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Abstract. For solutions ’u,(a:) of some boundary value problems defined in a bounded convex

domain {2 of ]RN,N > 2, we show that their points of maximum are at distance from the

boundary greater than 5 , where d is the inradius of {). Moreover for N = 2, a minimum

principle for some combination of %(x) and |V /| is established.
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1. Introduction
This note addresses the following class of a boundary value problems defined in a
bounded strictly convex domain 2 C RN,N > 2
Au+aou+1=02z € Qu=01z¢c 0. (1.2)

In (1.1) A is the Laplace operator and « is a constant € 0, A, , where A, is the first
eigenvalue of the fixed membrane problem defined as
Ap, + Ny, = 0,0 > 0,2 €Q ¢ =0,z € 0. (1.2)

We note that (1.1) coincides with the St.Venant problem when « = 0.
Problem (1.1) has been investigated by several authors [(Bandle 1976), (Kohler-Jobin
1981), (Payne, Philippin, Proytcheva 2007)].

With o < A, (1.1) admits a unique classical solution u(z). In (Bandle 1976), Bandle

shows that for o < A, v(z) :== au + 1 is nonnegative in €2, so that Au < 0 in 2,
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implying by the maximum principle that « > 0 in 2. We note that v(x) satisfies
Av+av =0,z € Q v=1x € 0. 1.3)

Let as assume contrariwise that v < 0 at some point P < (2. Then there exists a
region Q C  such that

v<0in € wv=0 on 0. (1.4)
It then follows from Green’s second identity that
0= f fUAg?Jl —QEIAU dr = o — )\~1 fvgbldx, (1.5)
Q Q

where ¢, is the first eigenfunction and Xl the first eigenvalue of the fixed membrane

problem in Q. (1.5) leads to the contradiction a = A, > A .

2
T
In the second section of this note we show that for o« € | 0,—— |, the maxima of
2
4d

d

u(x) are located at distance greater than — from the boundary 02, where d is the inradius
2

of €, i.e. the radius of the greatest ball contained in €2. In the two-dimensional case

. . 2. .
N = 2, we derive in Section 3 an upper bound for min|Vu| interms of »___, valid for
9
aec 0N .

2. Location of the maxima of u(xz)

Since 2 is assumed bounded and strictly convex, it follows from (Finn 2008) p.
1343 that if N = 2, the level lines of w(z) are convex, so that «(z) has a unique critical

point () at which v = u_.. - Howeverfor N >3 and « = 0, the convexity of the level
sets of u(z) does not seem to be established. So we cannot exclude the possibility of several

critical points of w(z) if N >3, a = 0 . In this section we establish the following

result
2
Theorem 1. If « € | 0,— |, where d is the inradius of €2, then the maxima of u(z) are
2
4d

d
at distance is greater than — from the boundary 0f2.
2

For the proof of Theorem 1, we make use of the following upper bound for w(zx)
established in (Payne, Philippin, Proytcheva 2007).

COS\/;d r, —d =z
[ 0
CoS \/;d T

1
u(z) < — -1,z € Q. (2.1)
(0%

0

58



In (2.1), d =z is the distance from =z € 2 to 9Q, and z, is any point where wu(x)
takes its maximum value. From the inequality

2
™

— | <X (2.2)
2
4d

established for convex 2 by Hersch in (Hersch 1960) for N = 2, and by Sperb (Sperb 1981)
for N > 2, it follows that w(z) > 0 in €2 as already mentioned.

Inequality (2.1) then implies

cos{\/; d zy —d x }>cos \/;d T, x € (2.3)
e, |d(x)—d(x)<d(x), xeQ (2.4)
e d(x)>Zd(x), xeQ, (2.5)
Since (2.5) holds for all =z € €2, we obtain the desired inequality
1
d z, >-maxd z = —d. (2.6)
2 zeQ 2

2
3. An upper bound for min|Vu|
)

In (Payne, Philippin, Proytcheva 2007) the authors showed that for () bounded

convex in RN,N > 2 the auxiliary function xy z , defined as

2
X T = |Vu| + au® + 2u, a = conste 0, (3.2)

takes its maximum at a critical point of w«(z). In this section we want to show that in the

particular case N = 2, x « takes its minimum value at some point on the boundary 0f2.
This leads to the following result:

Theorem 2. Let (2 be a bounded strictly convex domain in R?. Then we have

2 2
min|Vu| <x z ::|Vu| tou? z +2u 2 , ¢ € (. (3.2
0
In particular
: 2 2
m1n|Vu| <ou "~ +2u . (3.3
0
For the proof of Theorem 2, we show under the assumptions of Theorem 2, that
ou
x = satisfies an appropriate differential equation. For convenience we write w, = —
’ Ox
k

and adopt the summation convention on repeated indices. With these conventions we have for
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instance

ou 0w
IVuiz = Z(_)Q = Uy Uy | Au = Z_Q = Wk
E—1 8:% k=1 81’k
2 2
PR A
ik ik
i—1 k197,07,
Differentiating (3.1) and making use of (1.1), we obtain
Xop, = 2Uy Uy, +2u, ou +1 = 2u,, u, —2u,, Au (3.4)
2
Ay = 2u, Uy +2u,, Au e 2Uy Au i 2 Au (35)
) :
= 2u,; U,y —2 Au .
Making use of the following identity
1 2 2
5|Vu| Usyp Uy — Au = Uy Usp Uy Us s —Auu, U, U, (3.6)
valid inR? only, we obtain
-2
Ax = 4|Vu| Unjg Ung, Uy Us —Aun, U, Uy (3.7)
From (3.4) rewritten as
1
Usp Uy, = Uy Au + gx,k (3.8)
we compute
2 2 1 2
Ung Uy U g Uy s = Au |Vu| + Uy Xy +Z|Vx| (3.9
2 1
Uyjg, Uy Uy = Au |Vu| + EU% Xog; - (3.10)
It follows from (3.7), (3.9), (3.10) that x =z satisfies the differential equation:
-2
Ax —|Vu| “Vx 28uVu+ VY =0, 2€Q/ Q , (3.11)

where @ is the unique critical point of w«. It then follows from Hopf’s first maximum

principle (Hopf 1927) that x 2z takes its maximum and minimum values either on OS2 or
at Q.
Finally the outward normal derivative of x = on 0f2 is given by
ox ou 2
— =-2K z — <0, z€dQ (3.13)

on on
where Kz is the curvature of O€). It then follows from Hopf ’s second maximum

principle (Hopf 1927) that x x cannot take its maximum value on 0€2. We then
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conclude that x z must take its maximum value at the critical point ¢, and its minimum

value on 0f2). This completes the proof of Theorem 2.
We note that the inequalities in Theorem 2 are not sharp in the sense that there is no

convex plane domain €2 for which we have x = = const.

Indeed, suppose that x x = const in ). Then the identity (3.6) takes the form

2
Us g, g — Au =0, z€Q (3.13)
in view of (3.9), (3.10) with Vy = 0 .(3.13) may be rewritten as

1 2
Auu,k—g Vu|" =0, zeq. (3.14)

It then follows from the divergence theorem that

ou 10 ou 2

Il TR v is= [K 2 Zas =0, (314)
on 20n on

o) o

: . Ou )
which cannot hold since K z > 0 and — < 0 on Of2 by Hopf ‘s second maximum
on

principle.
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