.4). 

The second part of Problem 1 considers studying Conic sections.   

 

Problem 2. Let φ be a projectivity of the pencil O onto the pencil O, such that φ (a b c) = (a bc), 

where the lines a, b, c are from pencil O and the lines a, b, c are from pencil O.  

i) Find the lines x = φ(x) and y= φ
-1

(y), where x O and y O are arbitrary lines. 

ii)  Describe the curves of the second power, generated by the projectivity φ: O →O, when x is 

variable. 

       The teacher conducts a discussion of a solution to Problem 2 and he writes on the blackboard 

the theoretical background to the constructions.  

Solution: The pair of pencils is intersected with two different ranges g and g (Figure 11.1). Then 

the projectivity φ: O → O  can be presented in the following way: φ=(π2)
-1

◦ψ◦π1  , where 

 gO
^

:1  and  '
^

':2 gO  are perspectivities, ψ: g → g  is  the projectivity, generated by φ, such 

that  ψ (A B C) = A B C . Let u=1-2 be the axis of ψ. Hence ψ= π4o π3 , where u
A

g
^

'
:3   and 

'
^

:4 g
A

u  are perspectivities. Then φ(x)=(π2)
-1

◦ψ◦π1 (x)=(π2)
-1

◦π4o π3 ◦π1 (x)=(π2)
-1

◦π4o π3 (X) 

=(π2)
-1

◦π4(3)=(π2)
-1

(X´)=x´  and  φ
-1

(y´)=y.                                                                                   □ 

Since Problem 1 is a component of this solution, students work alone, but the teacher pre-

sents on-screen the main fragments of the solution, which he has prepared in advance. 
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Rotating the line x around O or the line y´ around O´, the students observe finding the image x´ or 

the preimage y, respectively of an arbitrary line. □ 

Moving some of the free objects O, O´, a, b, c, a´, b´, c´, g, g´ students change the viewpoint 

of the sketch, but the constructions are preserved. This moment is a test of a correct solution. 

Taking into account the fact that the centers O, O´ can be finite or infinite, different or coin-

cident the teacher explains to students that they can produce solutions to the next five cases from 

Figure 11.1. alone. One case is shown in Figure 11.2. Here, the points O and O∞ are swapped, the 

points O and O∞ are swapped, and the point O∞ is rotated until it coincides with the point O∞.  

 

          
    Figure 11.1                                                                         Figure 11.2 

 

The remaining cases (Figures 11.3-11.6) may be accessed through http://fmi-

plovdiv.org/GetResource?id=1186). Thus the preparation and presentation of a large group of prob-

lems could be made in a very short time. 

Please, if it is necessary after swapping, refer to Remark 1.1. 

We can describe, similarly to Problem 1, the curves of the second power that are generated 

by the projectivity φ: O→O for all of the six cases. It is enough to sketch the intersection points of 

the couples of corresponding lines for the projectivity φ. 

Of course, students might prefer to use Pappus’ Dual Theorem. Then the lines  

O∞ U= φ
-1 

(ω) and O∞ U= φ
 
(ω), where U is the center of projectivity φ, will be exactly the asymp-

totes of the hyperbola k (O∞ , O∞ ; φ). 

Another groups of problems relating to this theme are connected with cases when f is a 

range of points and f  is a pencil of lines or when f=f. In the last case the projectivity φ can hold 

invariant elements or φ can be an involution. The teacher can present all varieties of the problems 

on this theme in a short time with the help of the “Swap finite & infinite points” function or groups 

of students can prepare them. 

The time, which has been saved by the special SFIP function can be used, to show applica-

tions of Pappus’ Theorem to Euclidean geometry. Some of these applications are Problems 9, 11, 

12 and their satellites. These applications are useful for students when they become teachers at 

school. The teacher can offer problems for home-work to students. Some students will prefer to 

work alone, others to work in groups.   

 

4.1.2. An Etude on Well Known Pappus’ Proposition 
For the sake of completeness let us recall Pappus’ Proposition: 

Proposition (Pappus): If the three sides of a variable triangle are passing through three fixed, col-

linear points and two of its vertices are moving along two fixed lines, then the third vertex is mov-

ing along a line, which is passing through the intersection point of the first two lines. 

http://fmi-plovdiv.org/GetResource?id=1186
http://fmi-plovdiv.org/GetResource?id=1186
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This is Pappus’ porism, which was the inspiration of much of Maclaurin’s work on loci, be-

ginning in 1772 [5, p 40]. 

We will start with the following problem: 

Problem 3: Let  P, Q, R be non-collinear points, and let a, b, c be non-concurrent lines that do not 

pass through the points P, Q, R. Construct a triangle with vertices that lie on the lines a, b, c and 

sides that pass through the points P, Q, R. 

Solution: Let us denote the triangle that will be constructed by ABC (Figure 12.1). Without loss of 

generality we can assume that A a, B b, C c, P BC, Q AB, R AC. The side AC is an invar-

iant line for the projectivity φ =π3◦π2◦π1: R→R, where Q
a

R
^

:1 , P
b

Q
^

:2 , R
c

P
^

:3 . Therefore 

we need to produce three couples of corresponding lines for φ, i.e. φ(x, y, z)=x, y, z and to solve 

the problem of finding the invariant lines of φ. According to Steiner’s method we use an arbitrary 

circle k that passes through the center R of the pencil of lines.                                            □ 

The reader can trace the solution in detail with the help of the presentation panel. He can 

apply dynamics to the free points P,Q,R and to the free lines a, b, c to change the conditions of the 

problem, or to the lines x, y, z (by rotation) to replace the couple of corresponding lines of the pro-

jectivity φ.  

The “Swap finite & infinite points” function allows us to state and to present solutions to 

two more problems, where the points P, Q are replaced with infinite points P∞, Q∞ .. We present in 

Figure 12.2 a solution when the points P and Q were swapped with the infinite points P∞ and Q∞ , 

respectively. 

An attempt to swap the third point R with R∞ will turn out to be unsuccessful. A student will 

face a difficult research problem, for two reasons: 

          
Figure 12.1                                                                  Figure 12.2 

 

1) The point R is not free any more, because it lies on the circle k. This is an occasion for a 

useful discussion; is there another solution of the task, such that the three points P, Q, R are equiva-

lent? Indeed there is such a construction. In our opinion finding a new solution and decribing all of 

the variants is a good course project. 

2) A student has to realize that any three infinite points are collinear. Thus essential changes 

should be made to the condition of Problem 3. A student can establish by experiment that the line c 

cannot be an arbitrary line when the points P, Q, R are collinear. Proof of this observation is not 

difficult to see. The projectivity ψ=π2◦π1: R → P is a perspectivity, because for the common line s 

of both pencils holds ψ (s=RP) =s. Thus the third vertex C of the triangle will move along a line 

that passes through the intersection point of the lines a, b. By this investigation a student will reach 

the next problem. 

Problem 4: Let the three sides of a triangle ABC pass through three fixed, collinear points P, Q, R 

and let two of its vertices move along two fixed lines a, b (QAB, RAC, P BC, A a, B b). 
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Prove that the third vertex C of the triangle moves along a line c, which passes through the inter-

section point of the lines a, b. Find the line c. 

It is easy to see that this is Pappus’ proposition.  

Solution: (Figure 13.1). Let x, y be arbitrary lines, belonging to the pencil R and let ψ(x) = x′,  

ψ(y) = y′. Then the points C1 =x∩x′ and C2 =y∩y′ (or C1 and O=a∩b) define the line c. Since x, y 

are free lines, they can be moved by rotation. Now let Z be an arbitrary point and let the line z pass 

through Z. If ψ(z) = z′  let us denote the point C=z∩z′.  Now, after rotation of the line z with the 

help of the free point Z, a student can see how the point C describes the line c=C1 C2  . □ 

We included two different ways for dynamics of the free lines x (y) and z in this problem in 

order to develop students' skills in the construction of dynamic drawings. 

The special function SFIP of DGS Sam (applied to P and the infinite point P∞ of the line g) 

allows us to generate a statement of the next problem and a solution to it. 

Problem 4*: Let the sides of the triangle ABC pass through two fixed points Q and R and let its 

third side be parallel to the line g=QR. Let two of the vertices of the triangle move along two fixed 

lines a, b (Q AB, R AC, QR ||BC, A a, B b). Find the geometric place of the points, that the 

vertex C describes (Figure 13.2). 

 

                 
  Figure. 13.1                                      Figure 13.2                                  Figure. 13.3 

 

The SFIP function is not “heal-all”. There is not a possibility to swap consequently the three 

collinear points P, Q, R with infinite ones, because we will face an impossible case P∞ , Q∞ , R to be 

collinear. That is why the sketch of the next problem could not be generated by Sam. 

Problem 4**: Let the sides of the triangle ABC pass through three fixed infinite points P∞, Q∞, R∞ . 

Let two of the vertices of the triangle move along two fixed lines a, b (P∞  BC, Q∞ AB, R∞ AC, 

A a, B b) .Find the geometric place of the points, that the vertex C describes (Figure 13.3). 

After translation of the line z, with the help of the left button of the mouse, student can ob-

serve how the point C describes the line c=C1 C2 . 

Note that the order of consideration of the main Problems 3 and 4 can be reversed. The ten-

dency in recent years to reduce the number of class hours (which we do not support) prevents the 

opportunity to study the issue of finding the invariant points of any projectivity. This fact puts 

Problem 3 out of the classroom. That is why the etude, suggested in 4.1.2 is suitable as a core of a 

bachelor thesis. 

 

4.1.3. Application in Homology 
Some powerful DGS such as Geogebra offer just the images of an arbitrary figure for the classical 

transformation (axis symmetry, homothety, central symmetry, translation, rotation, inversion, etc.). 

The two-dimensional projectivities (collineation and correlation) are included in the Curriculum 

Course of Synthetic Geometry. We share the view that students should know and remember the 

basic constructions that are needed for basic transformations.  
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The “Swap finite & infinite points” function allows a new approach to the teaching of the 

transformations: axis symmetry, homothety, central symmetry and translation. All these transfor-

mations are affine homologies. The first three (axis symmetry, homothety, and central symmetry) 

are general affine homologies (their center and axis are not incidental) and the fourth (translation) 

is a special affine homology (the axis is the infinite line ω and its center lies on its axis). This ap-

proach to the problem helps students understand the common features and the differences between 

these transformations. This style, applied by using the SFIP function from DGS Sam, will give stu-

dents (the future teachers) a deeper knowledge of this theme and will save much time for drawing. 

We will illustrate this approach with two examples. 

Problem 5: Let Ф (O, o; A→A) be a homology with center О, axis о and a couple of correspond-

ing points A, A. Find the image of the parallelogram ABCD. 

 

Solution: By using the properties of the homology (the connecting line of any two corresponding 

points of Ф passes through the center of Ф; the intersection points of any two corresponding lines 

of Ф lies on the axis of Ф) the students find the quadrilateral ABCD (Figure 14.1). □ 

Students can apply dynamics to the free points O, I, J, A, A´ to change the homology, or to 

the free points A, U∞ , V∞ , B, D, U, V  to change the shape of the universal parallelogram ABCD 

and its connected figures. 

 Problem 5*: Let Ф (o; A→A) be an affine homology with center О∞ = UAA , axis о and a couple 

of corresponding points A, A. Find the image of the parallelogram ABCD. 

Solution: It is enough only to swap the point О with an arbitrary infinite point O∞. Thus we convert 

the homology Ф into an affine homology and then automatically the quadrilateral ABCD trans-

forms into a parallelogram (Figure 14.2).  □ 

This is a fine presentation of the basic property of the affine transformations to preserve the 

parallel lines. 

If it turns out that the image ABCD  is off-screen, refer to Remark 2 and apply the instruc-

tions to the free point A. 
Problem 5**: Let Ф (o) be axis symmetry with axis о. Find the image of the trapezium ABCD. 

 

           
Figure 14.1                                      Figure 14.2                                       Figure 14.3        

 

Solution:  By swapping the points U∞ with U the students obtain the trapezium ABCD on the com-

puter screen straight away. This is enough for students to know the definition of axis symmetry and 

to use the basic construction from the Figure 14.1 or the Figure 14.2.  

Let x be a line orthogonal to the axis o and let M be the middle of the segment AA (the point 

M is obtained with the “scaled point” instrument). Let us choose O∞ to be incident with the line х. 

We translate the point A along the line a=OA until M lies on the axis о (Figure 14.3). In this way 

the general affine homology Ф is changed into axis symmetry.                                                        □ 
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Again there is no need to draw anything more. Students can experiment in this example by 

moving the free points В, D, U or V∞ that the trapeziums ABCD and ABCD are congruent. They 

can exchange the trapezium ABCD with some of its connected figures, using the SFIP function and 

to see that again the figures are congruent. 

Problem 6: Let ABCD be a parallelogram and let Ф (O; A→A) be a homothety with a center O 

and a couple of corresponding points A, A. Find the image of ABCD. 

Solution: The homothety is an affine homology with an axis the infinite line ω and thus the corre-

sponding lines will be parallel to each other (Figure 14.4). By using this property it is easy to con-

struct the image ABCD = Ф (ABCD).  □ 

The students can apply dynamics to the free points O,  A, A´ to change the homothety, or to 

the free points A, U∞ , V∞ , B, D, U, V  to change the shape of the universal parallelogram ABCD 

and its connected figures.  

                                     
    Figure 14.4                                    Figure. 14.5                                     Figure 14.6                            

 

Problem 6*: Let ABCD be a parallelogram and let Ф (O) be a central symmetry with a center O. 

Find the image of ABCD. 

Solution: Again it is enough for students to know the definition of central symmetry and to use the 

basic construction from the Figure 14.4. If they choose the point A  so that the point M (the middle 

of the segment AA ) coincides with the center O of Ф, then the homothety Ф transforms into a cen-

tral symmetry and the corresponding parallelograms ABCD and ABCD will be  congruent (Figure 

14.5).  □ 

Problem 6**: Let ABCD be a parallelogram and let Ф be an arbitrary translation. Find the image 

of ABCD. 

Solution: By swapping the center of the homothety O with an arbitrary infinite point O∞ the homo-

thety transforms into a translation and we have a sketch of the image of the figure without needing 

to draw it again (Figure 14.6). □ 

 

                              
       Figure 14.7                                                                 Figure 14.8 

 

The examples showed that a user can construct a solution in the general case and DGS Sam 

with its special SFIP function presents a solution in specific cases. Of course, a parallelogram is on-

ly one of the possible examples.  



The Electronic Journal of Mathematics and Technology, Volume 7, Number 1, ISSN 1933-2823 

39 

This approach not only saves time, but it also unifies different transformations and explains 

the reasons for their similarities and differences. This way of presenting transformations stimulates 

students to analyze them. Our approach and the fast visualization by the SFIP function are condi-

tions which encourage students to set and solve new problems. For example Figure 14.7 represents 

translated axis symmetry. After swapping points W∞ with W, which means a substitution of the 

translation with a homothety, students obtain Figure 14.8, and they can investigate this transfor-

mation. Another example is connected with rotation. As is well known, rotation can be considered a 

composition of two axis symmetries (Figure 14.9). What will happen when one or both axis sym-

metries will be substituted by other affine homologies (Figure 14.10)? A natural question arises to 

investigate relations between the compositions which consist of a couple of affine transformations. 

 

                
     Figure 14.9                                                               Figure. 14.10 

 

We think that if students do not study homology, then discovering of its properties as a result 

of investigation of relations between images and pre-images (for the homothety, central and axis 

symmetries, and translation) is an interesting moment in training connected with transformations. It 

enriches the knowledge of future teachers in basic transformations, which he (she) will teach at 

school. 

 

4.1.4. Application to Conic Sections 
The teaching of conic sections in schools [23] and the investigation of problems that are connected 

with conic sections in journals that deal with school mathematics [8, 15] has posed a problem about 

modernizing the way that they are taught in school and university. 

The teaching of central curves of the second power can be optimized with the “Swap finite 

& infinite points” function, too. 

 

Consider the problem: 

Problem 7: A curve of the second power к passes through the points A, B, C, D and line a is tan-

gential to the curve at point А. Construct the lines c and d, such that they are tangential to the 

curve k at points C and D, respectively. Choose an arbitrary point Х from k. Prove that the points 

O=c ∩ d, 1=BC ∩ DX, 2=CX ∩ BD are collinear. 

Solution: (Figure 15.1) The tangential lines c and d through the points C and D, respectively are 

constructed by applying Pascal’s Theorem to the points AABCCD and AABCDD, respectively. The 

second intersection point Х of an arbitrary line х through В describes the curve, when х spins 

around the point В.  The collinearity of the points O, 1, 2 follows immediately from Pascal’s Theo-

rem, applied to the points CCBDDX.                                                                                                □ 

By swapping the point C with C∞ and D with D∞ we transform the curve k into a hyperbola 

with asymptotes c, d and a center O=c ∩ d (Figure 15.2). It is interesting for students to see how 

after rotation of line x around B, point X describes the two branches of the hyperbola and how it 



The Electronic Journal of Mathematics and Technology, Volume 7, Number 1, ISSN 1933-2823 

40 

passes through the infinite points. We have added only the axes o1 and o2 of the hyperbola. It is well 

known that axes o1 and o2 are bisectors of angles between the asymptotes. 

Students will observe that the collinearity of the points O, 1, 2 is preserved. Repeating swapping 

points C∞ with C and D∞ with D, students will return to the original drawing and the natural ques-

tion is: Whether the lines o1 and o2 are special ones for the curve? 

 

                
     Figure 15.1                                                               Figure 15.2 

 

They are only a couple of corresponding lines of the involution of the conjugated lines induced in 

the point O from the curve k. The next question arises: Could o1 be a diameter? If the line o1 passes 

through the middle of the segment CD then it will be a diameter. This is possible to see with dy-

namics, applied to some of the free objects A, B, C, D or a (Figure 15.3 http://fmi-

plovdiv.org/GetResource?id=1186). Thus the SFIP function of DGS Sam should stimulate inquisi-

tive students to deepen their knowledge of the subject. 

 

4.1.5. Application in Perspective Triangles 

Desargues’ Theorem  for perspective triangles: The connecting lines of the couples of correspond-

ing vertices of two triangles ABC and A′B′C′ intersect at a point S if and only if the intersection 

points of the couples of corresponding sides P=BC∩BC, Q=AC∩AC, R=AB∩AB lie at a line s 

(Figures 16.1, 16.2). 

 

               
         Figure 16.1                                                             Figure 16.2  

 

Definition 5: Two triangles that satisfy the conditions of Desargues’ Theorem for perspective tri-

angles are called perspective. The point S is called a perspective center and the line s is called a 

perspective axis.  

           The perspective center and axis can be either finite or infinite objects. 

Let us mention that Desargues’ Theorem about perspective triangles does not restrict us to 

choose the vertices of the two perspective triangles to lie on two lines. Thus we obtain another well 

known problem, which has interesting applications not only in university courses on Geometry, but 

also in school classes [12, 13]. 

 

http://fmi-plovdiv.org/GetResource?id=1186
http://fmi-plovdiv.org/GetResource?id=1186
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Problem 8: Let g and g be two lines. Denote T=g ∩g and let us choose points A, B, C  g and   

A, B, C g. Prove that if the lines AA, BB, CC intersect at a point S, then the points  

P=AB ∩ A B, Q=BC ∩ B C, T  lie on a line s. 

 

Solution: The point S is a perspective center of the pair of triangles ABC and ABC and according 

to Desargues’ Theorem the intersection points P, Q, T of the couples of corresponding sides are 

collinear. 

 

          
 Figure 17.1                      Figure 17.2                              Figure 17.3                  Figure 17.4 

 

The statement of Problem 8 holds true in four different cases (Figure 17). These cases are 

sketched by swapping the finite points S and T with the infinite points S∞ and T∞, respectively. 

Please, if it is necessary after swapping, refer to Remark 1.1. 

 

4.2. Application in School 
From our experience of teaching Synthetic Geometry we have reached the idea that the time, when 

the fundamental theorems of Projective Geometry (namely the theorems of Pappus, Desargues, 

Pascal) are to be included in the curricula of the secondary schools, has come. This idea is not a 

new one. It dates from a century ago and was proposed by Lehman (1917). His idea was more radi-

cal. DGS Sam facilitates this in secondary schools. This will be a small step away from school Eu-

clidean Geometry. 

Let us mention Whitehead’s words delivered in his presidential address to the Mathematical 

Association of England in 1916: “Let the main ideas which are introduced into a child’s education 

be few and important, and let them be thrown into every combination possible. The child should 

make them his own, and should understand their application here and now in the circumstances of 

his actual life.” (The Aims of Education) 

In our paper “Vertical integration of the training in the university and the secondary school 

by projective methods in dynamical environment”, published in the Bulgarian journal “Mathemat-

ics Plus” [12] we have shown that large groups of school geometry problems can be solved by the-

se theorems rather quickly and clearly. We illustrate this with a series of examples on how finding 

the common projective root of a large group of tasks will help school students to obtain better 

knowledge, to investigate this and to create this with the new SFIP function of DGS Sam. 

We performed an experiment with several seven-year old children, with basic computer lit-

eracy. Our experience with children of this age, is very small, episodic and not in a classroom 

setting. We presented them with the tools of Sam and the picture called “DGS Sam” , Figure 2.1. 

They began to draw. They transformed the hat, the body from a trapezium into a quadrilateral or a 

parallelogram, and changed the shapes of the head, eyes, hands, and feet. Then they started to draw 

sketches in a blank file, and used the infinite elements and the SFIP function. It was very interest-

ing that they did not ask why there are finite and infinite points, and they just used them in their 

drawings. They applied the Swap function and enjoyed the results 
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An intuitive understanding of infinite elements, discovering of relationships between fig-

ures, peeking into the world of the dynamic drawings are good initial conditions for developing an 

interest in mathematics. 

 

4.2.1. Pappus’ Theorem out of the Context of Projectivity 
Analogy is one of the methods that can be, with computer support, used for development of ability 

to generalize [25]. The process of analyzing parts of certain geometric configurations represents a 

challenge for students, allowing them to observe and … to reconstruct or discover new theorems or 

relationships [23].  

Problem 9: Through the vertices of the triangle ABC are constructed three couples of lines (a, a), 

(b, b) and (c, c), such that a || b || c and a || b || c. Among the parallelograms that are generated 

by these lines there are three such that the lines AB, BC, CA are diagonals. Prove that the second 

diagonals of these three parallelograms intersect at one point. 

Solution: Using the notation in Figure 18.1 the parallelograms for which AB, BC, CA are diagonals 

are AQBP, BRCS, ATCK. Let us denote with U∞ the intersection point of the parallel lines a, b, c, 

and with V∞ the intersection point of the parallel lines a, b, c. 
The shortest solution of this problem is to apply Pappus’ Theorem to the triads of collinear 

points P, T, V∞ and K, Q, U∞. Immediately we get that the points O=TK ∩ PQ, S=TU∞ ∩ QV∞, 

R=KV∞ ∩ PU∞ are collinear, i.e. the lines TK, PQ, SR are concurrent. □ 

 

           
              Figure 18.1                                    Figure 18.2                       Figure 18.3 

 

The “Swap finite & infinite points” function provokes us not only to formulate two new 

problems by swapping U∞ with U and V∞ with V, but also suggests to us right away, their sketches. 

Problem 9*: Through the vertices of the triangle ABC are constructed three couples of lines (a, 

a), (b, b) and (c, c), such that a, b, c are incident with an arbitrary point U and  a || b || c. 
Among the trapeziums that are generated by these lines there are three such that the lines AB, BC, 

CA are diagonals. Prove that the second diagonals of these three trapeziums intersect at one point 

(Figure 18.2). 

The proof is literally the same. We have just to apply Pappus’ Theorem to the triads of col-

linear points P, T, V∞ and K, Q, U. 

Problem 9**: Through the vertices of the triangle ABC are constructed three couples of lines (a, 

a), (b, b) and (c, c), such that a, b, c are incident with an arbitrary point U and a, b, c are inci-

dent with an arbitrary point V. Among the quadrilaterals that are generated by these lines there are 

three, such that the lines AB, BC, CA are diagonals. Prove that the second diagonals of these three 

quadrilaterals intersect at one point (Figure 18.3). 

The proof is the same as we have to apply Pappus’ Theorem to the triads of collinear points 

P, T, V and K, Q, U. 

The school students can apply dynamics to all free points (A, B, C, U∞, V∞, U, V). The prob-

lems 8 and 9 and their satellites provide a link between training in universities and secondary 

schools. 
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4.2.2. Application to Plane Sections of Polyhedra 
Teaching the Platonic solids is done with the use of Cabri3D [26]. Non-trivial problems of 

constructing the common parts of overlapping solids are presented in [18]. 

The theme of three dimensional geometric shapes is traditionally difficult for pre-university stu-

dents. We propose an approach that uses the common features of plane sections of prisms and pyr-

amids. 

The Dynamic Geometry Software Sam suggests a type of universal solution to the problem 

of plane sections of polyhedrons for one kind of connected figures (see Definition 2). 

Problem 10: Construct the section of the universal parallelepiped ABCDABCD with the plane α, 

defined by three points P (ABC), QDD and R (BCB). 
Solution: The plane section is presented on Figure 19.1. The truncation o = (ABC) ∩ (α) is found 

by the method of the projections with the help of the point R1=RW∞ ∩ (ABC) = RW∞ ∩ BC. Since 

the point Z=QR ∩DR1 lies on the plane (ABC), o=PZ. Then we construct all the intersection points 

of о with the edges of the parallelepiped that lie in the plane (ABC): S=o∩AB, T=o∩BC, L=o∩CD, 

K=o∩AD. We continue with the truncation KQ = (ADD1) ∩ (α). Again we construct all the inter-

section points of the line KQ with the edges of the parallelepiped that lie in the plane (A DD1):   

KQ ∩AA1 =A, KQ ∩A1 D1 =M.   Similarly we proceed with the truncation of α with all the other 

faces of the universal parallelepiped:  Since RT =(BCC1) ∩ (α), then RT ∩CC1 =C, RT ∩ BB1 =B, 
RT ∩ B1 C1 =N;  LQ =(CDD1) ∩ (α), then LQ ∩ D1 C1=J; MJ =(A1 B1 C1) ∩ (α), then  

MJ ∩ A1 B1=F.  

The user can trace all constructions by presentation of Figure 19.1. There the plain section 

is STCJMA. The constructed plane section differs when the points P, Q or R are moving. 

Let U, V, W be three arbitrarily chosen free points. Let us transform the parallelepiped into a 

truncated pyramid or pyramid by swapping the points W and W∞ (Figures 19.2, 19.3, 19.4). All of 

the constructions above are preserved. Plane sections are obtained automatically. The user can fol-

low all the constructions “step by step” for any of the cases via the presentation panel, and he may 

produce other examples. 

When the user has applied dynamics to the points P, Q, R then the plane sections, construct-

ed by Sam, differ. If s/he wishes to change the type of the bases it is enough to transform the uni-

versal parallelogram ABCD into one of its connected figures by swapping the points U∞ with U and 

V∞ with V. Some cases are presented in Figure 19.2 where V∞ is swapped with V, and in Figure 19.3 

where U∞ is swapped with U and V∞ is swapped with V.                                               □ 

 

          
        Figure 19.1                                                               Figure 19.2 

 

The method for finding of the plane section is the same if the points, which define the plane 

α, are situated on arbitrary faces or edges of the parallelepiped. For example the user can put the 
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point P  (ABC) on some edge of the face ABCD, or P can coincide with some special point of this 

face, if the conditions of the problem require this. 

 

             
           Figure 19.3                                                   Figure 19.4 

 

This approach and DGS Sam optimize the drawing work that is required for the construc-

tion of plane sections, and at the same time one can follow the construction of plane sections in de-

tails in each case via the presentation panel. This approach and DGS Sam unify the method of pro-

jections used for prisms and pyramids. 

The pupils, to whom we have made demonstrations, attended closely and were very inter-

ested in this theme that has been traditionally difficult for them. 

 

4.2.3. Generation of Creative Thinking in Geometry Classes 

Basic experiments in Sketchpad with circles and a few lines, or triangles inscribed in a circle, lead to 

“discoveries” of many interesting properties. These properties usually are well known, and their proofs 

are published in geometry textbooks, but students can discover them on their own, check them and later 

prove them or search a textbook for the proof. This builds some special interest in elementary geometry 

[7]. A crucial aspect that emerged in students’ problem solving instruction is that with the use of 

dynamic software they have the opportunity to engage in a way of thinking that goes beyond reach-

ing a particular solution or response to a particular problem [23]. The “Swap finite & infinite 

points” function can extend the role of Dynamic Geometry Software, pointed out in [7, 23], by 

helping students to think creatively, replacing the old principle “learn and repeat” with “learn and 

create”. We will illustrate this with the following problems. Let us start with this school problem: 

Problem 11: If ABCD and ARKM are parallelograms, where RAB, MAD, then the points D, K 

and T=AN∩CR are collinear (Figure. 20.1). 

Solution: First proof The classical solution given in textbooks [4, p.48, problem 83] goes as fol-

lows: Denote q=MK, p=RK, L=q ∩ CR, F=p ∩ AN and let us consider a homothety h with a center 

Т and h(L)=C. From the condition that q is parallel to CD it follows that h(q)=CD. Applying Tha-

les’ Theorem to the lines AN and RC, taking into account the conditions that FR is parallel to CN, 

and AR is parallel to LN, we get TF/TR=TN/TC and TN/TL=TA/TR. From these equalities it follows 

that TA/TF=TC/TL, which ensures that h(F)=A. Consequently h(p) =AD and h(K=p∩q) 

=AD∩CD=D, which means the line KD passes through the center T of the homothety h.               □ 

Let us note for the reader’s convenience that in Figure 20.1 the arbitrary lines p and q can be moved 

to the points M and R, respectively. 
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   Figure 20.1                                         Figure 20.2                                        Figure 20.3 

 

Students apply the SFIP function and the sketches show them right away that the collinearity of the 

point D, K, T is preserved in cases where ABCD and ARKM are trapeziums (Figure 20.2) or ABCD 

and ARKM are quadrilaterals (Figure 20.3). Three questions appear: How should one formulate the-

se new statements? Are the sketches proofs? How can one prove these new statements?  They are 

convincing that the proof given in textbooks for the case of parallelograms is not appropriate for the 

connected figures. The teacher can direct students to Pappus’ Theorem, and the second proof 

shown.   

Second proof) Consider the couple of the triads collinear points (A, R, U∞) and (C, N, V∞), 

where U∞=AB ∩ CD and V∞=AD ∩ BC. According to Pappus’ Theorem it follows that the points 

T=AN ∩ CR, K=RV∞ ∩ NU∞ , D=AV∞ ∩ CU∞ are collinear.  □ 

As far as we know the second proof is new. This proof is not only the shortest one, but its projec-

tive nature makes it applicable to figures connected with the universal parallelogram. 

Really, Figure 20.2 is obtained from Figure 20.1 after applying the SFIP function to infinite 

point V∞ and an arbitrary finite point V. Now it is enough to apply Pappus’ Theorem to the triads of 

collinear points (A, R, U∞) and (C, N, V) to prove that the points T, K, D are collinear. Figure 20.3 is 

obtained from Figure 20.2 after applying the SFIP function to the infinite point U∞ and an arbitrary 

finite point U. Now it is enough to apply Pappus’ Theorem to the triads of collinear points (A, R, U) 

and (C, N, V) to prove that the points T, K, D are collinear. 

The benefit of this approach with using DGS Sam continues. It allows us to compose a se-

quence of similar problems. A teacher can start a discussion with the following question: Are there 

any other triads of collinear points, associated with the connected figures (parallelogram, trapezium 

and quadrilateral)? Students make their propositions and with the teacher’s help the next problem is 

formulated. 

Problem 12: Let ABCD be a parallelogram and K be a point in its interior. Let us construct the 

lines p and q through the point K, such that p║AD and q ║AB. Let us denote: R=p ∩ AB, S= p ∩ 

CD, M=q ∩ AD, N=q ∩ BC, T=AN ∩ CR, Q= BS ∩ DN, G=CM ∩ AS, P=DR ∩ BM. Prove that 

the following triads of points (P, K, C); (T, K, D); (Q, K, A); (G, K, B) are collinear. 

Solution: (Figure 21.1) Let us note for the reader’s convenience that dynamics is possible 

for the free points associated with the universal parallelogram and the point K. 

By applying Pappus’ Theorem consecutively to the pairs of collinear points: (B, R, U∞) and 

(D, M, V∞); (A, R, U∞) and (C, N, V∞); (D, S, U∞) and (B, N, V∞); (C, S, U∞) and (A, M, V∞) we ob-

tain the collinearity of the triads of points (P, K, C); (T, K, D) (problem 11);  (Q, K, A);  ( G, K, B), 

respectively.                                                                                                              □ 

It is enough to consider one case in the class and the rest can be set as homework. Students 

generate the solutions of the two satellite problems for trapeziums and complete quadrilaterals in-

stantly with the SFIP function[12, 13]: 

Problem 12*: Let ABCD be a trapezium such that AD ∩ BC=V and K be a point in its interior. Let 

us construct the lines p=KV and q through the point K, such that q ║AB. Let us denote: R=p ∩ AB, 
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S=p ∩ CD, M=q ∩ AD, N=q ∩ BC, T=AN ∩ CR, Q=BS ∩ DN, G=CM ∩ AS, P=DR ∩ BM. Prove 

that the following triads of points (P, K, C); (T, K, D); (Q, K, A); (G, K, B) are collinear.  

Problem 12**: Let ABCD be a complete quadrilateral with diagonal points U=AB ∩ CD, V=AD 

∩ BC and K be an arbitrary point. Let us construct the lines p=KV, q=KU and denote: R=p ∩ AB, 

S=p ∩ CD, M=q  ∩ AD, N=q ∩ BC, T=AN ∩CR, Q=BS ∩ DN, G=CM ∩ AS, P=DR ∩ BM. Prove 

that the following triads of points (P, K, C); (T, K, D); (Q, K, A); (G, K, B) are collinear (Figure 

21.2). 

              
      Figure 21.1                                                                  Figure 21.2 

 

Please, if it is necessary after swapping, refer to Remark 1.2 (use the point B or U). 

From the fact that the points K lies on the lines DT, AQ, CP, BG, RS and MN, we can see that there 

are a number of perspective triangles from a point K and we can propose a number of new prob-

lems for proving of collinearity of three points. For instance by the perspectivity of the triangles 

MRA and NSQ it follows that the points E=MR ∩ NS, D=MA ∩ NQ, B=RA ∩ SQ are collinear 

([16] p. 71, Problem 28). Thus the teacher offers another idea for student’s creativity. The descrip-

tion of all the possible pairs of perspective triangles, and thereafter of all triads of collinear points is 

a good combinatorial problem. Investigation of the axis of perspectivity of the pairs of triangles is 

eased by the dynamic environment of the software. Coxeter’s famous problem ([5], p. 80) raises 

another interesting research problem, which is connected with all these pairs of perspective trian-

gles. 

Coxeter’s Problem Let ABC and ABC be two perspective triangles. Then the six intersection 

points of the non-corresponding sides of the triangles are lying along a curve of the second power. 

A difficult research problem is to describe the conic sections that are generated by the per-

spective triangles in Problems 12, 12*, 12**. We have not yet received a solution to the combinato-

rial tasks although they were put to a Ph.D. student at the university, who is preparing a thesis on 

Combinatory problems in secondary school. Thus the problem is open. 

A natural question concerning Problem 12 is whether the condition that the lines p and q are 

parallel to the sides of the parallelogram, or, equivalently that they are passing through the diagonal 

points U and V of the complete quadrilateral is necessary. The answer is given in the next problem. 

Problem 13: Let ABCD be an arbitrary parallelogram and e1, e2 be an arbitrary lines. Let us de-

note E=e1∩ e2, M=е1 ∩ AD, R=e1 ∩ AB, S=е2 ∩ CD, N=e2 ∩ BC, F=MS ∩ NR, RS=p, MN=q; 

K=MN ∩ RS, T=AN ∩ CR, Q=BS ∩ DN, G=CM ∩ AS, P=BM ∩ DR. Prove that the following 

statements are equivalent: 

1) the points B, D, E are collinear; 5) the points B, K, G are collinear; 

2) the points A, C, F are collinear; 6) the points D, K, T are collinear; 

3) the points A, K, Q are collinear; 7) the points T, G, E are collinear; 

4) the points C, K, P are collinear; 8) the points P, Q, F are collinear. 

Solution: (Figure 22.1) Let us note for the reader’s convenience that dynamics of the sketch 

depends on the free points associated with the universal parallelogram , the point E and the lines e1, 

e2. 
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We will prove the problem in several steps: 

i) that 1) is equivalent to 2) and 1) is equivalent to 8). 

The condition 1) that the points B, D, E be collinear can be stated in the following way: 

“the lines MR, NS, BD are concurrent”. 

 

 
               Figure 22.1 

 

According to Desargues’ Theorem, applied to ∆MSD and ∆RNB, the lines MR, SN, DB are 

concurrent if and only if the points F=MS∩RN, A=MD∩RB, C=SD∩NB are collinear. 

According to Desargues’ Theorem, applied to ∆MSB and ∆RND, the lines MR, SN, DB are 

concurrent if and only if the points F=MS∩RN, P=MB∩RD, Q=SB∩ND are collinear. 

The last statements can be also formulated in the following way: 

The points B, D, E are collinear if and only if the points F, A, C are collinear; 

The points B, D, E are collinear if and only if the points F, P, Q are collinear. 

ii) We will show that 1) is equivalent to 3) and 1) is equivalent to 4). 

Let us consider the two pairs of triangles ∆MRA, ∆NSQ and ∆MRP, ∆NSC. 

According to Desargues’ Theorem, applied to ∆MRA and ∆NSQ, the points E=MR∩NS, 

B=RA∩SQ, D=MA∩NQ are collinear if and only if the lines MN, RS, AQ are concurrent. 

According to Desargues’ Theorem, applied to ∆MRP and ∆NSC, the points E=MR∩NS, 

D=RP∩SC, B=MP∩NC are collinear if and only if the lines MN, RS, PC are concurrent. 

Taking into account that MN∩RS=K we can write the last statements in the following way: 

The points B, D, E are collinear if and only if the points K, A, Q are collinear. 

The points B, D, E are collinear if and only if the points K, P, C are collinear. 
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    Figure 22.2                                                             Figure 22.3 

 

iii) We will show that 2) is equivalent to 7). The condition 2) that the points A, C, F are collinear 

can be stated in the following way: “the lines MS, NR, AC are concurrent”. 

According to Desargues’ Theorem, applied to ∆MRC and ∆SNA, the lines MS, RN, CA are 

concurrent if and only if the points E=MR∩SN, T=RC∩NA, G=MC∩SA are collinear. 

The last statement can be also formulated in the following way: 

The points A, C, F are collinear if and only if the points E, T, G are collinear; 

iv) We will show that 2) is equivalent to 5) and 2) is equivalent to 6). 

Let us consider the two pairs of triangles MSG, NRB and MSD, NRT. 

According to Desargues’ Theorem, applied to ∆MSG and ∆NRB, the points: MS∩NR=F, 

SG∩RB=A, MG∩NB=C are collinear if and only if the lines MN, SR, GB are concurrent. 

According to Desargues’ Theorem, applied to ∆MSD and ∆NRT, the points: MS∩NR=F, 

SD∩RT=C, MD∩NT=A are collinear if and only if the lines MN, SR, DT are concurrent. 

Taking into account that MN∩SR=K we can write the last statements in the following way: 

The points A, C, F are collinear if and only if the points K, G, B are collinear; 

The points A, C, F are collinear if and only if the points K, D, T are collinear. □ 

This problem shows that if we ensure the collinearity of just one of the eight triads of points, 

then the other seven triads of points will be collinear points, too. 

The statement holds true if we swap the finite point Е with the infinite point of the line BD 

(Figures 22.4 and 22.5).  

Please, if it is necessary after swapping, refer to Remark 1.2 (use the points B or U). 

The choice of the projective method for the proof of Problem 13 makes its statement true, 

and after applying the SFIP function, i.e. for the connected figures, trapezium or quadrilateral (Fig-

ures 22.2 and 22.3). Every one now can formulate the satellite problems 13*, 13**. 

A new challenge appears for the case when E=UBD and ABCD is a parallelogram (Figure 

22.4). The points A, C, F, K, P, Q are collinear. It is enough to prove that K lies on AC. Indeed the 

triangles MRA and NSC are perspective with a perspective axis the infinite line ,  from where it 

follows MN, RS, AC are concurrent lines, i.e. KAC. 
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    Figure 22.4                                                              Figure 22.5 

 

We have found other problems in traditional Bulgarian school textbooks [16, 17] that are 

stated with conditions that involve parallel lines, but which are true in more general cases. We give 

these problems to students as homework; to read the solutions; to apply the SFIP function; to gen-

erate the satellites of the problem (if they exist) and to prove them (usually with the fundamental 

theorems of Projective Geometry). 

 

5. Conclusions 
Dynamic Geometry Software gives the possibility for a deep and creative study of Geome-

try. The introduction of infinite points and the new SFIP function (“Swap finite & infinite points”), 

increases the benefit of DGS in teaching and learning Geometry. Through the range of the exam-

ples in Section 4, we have shown that the new features in DGS offered by Sam, optimize the educa-

tion process by saving a lot of time for drawing, generalizing large groups of problems, stimulating 

and helping investigations, forming a creative style of thinking. They give the opportunity of pre-

paring interesting course projects and carrying into effect the integration of teaching at university 

with that at secondary school.  

Currently, much of the training in geometry in secondary school is in the framework of Eu-

clidean geometry. Instead, we propose the study of the extended Euclidean plane in secondary 

school. DGS Sam, with its new features favors this development. DGS Cinderella has made very 

important steps towards teaching Non-Euclidean geometry (spherical and hyperbolic). Further, an-

ecdotal evidence from children shows that exposing them to the projective plane will help them 

gain an intuitive understanding of concepts such as infinite points, dynamic drawings, quadrilat-

erals, circles, ellipses and the relationships between them. We feel and hope that such an experi-

ment and investigation will confirm our prediction that early introduction of infinite elements in 

school facilitates intuitive understanding.  

Deeper study of Projective Geometry in the university and in schools is also warranted, giv-

en that many recent results in various mathematical areas were proven with the help of the funda-

mental theorems of Projective Geometry. We hope that our study stimulates the integration of infi-

nite elements in more technological tools.  

 

Supplemental Electronic Materials The software “DGS - Sam” and the sketches are free for any 

type use and can be downloaded from: http://fmi-plovdiv.org/GetResource?id=1186. 

The user has to install .NET Framework 4 before running the program Sam. 
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