ТРАДИЦИИ, ПОСОКИ, ПРЕДИЗВИКАТЕЛСТВА

Юбилейна национална научна конференция с международно участие Смолян, 19–21 октомври, 2012

SOME REMARKS ON A CLASS OF BOUNDARY VALUE PROBLEMS THAT INCLUDES THE St. VENANT PROBLEM

Valentina Proytcheva¹, Liudmila Filipova²

^{1,2} Technical Univerity of Sofia, branch Plovdiv, Bulgaria ¹ vproicheva@abv.bg, ² liudmila_filipova@abv.bg

НЯКОИ БЕЛЕЖКИ ЗА КЛАС ГРАНИЧНИ ЗАДАЧИ, ВКЛЮЧВАЩИ ПРОБЛЕМА НА St.VENANT

Валентина Пройчева¹, Людмила Филипова²

 1,2 Технически Университет София, филиал Пловдив, България 1 vproicheva@abv.bg, 2 liudmila_filipova@abv.bg

Abstract. For solutions u(x) of some boundary value problems defined in a bounded convex domain Ω of $\mathbb{R}^N, N \geq 2$, we show that their points of maximum are at distance from the boundary greater than $\frac{d}{2}$, where d is the inradius of Ω . Moreover for N=2, a minimum principle for some combination of u(x) and $|\nabla u|$ is established.

Key words: Minimum principles, second order elliptic boundary value problems

1. Introduction

This note addresses the following class of a boundary value problems defined in a bounded strictly convex domain $\Omega \subset \mathbb{R}^N, N \geq 2$

$$\Delta u + \alpha u + 1 = 0, x \in \Omega, u = 0, x \in \partial\Omega. \tag{1.1}$$

In (1.1) Δ is the Laplace operator and α is a constant $\in 0, \lambda_1$, where λ_1 is the first eigenvalue of the fixed membrane problem defined as

$$\Delta\varphi_1 + \lambda_1\varphi_1 = 0, \varphi_1 > 0, x \in \Omega, \quad \varphi_1 = 0, x \in \partial\Omega. \tag{1.2}$$

We note that (1.1) coincides with the St. Venant problem when $\alpha = 0$.

Problem (1.1) has been investigated by several authors [(Bandle 1976), (Kohler-Jobin 1981), (Payne, Philippin, Proytcheva 2007)].

With $\alpha<\lambda_1$, (1.1) admits a unique classical solution u(x). In (Bandle 1976), Bandle shows that for $\alpha<\lambda_1$, $v(x):=\alpha u+1$ is nonnegative in Ω , so that $\Delta u\leq 0$ in Ω ,

implying by the maximum principle that u>0 in Ω . We note that v(x) satisfies

$$\Delta v + \alpha v = 0, x \in \Omega, \quad v = 1, x \in \partial\Omega.$$
 (1.3)

Let as assume contrariwise that v<0 at some point $P\in\Omega$. Then there exists a region $\tilde{\Omega}\subset\Omega$ such that

$$v < 0 \text{ in } \tilde{\Omega}, \quad v = 0 \text{ on } \partial \tilde{\Omega}.$$
 (1.4)

It then follows from Green's second identity that

$$0 = \int_{\tilde{\Omega}} v\Delta\tilde{\varphi}_1 - \tilde{\varphi}_1\Delta v \ dx = \alpha - \tilde{\lambda}_1 \int_{\Omega} v\tilde{\varphi}_1 dx, \tag{1.5}$$

where $\tilde{\varphi}_1$ is the first eigenfunction and $\tilde{\lambda}_1$ the first eigenvalue of the fixed membrane problem in $\tilde{\Omega}$. (1.5) leads to the contradiction $\alpha = \tilde{\lambda}_1 > \lambda_1$.

In the second section of this note we show that for $\alpha \in \left(0, \frac{\pi^2}{4d^2}\right)$, the maxima of

u(x) are located at distance greater than $\frac{d}{2}$ from the boundary $\partial\Omega$, where d is the inradius of Ω , i.e. the radius of the greatest ball contained in Ω . In the two-dimensional case N=2, we derive in Section 3 an upper bound for $\min_{\partial\Omega}\left|\nabla u\right|^2$ in terms of u_{\max} , valid for $\alpha\in[0,\lambda_1]$.

2. Location of the maxima of u(x)

Since Ω is assumed bounded and strictly convex, it follows from (Finn 2008) p. 1343 that if N=2, the level lines of u(x) are convex, so that u(x) has a unique critical point Q at which $u=u_{\max}$. However for $N\geq 3$ and $\alpha\neq 0$, the convexity of the level sets of u(x) does not seem to be established. So we cannot exclude the possibility of several critical points of u(x) if $N\geq 3$, $\alpha\neq 0$. In this section we establish the following result

Theorem 1. If $\alpha \in \left(0, \frac{\pi^2}{4d^2}\right)$, where d is the inradius of Ω , then the maxima of u(x) are

at distance is greater than $\frac{d}{2}$ from the boundary $\partial\Omega$.

For the proof of Theorem 1, we make use of the following upper bound for u(x) established in (Payne, Philippin, Proytcheva 2007).

$$u(x) \le \frac{1}{\alpha} \left\{ \frac{\cos\left[\sqrt{\alpha} d x_0 - d x\right]}{\cos\sqrt{\alpha} d x_0} - 1 \right\}, x \in \Omega.$$
 (2.1)

In (2.1), d-x- is the distance from $x\in\Omega$ to $\partial\Omega$, and x_0- is any point where u(x) takes its maximum value. From the inequality

$$\left(\frac{\pi^2}{4d^2}\right) < \lambda_1 \tag{2.2}$$

established for convex Ω by Hersch in (Hersch 1960) for N=2, and by Sperb (Sperb 1981) for $N\geq 2$, it follows that u(x)>0 in Ω as already mentioned.

Inequality (2.1) then implies

$$\cos\left[\sqrt{\alpha} \ d \ x_0 - d \ x\right] > \cos \sqrt{\alpha} \ d \ x_0 \quad , \ x \in \Omega$$
 (2.3)

i.e.
$$|d(x_0) - d(x)| < d(x_0), x \in \Omega$$
 (2.4)

i.e.
$$d(x_0) > \frac{1}{2}d(x), x \in \Omega.$$
 (2.5)

Since (2.5) holds for all $x \in \Omega$, we obtain the desired inequality

$$d x_0 > \frac{1}{2} \max_{x \in \Omega} d x = \frac{1}{2} d.$$
 (2.6)

3. An upper bound for
$$\min_{\partial\Omega} \left| \nabla u \right|^2$$

In (Payne, Philippin, Proytcheva 2007) the authors showed that for Ω bounded convex in $\mathbb{R}^N, N \geq 2$ the auxiliary function χ^-x , defined as

$$\chi \quad x := \left| \nabla u \right|^2 + \alpha u^2 + 2u, \quad \alpha = const \in [0, \lambda]$$
 (3.1)

takes its maximum at a critical point of u(x). In this section we want to show that in the particular case $N=2,~\chi~x~$ takes its minimum value at some point on the boundary $\partial\Omega$. This leads to the following result:

Theorem 2. Let Ω be a bounded strictly convex domain in \mathbb{R}^2 . Then we have

$$\min_{\partial \Omega} \left| \nabla u \right|^2 \le \chi \quad x := \left| \nabla u \right|^2 + \alpha u^2 \quad x + 2u \quad x \quad , \quad x \in \Omega. \tag{3.2}$$

In particular

$$\min_{\partial\Omega} \left| \nabla u \right|^2 \le \alpha u_{\text{max}}^2 + 2u_{\text{max}}. \tag{3.3}$$

For the proof of Theorem 2, we show under the assumptions of Theorem 2, that $\chi \quad x \quad \text{satisfies an appropriate differential equation. For convenience we write } u_{,k} \coloneqq \frac{\partial u}{\partial x_k}$ and adopt the summation convention on repeated indices. With these conventions we have for

instance

$$|\nabla u|^2 = \sum_{k=1}^2 \left(\frac{\partial u}{\partial x_k}\right)^2 = u_{,k} u_{,k} \quad \Delta u = \sum_{k=1}^2 \frac{\partial^2 u}{\partial x_k^2} = u_{,kk}$$

$$\sum_{i=1}^2 \sum_{k=1}^2 \left(\frac{\partial^2 u}{\partial x_i \partial x_k}\right) = u_{,ik} u_{,ik}.$$

Differentiating (3.1) and making use of (1.1), we obtain

$$\chi_{,k} = 2u_{,ik} u_{,i} + 2u_{,k} \alpha u + 1 = 2u_{,ik} u_{,i} - 2u_{,k} \Delta u$$
 (3.4)

$$\Delta \chi = 2u_{,ik} u_{,ik} + 2u_{,k} \Delta u_{,k} - 2u_{,k} \Delta u_{,k} - 2 \Delta u^{2}$$

$$= 2u_{,ik} u_{,ik} - 2 \Delta u^{2}.$$
(3.5)

Making use of the following identity

$$\frac{1}{2} |\nabla u|^2 \quad u_{,ik} u_{,ik} - \Delta u^2 = u_{,ik} u_{,k} u_{,ij} u_{,j} - \Delta u u_{,ik} u_{,i} u_{,k}$$
 (3.6)

valid in \mathbb{R}^2 only, we obtain

$$\Delta \chi = 4 \left| \nabla u \right|^{-2} \quad u_{,ik} \ u_{,ij} \ u_{,j} - \Delta u u_{,ik} \ u_{,i} \ u_{,k} \quad . \tag{3.7}$$

From (3.4) rewritten as

$$u_{ik} u_{i} = u_{ik} \Delta u + \frac{1}{2} \chi_{ik}$$
 (3.8)

we compute

$$u_{,ik} u_{,i} u_{,jk} u_{,j} = \Delta u^2 |\nabla u|^2 + u_{,k} \chi_{,k} + \frac{1}{4} |\nabla \chi|^2$$
 (3.9)

$$u_{ik} u_{ik} u_{ik} = \Delta u \left| \nabla u \right|^2 + \frac{1}{2} u_{ik} \chi_{ik}.$$
 (3.10)

It follows from (3.7), (3.9), (3.10) that $\chi = x$ satisfies the differential equation:

$$\Delta \chi - \left| \nabla u \right|^{-2} \nabla \chi \quad 2\Delta u \nabla u + \nabla \chi = 0, \quad x \in \Omega / Q \quad ,$$
 (3.11)

where Q is the unique critical point of u. It then follows from Hopf's first maximum principle (Hopf 1927) that $\chi = x$ takes its maximum and minimum values either on $\partial \Omega$ or at Q.

Finally the outward normal derivative of $\ \chi \ x \$ on $\partial \Omega$ is given by

$$\frac{\partial \chi}{\partial n} = -2K x \frac{\partial u}{\partial n}^2 \le 0, \quad x \in \partial \Omega$$
 (3.13)

where K x is the curvature of $\partial\Omega$. It then follows from Hopf 's second maximum principle (Hopf 1927) that χ x cannot take its maximum value on $\partial\Omega$. We then

conclude that χ^-x^- must take its maximum value at the critical point Q, and its minimum value on $\partial\Omega$. This completes the proof of Theorem 2.

We note that the inequalities in Theorem 2 are not sharp in the sense that there is no convex plane domain Ω for which we have $\chi x \equiv const$.

Indeed, suppose that $\chi x \equiv const$ in Ω . Then the identity (3.6) takes the form

$$u_{ik} u_{ik} - \Delta u^2 = 0, \quad x \in \Omega$$
 (3.13)

in view of (3.9), (3.10) with $\nabla \chi = 0$. (3.13) may be rewritten as

$$\Delta u \, u_{,k} - \frac{1}{2} \left| \nabla u \right|^2 \, ,_k \, ,_k = 0, \quad x \in \Omega.$$
 (3.14)

It then follows from the divergence theorem that

$$\int_{\partial\Omega} \Delta u \frac{\partial u}{\partial n} - \frac{1}{2} \frac{\partial}{\partial n} |\nabla u|^2 ds = \int_{\partial\Omega} K x \frac{\partial u}{\partial n} ds = 0, \quad (3.14)$$

which cannot hold since K $x \geq 0$ and $\frac{\partial u}{\partial n} < 0$ on $\partial \Omega$ by Hopf 's second maximum principle.

References

Bandle, C., Bounds for the solutions of boundary value problems // J. Math. Anal. and Appl., **54**, 1976, pp. 706-716.

Finn, D. L., Convexity of level curves for solutions to semilinear elliptic eqs. // Communications on pure and applied analysis, **7**, 2008, pp. 1335-1343.

Hersch, J., Sur la frequence fondamentale d'une membrane vivante: evaluation par defaut et principe du maximum. // ZAMP, **11**, 1960, pp. 387-413.

Hopf, E., Elementare Bemerkung úber die Lósung partieller Differentialgl. zweiter Ordnung von elliptischen Types. // Berliner Sitzungbericht der preussischen Akademie der Wissenschaften, **19**, 1927, pp. 147-152.

Hopf, E., A remark on elliptic differential equations of the second order. // Proc. Amer. Math. Soc., **3,** 1952, pp. 791-793.

Kohler-Jobin, M., Isoperimetric monotonicity and isoperimetric inequalities on Payne-Rayner type for the first eigenfunction of the Helmholtz problem. // ZAMP, **32**, 1981, pp. 625-646.

Payne, L. E., Philippin, G. A., Proytcheva, V., Continuous dependence on the geometry and on the initial time for a class of parabolic problems I. // MMAS, **30**, 2007, pp. 1885-1898.

Sperb, R, Maximum principles and their Applications, Math. In sciences and engineering, vol. 157, Academic press, New York, 1981.