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Abstract. For solutions ( )u x  of some boundary value problems defined in a bounded convex 

domain  of  , 2N N ,  we show that their points of maximum are at distance from the 

boundary greater than  
2
d

 , where d  is the inradius of  . Moreover for 2N , a  minimum 

principle for some combination of  ( )u x  and  u   is established. 

Key words: Minimum principles, second order elliptic boundary value problems 

1. Introduction 

This note addresses the following class of a boundary value problems defined  in  a 

bounded  strictly convex domain , 2N N  

 1 0, , 0,u u x u x . (1.1) 

In (1.1)  is the Laplace operator and  is a constant 10, , where 1  is the first 

eigenvalue of  the fixed membrane problem defined as  

 1 1 1 1 10, 0, , 0,x x . (1.2) 

We note that (1.1) coincides with the St.Venant problem when 0 . 

Problem (1.1) has been investigated by several authors [(Bandle 1976), (Kohler-Jobin 

1981), (Payne, Philippin, Proytcheva 2007)].  

With 1 , (1.1) admits a unique classical solution ( )u x . In (Bandle 1976), Bandle 

shows that for 1 , ( ) : 1v x u  is nonnegative in , so that 0u  in , 
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implying by the maximum principle that 0u  in . We note that ( )v x  satisfies  

 0, , 1,v v x v x . (1.3) 

Let as assume contrariwise that 0v  at some point  P . Then there exists a 

region    such that  

 0 in , 0 onv v . (1.4) 

It then follows from Green’s second identity that  

 1 1 1 10 ,v v dx v dx  (1.5) 

where 1  is the first eigenfunction  and  1  the first eigenvalue of the fixed membrane 

problem in . (1.5) leads to the contradiction 1 1 . 

In the second section of this note we show that for 

2

2
0,
4d

,  the maxima of 

( )u x  are located at distance  greater than 
2

d
 from the boundary ,  where d  is the inradius 

of   ,  i.e. the radius of the greatest ball contained in  .  In the two-dimensional case  

2N ,  we derive in Section 3 an upper bound for  
2

min u  in terms of max,u  valid for  

10, . 

2. Location of the maxima of ( )u x  

Since    is assumed bounded and strictly convex, it follows from (Finn 2008) p. 

1343  that if 2N , the level lines of  ( )u x  are convex, so that ( )u x  has a unique critical 

point Q  at which maxu u .  However for 3N  and  0 ,  the convexity of  the level  

sets of ( )u x   does not seem to be established. So we cannot exclude the possibility of several 

critical points of   ( )u x  if 3, 0N .  In this section we establish the following 

result 

Theorem 1. If   

2

2
0,
4d

, where d  is the inradius of  , then the maxima of ( )u x  are 

at   distance  is greater than 
2

d
 from the boundary  . 

For the proof of Theorem 1, we make use of the following upper bound for ( )u x   

established in (Payne, Philippin, Proytcheva 2007).  

 
0

0

cos1
( ) 1 ,

cos

d x d x
u x x

d x
. (2.1) 
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In (2.1), d x  is the distance from x  to , and 0x  is any point where ( )u x  

takes its maximum value. From the inequality  

 

2

124d
 (2.2) 

established for convex  by Hersch in (Hersch 1960) for 2N , and by Sperb (Sperb 1981)   

for 2N , it follows that ( ) 0u x   in  as already mentioned. 

 Inequality (2.1) then implies  

 0 0cos cos ,d x d x d x x  (2.3) 

      0 0i.e. ,d x d x d x x    (2.4) 

    0

1
i.e. ,

2
d x d x x  . (2.5) 

 Since (2.5) holds for all x , we obtain  the desired  inequality  

 0

1 1
max
2 2x

d x d x d . (2.6) 

3. An upper bound for   
2

min u  

In  (Payne, Philippin, Proytcheva 2007) the authors showed that for   bounded 

convex  in , 2N N  the auxiliary function x , defined as  

 
2 2

1: 2 , 0,x u u u const  (3.1) 

takes its maximum at a critical point of  ( )u x . In this section we want to show that in the 

particular case 2N ,  x  takes its minimum value at some point on the boundary  .  

This leads to the following result: 

Theorem 2. Let   be a bounded strictly convex domain in 
2

.  Then we have  

 
2 2 2min : 2 ,u x u u x u x x . (3.2) 

In particular 

 
2 2

max maxmin 2 .u u u  (3.3) 

For the proof of Theorem 2, we show under the assumptions of Theorem 2, that 

x   satisfies an appropriate differential equation. For convenience we write , :k
k

u
u

x
  

and adopt the summation convention on repeated indices. With these conventions we have for 
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instance 
2 2 2

2
, 2

1 1

, , ,2( ) k k kk
k kk k

u u
u u u u u

x x
 

2 2 2

1 1

, ,ik ik
i ki k

u
u u

x x
. 

 Differentiating (3.1) and making use of (1.1), we obtain 

 , 2 , , 2 , 1 2 , , 2 ,k ik i k ik i ku u u u u u u u  (3.4) 

 

2

2

2 , , 2 , , 2 , , 2

2 , , 2 .

ik ik k k k k

ik ik

u u u u u u u

u u u

 (3.5) 

 Making use of the following identity  

 
2 21
, , , , , , , , ,

2
ik ik ik k ij j ik i ku u u u u u u u uu u u  (3.6) 

valid in
2

 only, we obtain 

 
2

4 , , , , , , , .ik k ij j ik i ku u u u u uu u u  (3.7) 

 From (3.4)  rewritten as  

 
1

, , , ,
2

ik i k ku u u u  (3.8) 

 we compute 

 
2 2 21

, , , , , ,
4

ik i jk j k ku u u u u u u  (3.9) 

 
2 1

, , , , ,
2

ik i k k ku u u u u u . (3.10) 

 It follows from (3.7), (3.9), (3.10)  that x  satisfies the differential equation: 

 
2

2 0, /u u u x Q , (3.11) 

where Q  is the unique critical point of u . It then follows from Hopf”s first maximum 

principle (Hopf 1927) that   x   takes its maximum and minimum values either on  or 

at Q . 

Finally the outward normal derivative of  x  on  is given by  

 
2

2 0,
u

K x x
n n

 (3.13) 

where  xK  is the curvature of  . It then follows from Hopf ’s second maximum  

principle (Hopf 1927)  that  x  cannot take its maximum value on .  We then 
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conclude  that x  must take its maximum value at the critical point Q ,  and its minimum 

value on  . This completes the proof of Theorem 2. 

We note that the inequalities in Theorem 2 are not sharp in the sense that there is no 

convex plane domain  for which we have x const . 

Indeed, suppose that x const  in . Then the identity (3.6) takes the form 

 
2

, , 0,ik iku u u x  (3.13) 

in view of  (3.9) , (3.10)  with  0  . (3.13)  may be rewritten as 

 
21

, , , 0,
2

k k ku u u x . (3.14) 

It then follows from the divergence theorem that  

 
2

2
1

0
2

u u
u u ds x ds
n n n

K , (3.14) 

which  cannot hold since 0xK  and 0
u

n
 on   by Hopf ‘s second maximum 

principle.  
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