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ABSTRACT: We show the power of the simultaneous 

usage of GeoGebra and Maple for generalizing and 

proving of geometry problems. We present a simple school 

problem, where with the help of the dynamics in GeoGebra 

new geometric properties are recognize and then we prove 

them with the help of Maple. We state an open problem for 

an investigation. We suggest a new construction for 

GeoGebra that can optimize the construction process in the 

extended Euclidian plane. 
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Algebra Systems, reflection about point, conic section, 
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1. INTRODUCTION 
 

Dynamic Geometry Software (DGS) and Computer 

Algebra Systems (CAS) have been widely used in 

teaching mathematics, solving problems and research. 

A classical usage of DGS is presented in [Pec12], 

where the problem is visualized and the dynamics is 

used to recognize geometry properties like invariant 

points, lines, circles etc., then using this knowledge a 

conjecture is stated and proved or disproved. Some 

applications of GeoGebra for the finding of loci are 

made in [Ant10, GE11, Pet10, Sor10]. We would like 

to mention that in many cases DGS helps students not 

only to visualize the problem or to suggest new 

geometric properties, but also helps to hint ideas for 

the proof [FT10, KTZ13]. A good example for 

generalizing and discovering of new types of objects 

is given in [Bar11], where a new class of central 

cyclides is found and a full classification of them is 

made. Another benefit of the DGS and especially of 

GeoGebra is that they give a linking of Geometry and 

Algebra as it is shown [HJ07]. We would like to 

mention that DGS could help the teacher to optimize 

the teaching process [Cho10, KTZ13]. The project 

Fibonacci [***] has made a large step towards 

introducing of GeoGebra to the Bulgarian teachers. 

There are geometric problems that are possible to be 

solved without to much writing, once we have 

observed the idea of the proof [KTZ13], but there are 

problems in geometry, when the solution involves 

analytic geometry, that requires a lot of writing and 

calculations [GN08, GN11]. The CAS are of great 

help for these type of problems as it is shown in 

[Ger09], where Maple is used for calculating of non 

trivial geometric problems. A classical geometric 

problem that involves a minimization is investigated 

in [Ger09], where Maple is used for the actual 

calculations of the examples, and DGS is used for the 

visualization of the problem. Hilbert geometry in a 

triangle is investigated in [MRG10]. The illustrations 

of some of the concepts such as Hilbert distance, 

projective and affine coordinates are presented with 

Maple. The problem of determining the minimum 

surface area of solids obtained when the graph of a 

differentiable function is revolved about horizontal 

lines is investigated in [Tod08]. Solutions for this 

problem are given with the help of Maple and several 

potential difficulties are identified, when using CAS. 

A Maple procedures based on integration and 

transformation methods is presented and used to 

evaluate signed areas and volumes. The procedures 

are designed with formal parameters which can be 

easily used or modified by instructors and students 

[XYS12], which shows another benefit of the CAS – 

the possibility to generate procedures that can be used 

for large classes of problems. It is shown that CAS 

enables to solve many elementary and non-

elementary problems of classical geometry, which in 

the past could not be solved for the complexity of 

involved equations or the degree of the problem 

[Kar98]. 

Following the above ideas we present a simple school 

problem and with GeoGebra, we recognize new 

geometric properties and we prove them with the help 

of Maple. 

The Maple file and the sketches can be downloaded 

from http://fmi-plovdiv.org/GetResource?id=1440. 
 

2. PRELIMINARY RESULTS 
 

We will start with a classical school problem, which 

can be solved with basic facts from the Elementary 

Geometry.  

Problem 1: Let ABCD be a quadrangle and the 

points P and P′, Q and Q′, R and R′ be the midpoints 

of the segments AB and CD, BC and AD, AC and BD, 

respectively. Prove that the quadrangles PQP′Q′, 

PRP′R′ and QRQ′R′ are parallelograms (Fig. 1).  
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The solution uses the well known properties of the 

mid segment of a triangle (PQ // AC // P′Q′ , PQ′ // 

BD // P′ Q  ). 

The generalization of the above problem as like as the 

generalization of the main problem require the 

quadrangle ABCD to be considered as a complete 

quadrangle in the terms of the projective geometry: 

Definition 1:([Cox49], p. 14)  Four points A, B, C, 

D, of which no three are collinear, are the vertices of 

a complete quadrangle ABCD, of which the six sides 

are the lines AB, AC, AD, BC, BD, CD. The 

intersections of opposite sides, namely, U = AB ∩ 

CD, U = BC ∩ AD, W = AC ∩ BD are called 

diagonal points and are the vertices of the diagonal 

triangle . 

 

 
Figure 1. 

 

The present investigation is made in the Euclidian 

plane extended with all its infinite points and its 

infinite line. Therefore we will use homogeneous 

coordinates. Let us remember: If  (x,y) is a point in 

the Euclidean plane we will put as its homogenous 

coordinates in the extended Euclidian plane  (tx,ty,t), 

t∈R\{0}. For any t1,t2≠0 the points (t1x,t1y,t1) and (t2x, 

t2y, t2) are one and the same finite point. The points at 

infinity are denoted with (x,y,0). For any t1,t2≠0, 

x
2
+y

2
≠0, the points (t1 x t1 y,0) and (t2 x,t2 y,0) are one 

and the same infinite point. Note that the triad (0,0,0) 

is omitted and does not represent any point. The 

origin is represented by (0,0,1). 

The equation of a line in Cartesian coordinates is 

l:ax+by+c=0 and in homogenous coordinates is 

l:ax+by+ct=0. The equation of a line l, passing 

through two points (a1,b1,t1) and (a2,b2,t2) is: 

1 1 1

2 2 2

: 0

x y t

l a b t

a b t

=
. 

The equation of a curve of the second power in 

Cartesian coordinates is 

k:ax
2 
+ by

2 
+ 2cxy + 2dx + 2ey + f=0 

and its equation in homogenous coordinates is 

k:ax
2
+by

2
+2cxy+2dxt+2eyt+ft

2
=0. 

For a quadratic form 
2 2 2: 2 2 2 0k ax by ft cxy dxt eyt+ + + + + =  

the matrixes  

33,

a c d
a c

A c b e A
c b

d e f

 
  

= =   
  

 

 

are used for determining the type of the curve k. It is 

degenerated if and only if  det(A)=0. The curve k is: 

parabola if and only if det(A33)=0, hyperbola if and 

only if det(A33)>0, ellipse if and only if det(A33)<0. 

 

3. MAIN PROBLEM 
 

We will use the notation “a reflection about point”, 

which is used in GeoGebra. It is a synonym for “a 

reflection in a point” ([Cox49], p. 49]) and for 

“central symmetry” ([Jam92], p. 411). 

It is not difficult to observe that the points P and P′, 

Q and Q′, R and R′ introduced in Problem 1 are 

corresponding points for a reflection in the point 

O=PP′∩QQ′∩RR′, which is the centroid point of 

ABCD. Thus we get a natural generalization of 

Problem 1. 

Problem 2: Let ABCD be a complete quadrangle and 

Φ be a reflection in a point O. Let us denote  A′ B′ C′ 

D′ =Φ(ABCD) and P=AB∩C′D′, P′ ABCD 

=A′B′∩CD, Q=BC∩A′D′, Q′=B′C′∩AD, 

R=AC∩B′D′, R′=A′C′∩BD . Prove that the 

quadrangles PP′QQ′, PP′RR′, QQ′RR′ are 

parallelograms (Fig. 2.1 and Fig. 2.2). 

 

 
Figure 2.1. 

 
Figure 2.2. 

 
Solution: Let O be an arbitrary finite point in the 

plane of the quadrangle ABCD.  The reflection Φ has 

the property Φ = Φ
-1

. That is way from the equalities  
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(1) 

( ' ') ( ) ( ' ')

' ' ',

( ' ') ( ) ( ' ')

' ' ',

( ' ') ( ) ( ' ')

' ' '

P AB C D AB C D

A B CD P

Q BC A D BC A D

B C AD Q

R AC B D AC B D

A C BD R

Φ = ∩ = Φ ∩ Φ

= ∩ =

Φ = ∩ = Φ ∩ Φ

= ∩ =

Φ = ∩ = Φ ∩ Φ

= ∩ =

 

it follows that the segments  PP′,  QQ′, RR′ have a 

common midpoint О. Therefore the quadrangles 

PQP′Q′ ,  QRQ′R′ ,  PRP′R′  are parallelograms (Fig 

2). □ 

If we apply dynamics on the free point O in Problem 

2, we observe that the parallelograms PQP′Q′ ,  

QRQ′R′ ,  PRP′R′   are changing their position, the 

length of their sides and the angles, but they remain 

either parallelograms or their vertexes become 
collinear. This observation leads to the following 

problem: 

Main problem: Let ABCD be a complete quadrangle 

and Φ be a reflection in a points a center O. Let us 

denote  A′ B′ C′ D′ =Φ(ABCD) and P=AB∩C′D′, P′ 

ABCD =A′B′∩CD, Q=BC∩A′D′, Q′=B′C′∩AD, 

R=AC∩B′D′, R′=A′C′∩BD . Find the loci of the point 

О, when the parallelograms PQP′Q′, QRQ′R′, PRP′R′ 

degenerate into segments that are laying at one line. 

An equivalent formulation of the Main problem is: 

Let ABCD be a complete quadrangle and Φ be 

reflection in a point O. Let us denote  A′ B′ C′ D′ 

=Φ(ABCD) and P=AB∩C′D′, P′ ABCD =A′B′∩CD, 

Q=BC∩A′D′, Q′=B′C′∩AD, R=AC∩B′D′, 

R′=A′C′∩BD .  Find the loci of the point О, when the 

points P, Q, R, P′, Q′, R′ are collinear (Fig. 3). 

 

 
Figure 3. 

 
Solution: We will use GeoGebra and Maple for our 

investigation of the problem. In the sequel we will 

use the sign “>” to indicate the Maple input. We will 

use Maple for the calculation to find the loci of the 

point O, when the points P, Q, R, P′, Q′, R′ are 

collinear. 

Without loss of generality we can assume that the 

homogenous coordinates of the points A and B are: 

(2) (0,0,1), (1,0,1).A B  

If not we can translate the quadrangle ABCD, so that 

the point A to coincide with (0,0,1), then we can 

rotate the figure around A until the point B coincides 

with (b,0,1) and at the end we can use a homothety 

with center A(0,0,1), so that the point B to coincide 

with (1,0,1). By all these transformations the 

construction will be preserved. Let us mention that 

with the help of Maple it is possible to make all the 

calculations without assuming that A(0, 0, 1), B(1, 0, 

1). 

The easiest way to write the equations of lines and to 

check if three points are collinear is by using 

determinants. That is why we will use the package 

“LinearAlgebra” in Maple. Let us put 

(3) 1 2 1 2( , ,1), ( , ,1), ( , ,1).C c c D d d O x y  

1 2 1 2( ) : : 0 : : 0 : : 1: : 0 :with LinearAlgebra a a b b> = = = =  

With the choice of the third coordinate of the points 

A, B, C, D, O to be equal to 1 we reject the 

opportunity any one of these points to be infinite one. 

Indeed, when the centre O of reflection becomes 

infinite point, then the reflection Φ in a point converts 

into translation, which is not involutory collineation, 

which is very important for our investigation. 

The finite points A, B, C, D are vertexes of a 

quadrangle, when any three of them are not collinear. 

Three points are collinear if and only if the 

determinant of the matrixes of their coordinates is 

equal to zero. We define the determinants of the 

matrixes with elements the homogeneous coordinates 

of the triads of points (A, B, C), (A, B, D), (B, C, D), 

(A, C, D): 

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1

( (3,[[ , ,1],[ , ,1],[ , ,1]])) 0;

( (3,[[ , ,1],[ , ,1],[ , ,1]])) 0;

( (3,[[ , ,1],[ , ,1],[ , ,1]])) 0;

( (3,[[

Determinant Matrix a a b b c c

Determinant Matrix a a b b d d

Determinant Matrix b b c c d d

Determinant Matrix a

> ≠

> ≠

> ≠

> 2 1 2 1 2, ,1],[ , ,1],[ , ,1]])) 0;a c c d d ≠

 

Consequently the quadrangle ABCD exists if and only 

if the following conditions are satisfied: 

(4) 
2 2 1 2 2 1

1 2 2 1 2 2

0, 0,

0.

c d c d c d

c d c d c d

≠ − ≠

− + − ≠
 

We do not exclude the case, when the quadrangle is 

not a convex figure. The convexity of the quadrangle 

will be used later to determine the type of the loci of 

O.  

Let us denote the coordinates of the vertexes of the 

image A′B′C′D′ = Φ(ABCD) by 

(5) 
3 4 3 4

3 4 3 4

'( , ,1), '( , ,1),

'( , ,1), '( , ,1).

A a a B b b

C c c D d d
 

Using (2) and (3) we define in Maple the coordinates 

of the vertexes of the image A′B′C′D′ 

3 1 4 2 3 1 4 2

3 1 4 2 3 1 4 2

: 2 : : 2 : : 2 : : 2 :

: 2 : : 2 : : 2 : : 2 :

a x a a y a b x b b y b

c x c c y c d x d d y d

> = ⋅ − = ⋅ − = ⋅ − = ⋅ −

> = ⋅ − = ⋅ − = ⋅ − = ⋅ −

and we obtain  A′( 2x, 2y, 1), B′( 2x-1, 2y, 1) , C′( 2x-

c1, 2y –c2 , 1) , D′(2x-d1, 2y –d2 , 1). 

The points P, Q and R are intersection points of the 

pairs of lines (AB, C′D′ ), (AD, B′C′ ) and (AC, B′D′ ), 

respectively. Therefore we need to find the equations 

of the lines AB, C′D′, AD, B′C′, AC and B′D′.  We 

define the functions Gi:R
3
→R, i=1,2,…6, which are 
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the determinants, that define the equations of the lines 

AB, C′D′, AD, B′C′ AC and B′D′: 

1 1 2 1 2

2 3 4 3 4

3 1 2 1 2

: ( , , ) ( (3,[[ , , ],[ , ,1],[ , ,1]])) :

: ( , , ) ( (3,[[ , , ],[ , ,1],[ , ,1]])) :

: ( , , ) ( (3,[[ , , ],[ , ,1],[ , ,1]])) :

G u v t Determinant Matrix u v t a a b b

G u v t Determinant Matrix u v t c c d d

G u v t Determinant Matrix u v t b b c c

G

> = →

> = →

> = →

> 4 3 4 3 4

5 1 2 1 2

6 3 4 3 4

: ( , , ) ( (3,[[ , , ],[ , ,1],[ , ,1]])) :

: ( , , ) ( (3,[[ , , ],[ , ,1],[ , ,1]])) :

: ( , , ) ( (3,[[ , , ],[ , ,1],[ , ,1]])) :

u v t Determinant Matrix u v t a a d d

G u v t Determinant Matrix u v t a a c c

G u v t Determinant Matrix u v t b b d d

= →

> = →

> = →

We find the following equations of the lines AB, 

C′D′, BC, A′D′, AC and B′D′ in homogenous 

coordinates. 

2 2 1 1

1 2 1 2 2 2 1 1

2 1 2

2 1 1 2

2 1

2 1

2 2 1

: 0,

: ( ) ( )

( (2 2 ) (2 2 )) 0,

: ( 1) 0,

' ' : (2 2 ) 0,

: 0,

: (1 )

( 2 2 2 ) 0

AB v

C D d c u c d v

c d d c x c d y d c t

BC c u c v c t

A D d u d v yd xd t

AC c u c v

B D d u d v

d xd y d y t

=

′ ′ − + −

+ − + − + − =

− + − + =

− + − =

− + =

′ ′ + −

+ − − + =

 

By solving the systems of equations  

(6) 
2 2 1 1

1 2 1 2 2 2 1 1

: 0

: ( ) ( )

( 2 2 2 2 ) 0,

AB v

C D d c u c d v

c d d c xd xc yd yc t

=

′ ′ − + −

+ − − + + − =

 

(7) 
2 1 2

2 1 1 2

: ( 1) 0

' ' : (2 2 ) 0

BC c u c v c t

A D d u d v yd xd t

− + − + =

− + − =
 

and 

(8) 

2 1

2 1

2 2 1

: 0

: (1 )

( 2 2 2 ) 0

AC c u c v

B D d u d v

d xd y d y t

− + =

′ ′ + −

+ − − + =

 

we will obtain the homogeneous coordinates of the 

points P, Q, and R, respectively. 

Using Maple we solve the above systems of 

equations. We denote the solutions of the systems (6), 

(7) and (8) with p, q and r, respectively. 

1 2

3 4

5 6

: ({ ( , , ) 0, ( , , ) 0},[ , ]);

: ({ ( , , ) 0, ( , , ) 0},[ , ]);

: ({ ( , , ) 0, ( , , ) 0},[ , ]);

p solve G u v t G u v t u v

q solve G u v t G u v t u v

r solve G u v t G u v t u v

> = = =

> = = =

> = = =

 

From the solutions p, q and r we obtain the following 

homogenous coordinates of the points P, Q and R: 

1 2 2 2 1 1 2 2

( , , )

( 2 2 2 2 , 0, )

P Px Py Pt

c d d x c x c y d y c d

=

= − + − + −

2 1 1 2 1 1 1 2

2 1 2 2 1 2 1 2 2

( , , )

( (2 2 2 2 ),

(2 2 ), )

Q Qx Qy Qt

xd d y c d x c d y d c

c d y d x d c d d c d

=

= − − − + +

− − + − −

 

and 

1 2 2 1

2 2 2 1 1 2 1 2 2

( , , ) ( ( 2 2 2 ) ,

( 2 2 2 ), )

R Rx Ry Rt c d y d x d y

c d y d x d y c d d c c

= = − − − +

− − + + − +
 

We define these coordinates in Maple. 

1 2 2 2 1 1 1 2

2 2

1 2 1 2 1 1 1 2

2 2 1 2 1 2 1 2 2

1 2 2 1

2 2

: 2 2 2 2 :

: 0 : : :

: 2 2 2 2 :

: (2 2 ) : : :

: (2 2 2 ) :

: (2 2

Px c d x d x c y c y d d c

Py Pt c d

Qx y d x d x c d y c d d c

Qy c x d y d d Qt c d d c d

Rx c y d x d y d

Ry c y d x

> = ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ −

> = = −

> = ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅

> = ⋅ ⋅ − ⋅ ⋅ − = ⋅ − ⋅ −

> = ⋅ ⋅ − + ⋅ ⋅ − ⋅ ⋅

> = ⋅ − + ⋅ 2 1 1 2 1 2 22 ) : : :d y d Rt c d d c c⋅ − ⋅ ⋅ = ⋅ − ⋅ +

 

According to the properties of any homology the 

triads of points (O,P,P′), (O,Q,Q′) and (O,R,R′) are 

always collinear. Hence in order to solve the problem 

it is enough to find the conditions when the triads of 

points (O,P,Q), (O,P,R) and (O,Q,R) are collinear. 

That is why we define the functions Fi:R
2
→R, 

i=1,2,3, which are the determinants of the matrixes of 

the coordinates of the triads (O,P,Q), (O,P,R), 

(O,Q,R). 
1

2

3

: ( , ) ( (3,[[ , ,1],[ , , ],[ , , ]])) :

: ( , ) ( (3,[[ , ,1],[ , , ],[ , , ]])) :

: ( , ) ( (3,[[ , ,1],[ , , ],[ , , ]])) :

F x y Determinant Matrix x y Px Py Pt Qx Qy Qt

F x y Determinant Matrix x y Px Py Pt Rx Ry Rt

F x y Determinant Matrix x y Qx Qy Qt Rx Ry Rt

> = →

> = →

> = →

 

With the help of the function “collect” we simplify 

the quadratic forms Fi(x,y) and we see that 

Fi(x,y)=Fj(x,y) for any i≠j, i,j=1,2,3. 

1 2 3( ( , ),{ , }); ( ( , ),{ , }); ( ( , ),{ , });collect F x y x y collect F x y x y collect F x y x y>

2 2 2

2 2 2 2

2 2 2

1 2 1 2 1 2 2 1

1 2 2 1 2 2

2 2 2 2

2 2 2 2 1 2 2 1 2 2

1 2 2 1 2 2

2 2 2 2 2 2

1 2 1 2 1 2 1 2

2 2

1 2 2 1 2 2

( , ) (2 2 )

(2 2 2 2 )

(4 4 )

( 2 2 )

(2 2 )

( )

iF x y c d c d x

c d c d d c c d y

d c d c c d yx

c d c d c c d d d c x

c c d d c d y

d c d c c d c d y

c c d d d c

= −

+ − + −

+ −

− + −

+ −

+ − + −

− +

 

Therefore we get that the collinearity of one of the 

triads of points (O,P,Q), (O,P,R), (O,Q,R) is 

equivalent to the collinearity of the other two triads of 

points and is equivalent to the collinearity of the 

seven points (O,P,P′,Q,Q′,R,R′). 

Let us denote with k  the curve defined by the 

equation F1(x,y)=0. 

We define the function F(x,y,t):R
3
→R, which will be 

the function that determines the quadratic form k  in 

homogeneous coordinates.  

2

2 2 2 2

2 2 2

1 2 1 2 1 2 1 2

2

2 2 1 2 1 2

2 2 1 1

2 2 2 2 1 2 1 2

1 2 2 1 2 2

2 2 2 2 2 2

1 2 1 2 1 2 1 2

: ( , , ) 2 ( )

2( )

( )

4 ( )

( 2 2 )

2( )

( )

k F x y t d c c d x

d c c d c d d c y

c d d c c d t

c d c d xy

c d d c c d d c xt

d d c c c d yt

d c c d c d d c yt

= −

+ − + −

+ −

+ −

+ − + −

+ −

+ − + −

Thus we obtain that the parallelograms PQP′Q′ , 

QRQ′R′ , PRP′R′ degenerate into segments that are 
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laying at one line when the center O(x,y,1) of the 

reflection Φ lays on the curve of the second power 

k:F(x,y,t)=0. 
2

2 2 2 2

2 2 2

1 2 1 2 1 2 1 2

2

2 2 2 1 2 1 2 2 1 1

2 2 2 2 1 2 1 2

1 2 2 1 2 2

2 2 2 2 2 2

1 2 1 2 1 2 1 2

: ( , , ) 2 ( )

2 ( )

( ) 4 ( )

( 2 2 )

2( )

( )

F x y t d c c d x

d c c d c d d c y

c d c d d c t c d d c x y

c d d c c d d c x t

c c d d d c y t

c d d c c d d c y t

> = → ⋅ ⋅ − ⋅

+ ⋅ ⋅ − ⋅ + ⋅ − ⋅ ⋅

+ ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅

+ ⋅ ⋅ − + ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

+ ⋅ − ⋅ − ⋅ + ⋅ ⋅ ⋅ :

 

The easiest way find the curve k is by finding five 

points that are laying on it. By experiments with the 

sketch in GeoGebra we have observed that the 

midpoints of the sides and the diagonal points of the 

quadrangle ABCD are supposed to lay on the curve k. 

Let denote by Mi(mi,ni,ti), i=1,2,…,6 the midpoints of 

the segments AB, BC, CD, DA, AC, BD, respectively. 
1 1 2 2 1 1

1 1 1 2

2 2 1 1 2 2
2 2 3 2

1 1 2 2
3 4 4 4

1 1 2 2
5 5 5

1 1 2 2
6 6 6

1 1
: : : : : : : :

2 2 2 2

1 1
: : : : : : : :

2 2 2 2

1 1 1 1
: : : : : : : :

2 2 2 2

1 1
: : : : : :

2 2 2

1 1
: : : : : :

2 2 2

a b a b b c
m n t m

b c c d c d
n t m n

a d a d
t m n t

a c a c
m n t

b d b d
m n t

+ + ++
> = = = =

+ + ++
> = = = =

+ ++ +
> = = = =

+ + +
> = = =

+ + +
> = = =

 

The calculation in Maple shows that F(mi,ni,ti)=0 for 

every i=1,2,…,6 and consequently Mi∈k for every 

i=1,2,…,6. 

1 1 1 2 2 2 3 3 3

4 4 4 5 5 5 6 6 6

( ( , , )), ( ( , , )), ( ( , , )));

( ( , , )), ( ( , , )), ( ( , , )));

print(factor F m n t factor F m n t factor F m n t

print(factor F m n t factor F m n t factor F m n t

>

>

We will show that the three diagonal points 

U=AB∩CD, V=BC∩AD, W=AC∩BD lay on the 

curve k, too. 

We have the equations of the lines AB:G1(x, y, t)=0, 

BC: G3(x, y, t)=0 and AC:G5(x, y, t)=0. We will 

define the lines AC, AD and BD in a similar fashion. 

7 1 2 1 2

8 1 2 1 2

9 1 2 1 2

: ( , , ) ( (3,[[ , , ],[ , ,1],[ , ,1]])) :

: ( , , ) ( (3,[[ , , ],[ , ,1],[ , ,1]])) :

: ( , , ) ( (3,[[ , , ],[ , ,1],[ , ,1]])) :

G u v t Determinant Matrix u v t c c d d

G u v t Determinant Matrix u v t a a d d

G u v t Determinant Matrix u v t b b d d

> = →

> = →

> = →

 

The coordinates of the points U, V, W are the 

solutions of the following systems, respectively: 

( )

( )

( )

( )

( )

( )

1 3 5

7 8 9

, , 0 , , 0 , , 0
, ,

, , 0 , , 0 , , 0.

G x y t G x y t G x y t

G x y t G x y t G x y t

= = =

= = =
 

We solve the above systems of linear equations in 

Maple. 

1 7

8 3

9 5

1: ({ ( , , ) 0, ( , , ) 0},[ , ]);

1: ({ ( , , ) 0, ( , , ) 0},[ , ]);

1: ({ ( , , ) 0, ( , , ) 0},[ , ]);

u solve G u v t G u v t u v

v solve G u v t G u v t u v

w solve G u v t G u v t u v

> = = =

> = = =

> = = =

 

We get the homogeneous coordinates of the points U 

(Ux, Uy, Ut), V (Vx, Vy, Vt) and W (Wx, Wy, Wt). 

1 2 1 2 2 2

1 2 2 2 1 2 1 2 2

1 2 2 2 1 2 1 2 2

: : : 0 : : :

: : : : : :

: : : : : :

Ux d c c d Uy Ut c d

Vx d c Vy c d Vt c d d c d

Wx c d Wy d c Wt c d d c c

> = ⋅ − ⋅ = = −

> = − ⋅ = − ⋅ = ⋅ − ⋅ −

> = ⋅ = ⋅ = ⋅ − ⋅ +

 

With the help of Maple we calculate F (Ux, Uy, 

Ut)=0, F (Vx, Vy, Vt)=0 and F (Wx, Wy, Wt)=0. 
( ( , , )), ( ( , , )), ( ( , , )));print(factor F Ux Uy Ut factor F Vx Vy Vt factor F Wx Wy Wt>  

We will investigate the type of the curve k with the 

help of the matrixes A and A33. We define in Maple 

matrixes A and A33 and we calculate their 

determinants. 

2 2 2 2

2 2
1 2 1 2 1 2 1 2

2 2 1 1

2 2 2 1 2 1

2 1 2 2 1 1 2 2 1 2

2 2 1 2 1 2

: 2 ( ) :

: 2 ( ) :

: 4 ( ) :

: ( (1 2 ) (1 2 )) :

: (2 ( 1)) ( ( 1) 2 ) :

: ( ) :

a d c d c

b c d d c d c c d

c c d c d

d c d c d d c

e c d d c d c d d c c

f c d c d d c

> = ⋅ ⋅ ⋅ −

> = ⋅ ⋅ − ⋅ + ⋅ − ⋅

> = ⋅ ⋅ ⋅ −

> = ⋅ ⋅ ⋅ + ⋅ − ⋅ + ⋅

> = ⋅ ⋅ ⋅ − ⋅ − + ⋅ ⋅ ⋅ − − ⋅

> = ⋅ ⋅ − ⋅

 

33

: 3, , , , , , , , , :
2 2 2 2 2 2

: 2, , , ,
2 2

c d c e d e
l Determinant Matrix a b f

c c
l Determinant Matrix a b

        
> =                   

      
> =               

 

The calculation in Maple gives us 

1 2 3 4 5 6det( )
2

B B B B B B
A = , where 1 2 2 ,B c d=  

2 2 2 ,B c d= −  
3 1 2 2 1 2 2 ,B c d c d c d= + − −  

4 1 2 1 2 ,B c d d c= −  

5 1 2 1 2 2 ,B c d d c d= − −  
6 1 2 1 2 2.B c d d c c= − +  

The curve k is no degenerate if and only if det(A)≠0.  

Taking into account (4) we obtain that det(A)=0 if 

and only if  

(c2-d2)(c1d2-d1c2-d2)(c1d2-d1c2+c2)=0. 

I) c2-d2=0 if and only if the pairs of opposite sides AB 

and CD are parallel. 

II) c1d2-d1c2-d2=0 if and only if the pairs of opposite 

sides AC and  BD are parallel. 

III) c1d2-d1c2+c2=0 if and only if the pairs of opposite 

sides AD and BC are parallel. 

Let there holds case I).  We put d2=c2 and we find the 

function F. 

2 2: : ( ( , , ));d c factor F x y t> =  

2 1 1 2

1 2 2 1

( , , ) ( )( 2 ).

( 2 )

F x y t c c d c t y

c y c t c x d y y

= − −

+ − + −
 

Because of (4) and C≠D it follows that c2(d1 – c1)≠0 . 

Hence F consists of two intersecting lines g1: 

y(c1+d1-1)-2c2x+c2t=0 and g2: 2y-c2t=0. It is easy to 

confirm the fact M1, M3 ∈ g1  and M2, M4 ∈ g2 . 

Indeed, we define the functions, that determine the 

lines g1  and   g2  

1 1 1 2 2

2 2

: ( , , ) ( 1) 2 :

: ( , , ) 2 :

g x y t c d y c x c t

g x y t y c t

> → + − ⋅ − ⋅ ⋅ + ⋅

> → ⋅ − ⋅
 

to check that M1, M3 ∈ g1  and   M2, M4 ∈ g2.  

We get that 1 1 1 1( , , )) 0,g m n t = 1 3 3 3( , , )) 0,g m n t =  

2 2 2 2( , , ) 0g m n t =  and 2 4 4 4( , , ) 0.g m n t =  Therefore the 

point  g1 ∩ g2  is the centroid of ABCD. 
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Figure 4.1. 

 

I.1) It is easy to observe that the points of the line g2: 

y=c2/2 do not satisfy the conditions of Problem 3, 

because in this case the pairs of lines (AB, C′D′) and 

(A′B′, CD) are coinciding lines (Fig. 4.1) and the 

points P and P′ are not clearly defined. 

We can prove this observation not only with 

elementary geometry but with the help of Maple. The 

lines AB and CD are parallel if and only if d2=c2 and 

O∈ g2 if and only if y=c2/2. We get that in this case 

the lines  

AB: G1(u,v,t)=v=0 and C′D′: G2(u,v,t)=(c1-d1)v=0 

coincide. 

2
2 2 1 2: : : : ( , , ); ( , , );

2

c
d c y G u v t G u v t> = =  

It can be observed in this case that the points (O, Q, 

R) are collinear, because 

1

0

x y

Qx Qy Qt

Rx Ry Rt

= . 

[ ] [ ] [ ]( )( )3, , ,1 , , , , , , ;Determinant Matrix x y Qx Qy Qt Rx Ry Rt >  
 

I.2) Let O lays on the line g1: y(c1+d1-1)-2c2x+c2t=0, 

except the point g1 ∩ g2. Now we will show that the 

points P, Q and R are collinear (Figure 4.2). 

 

 
Figure 4.2. 

 

Really the point P is an intersection point of two 

different parallel lines AB and C′D′. Thus the 

homogenous coordinates of the infinity point P are 

(1,0,0). The solution of the equation 

(9)

1 0 0

0

Px Py Pt

Qx Qy Qt Qx Qy Qt

Rx Ry Rt Rx Ry Rt

= =  

gives the condition 

2
2 2 2 1 12 ( 2 ( 1 ) ) 0c c c x c d y⋅ ⋅ − ⋅ ⋅ + − + ⋅ =  

for the points P, Q and R to be collinear i.e. the vector 

QR to be collinear with the vector p(1,0). 

[ ] [ ] [ ]( )( )
(' ') : (' ') : (' ') :

3, 1,0,0 , , , , , , 0;

unassign x unassign y unassign t

Determinant Matrix Qx Qy Qt Rx Ry Rt

>

 > = 

 

From (9) we get that the points P, Q and R are 

collinear if and only if y(c1+d1-1)-2c2x+c2t=0 and 

therefore P, Q and R are collinear if and only if the 

centre O of the reflection Φ in a point lays on the line 

g1:y(c1+d1-1)-2c2x+c2t=0 , except the point g1 ∩ g2. 

Let there holds case II), i.e. c1d2-d1c2-d2=0. We will 

consider two subcases: 

a) c1 ≠ 1; b) c1 = 1.  

Let there holds a). We put 1 2
2

1 1

d c
d

c
=

−
 and we find 

1 2
2 2

1

: : ( ( , , ));
1

d c
d c factor F x y t

c

⋅
> =

−
 

1 2 3 4

2
1

( , , ) ( , , )
( , , ) ,

( 1)

d c g x y t g x y t
F x y t

c
=

−
 

where g3 : (2c1-2)y – 2xc2 +c2t=0  and g4 : (c12-c1d1-

1+d1)y+(d1c2-c1c2+c2)x+d1c2t=0. 

Because of (4) and D≠A it follows that d1.c2≠0 and 

consequently F consists of the two intersecting lines 

g3, g4. It is easy to confirm that M1, M3∈ g3, and M2, 

M4∈ g4. Indeed, we define the functions, that 

determine the lines g3 and g4   

3 1 2 2

2
4 1 1 1 1 2 1 1 2 1

: ( , , ) (2 2) 2 :

: ( , , ) ( 1 ) ( 1 ) :

g x y t c y c x c t

g x y t c c d d y c d c x c d t

> → ⋅ − ⋅ − ⋅ ⋅ + ⋅

> → − ⋅ − + ⋅ − ⋅ + − ⋅ − ⋅ ⋅

to check whether M1, M3∈ g3, and M2, M4∈ g4. We 

calculate 

3 1 1 1 3 3 3 3

4 2 2 2 4 4 4 4

( ( , , )); ( ( , , ));

( ( , , )); ( ( , , ));

factor g m n t factor g m n t

factor g m n t factor g m n t

>

>
 

Therefore the point g3 ∩ g4  is the centroid of ABCD. 

II.a.1)  It is easy to observe that the points of the line 

g3 do not satisfy the conditions of Problem 3, because 

in this case the pairs of lines (BC, A′D′) and (AD, 

B′C′) are coinciding lines (Fig. 5.1) and the points Q 

and Q′ are not clearly defined. 
 

 
Figure 5.1. 

 

We can prove this observation not only with 

elementary geometry but with the help of Maple.  

The lines AD and BC are parallel if and only if c1d2-
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d1c2-d2=0 and O∈ g3 if and only if (2c1-2)y – 2xc2 

+c2=0. We get that in this case the lines  

BC: G3(u, v, t)=(c1-1)v-c2u+c2t=0  

and 

( )1
1 2 2

1

' ' : 4( , , ) ( 1) 0
1

d
A D G u v t c v c u c t

c

−
= − − + =

−
 

coincide. 

1 2 2 2
2 3 4

1 1

2
: : : : ( , , ); ( , , );

1 2 2

d c c x c
d y G u v t G u v t

c c

⋅ ⋅ ⋅ −
> = =

− ⋅ −
 

It can be observed in this case that the points (O,R,P) 

are collinear, because the determinant 

[ ] [ ] [ ]( )( )3, , ,1 , , , , , , ;Determinant Matrix x y Px Py Pt Rx Ry Rt >  
 

is equal to zero. 

II.a.2) Let O lays on the line g4 : y(c1
2
 –c1d1-

1)+x(c2+c2d1-c1c2)-d1c2t=0, except the point g3 ∩ g4. 

Now we will show that the points P,Q and R are 

collinear (Fig. 5.2). 

 

 
Figure 5.2. 

 

Really the point Q is an intersection point of two 

different parallel line A′D′ and BC. Thus the 

homogenous coordinates of the infinite point Q are 

(c1-1, c2, 0). The solution of the equation 

(10) 
1 21 0

0

c c

Rx Ry Rt

Px Py Pt

−

=  

gives the condition the points P, Q and R to be 

collinear i.e. the vector RP to be collinear with the 

vector q(c1-1,c2). 

From (10) we get that the points P, Q and R are 

collinear if and only if 
2

1 1 1 1 2 2 1 1 2 1 2( 1) ( ) 0y c c d d x c c d c c td c− + − + + − − =  

and therefore P, Q and R are collinear if and only if 

the centre O of the reflection Φ in a point lays on the 

line g4 , except the point g3 ∩ g4. 

[ ] [ ] [ ]( )( )1 2

(' ') : (' ') : (' ') :

3, 1, ,0 , , , , , , ;

unassign x unassign y unassign t

Determinant Matrix c c Rx Ry Rt Px Py Pt

>

 > − 

 

Let there holds b). Then d1c2=0. Because of (4) it 

follows that d1=0. We find the function F 

1 1

(' 2 ') : (' 2 ') :

: 1: : 0 : ( ( , , ));

unassign d unassign c

c d factor F x y t

>

> = =
 

Because of (4) it follows that F consists of two 

intersecting lines g5 : 2x - t=0 and g6 : 2y+( d2-c2)x - 

d2t=0. It is easy to confirm that M1, M3∈ g5, and M2, 

M4∈ g6. Indeed, we define the functions, that 

determine the lines g5 and g6 

5

6 2 2 2

: ( , , ) 2 :

: ( , , ) 2 ( ) :

g x y t x t

g x y t y d c x d t

> → ⋅ −

> → ⋅ + − ⋅ − ⋅
 

to check whether M1, M3∈ g5, and M2, M4∈ g6. 

5 1 1 1 5 3 3 3

6 2 2 2 6 4 4 4

( ( , , )); ( ( , , ));

( ( , , )); ( ( , , ));

factor g m n t factor g m n t

factor g m n t factor g m n t

>

>
 

Therefore the point  g5 ∩ g6  is the centroid of ABCD. 

II.b.1) It is easy to observe that the points of the line 

g5  do not satisfy the conditions of Problem 3, 

because in this case the pairs of lines (BC, A′D′) and 

(AD, B′C′) are coinciding lines (Fig. 5.3) and the 

points Q and Q′ are not clearly defined. We can prove 

this observation not only with elementary geometry 

but with the help of Maple. 

The lines AD and BC are parallel and O∈ g5 if and 

only if  2xc2 - c2  t=0. We get that in this case the lines 

BC: G3(u ,v, t)=u-t=0 and A′D′ : G4(u, v, t)=u-t=0 

coincide.  

1 1 3 4

1
: 1: : 0 : : : ( ( , , )); ( ( , , ));

2
c d x factor G u v t factor G u v t> = = =  

It can be observed in this case that the points (O, R, 

P) are collinear because the determinant 

[ ] [ ] [ ]( )( )3, , ,1 , , , , , , ;Determinant Matrix x y Px Py Pt Rx Ry Rt >  

 

is equal to zero. 

 

 
Figure 5.3. 

 

II.b.2) Let O lays on the line g6 : 2y+( d2-c2)x - d2t=0, 

except the point g5 ∩ g6. Now we will show that the 

points P, Q and R are collinear (Fig. 5.4). 

 

 
Figure 5.4. 

 

Really the point Q is an intersection point of two 

different parallel lines A′D′ and BC. Thus the 

homogenous coordinates of the infinite point Q are 

(0, 1, 0). The solution of the equation 
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(11) 
0 1 0

0Rx Ry Rt

Px Py Pt

=  

gives the condition the points P,Q and R to be 

collinear i.e. the vector RP to be collinear with the 

vector q1(0,1). 

From (11) we get that the points P, Q and R are 

collinear if and only if 2y+( d2-c2)x - d2t=0 and 

therefore P, Q and R are collinear  if and only if the 

centre O of the reflection Φ in a point lays on the line 

g6 , except the point g5 ∩ g6. 

[ ] [ ] [ ]( )( )( )
(' ') : (' ') : (' ') :

3, 0,1,0 , , , , , , 0;

unassign x unassign y unassign t

factor Determinant Matrix Px Py Pt Rx Ry Rt

>

 > = 

 

Let there holds III), i.e. c1d2-d1c2+c2=0. We will 

consider two subcases: a) c1≠0; b) c1=0.  

Let there holds a). We put 1 2
2

1

( 1)d c
d

c

−
=  and we 

find the function F.
  

1 2
2

1

(' 1') : (' 1') :

( 1)
: : ( ( , , ));

unassign d unassign c

d c
d factor F x y t

c

>

− ⋅
> =

 

Because of (4) and B≠D it follows that F consists of 

two intersecting lines g7: 2c1y-2c2x+c2t=0 and g8 : 

(c1
2
-c1-c1d1)y+(c2d1-c1c2-c2)x+c1c2t=0. It is easy to 

confirm the fact M1, M3, M2, M4 ∈ g7 and M5, M6 ∈ g8. 

Indeed, we define the function, that determine the 

lines g7 and g8  

7 1 2 2

2
8 1 1 1 2 1 1 2 2 1 2

: ( , , ) 2 2 :

: ( , , ) ( ) ( ) :

g x y t c y c x c t

g x y t c c d c y c d c c c x c c t

> → ⋅ ⋅ − ⋅ ⋅ − ⋅

> → − ⋅ − ⋅ + ⋅ − ⋅ − ⋅ − ⋅ ⋅

to check whether M1, M3, M2, M4 ∈ g5  and   M5, M6 ∈ 

g6 

7 1 1 1 7 2 2 2

7 3 3 3 7 4 4 4

8 5 5 5 8 6 6 6

( ( , , )); ( ( , , ));

( ( , , )); ( ( , , ));

( ( , , )); ( ( , , ));

factor g m n t factor g m n t

factor g m n t factor g m n t

factor g m n t factor g m n t

>

>

>

 

III.a.1) It is easy to observe that the points of the line 

g7:2c1y-2c2x+c2t=0 do not satisfy the conditions of 

Problem 3, because in this case the pairs of lines (AC, 

B′D′) and (A′C′, BD) are coinciding lines (Fig. 6.1) 

and the points R and R′ are not clearly defined. 

 

 
Figure 6.1. 

 

We can prove these observations not only with 

elementary geometry but with the help of Maple. The 

lines AC and BD are parallel if and only if c1d2-

d1c2+c2=0 and O∈ g7 if and only if 2c1y-2c2x+c2=0. 

We get that in this case the lines AC:G5(u, v, t)=-

c2u+c1v=0 and B′D′:G6(u, v, t)=(d1-1)(-c2u+c1v )/c1 

coincide. 

1 2 2 2
2 5 6

1 1

(' ') : (' ') : (' ') :

( 1) 2
: : : : ( , , ) : ( ( , , ));

2

unassign x unassign y unassign t

d c c x c
d y G u v t factor G u v t

c c

>

− ⋅ ⋅ ⋅ −
> = =

⋅

It can be observed in this case that the points (O,Q,P) 

are collinear, because the determinant 

[ ] [ ] [ ]( )( )3, , ,1 , , , , , , ;Determinant Matrix x y Qx Qy Qt Px Py Pt >  

 

is equal to zero. 

III.a.2) Let O lays on the line g8 : (c1
2
-c1-c1d1)y+(c2d1-

c1c2-c2)x+c1c2t=0, except the point g7 ∩ g8. Now we 

will show that the points P, Q and R are collinear 

(Fig. 6.2). 

The point R is an intersection point of two different 

parallel lines AC and B′D′. Thus the homogenous 

coordinates of the point R are (c1 ,c2, 0). The solution 

of the equation 

(12) 
1 2 0

0

c c

Qx Qy Qt

Px Py Pt

=  

gives the condition the points P, Q and R to be 

collinear i.e. the vector PQ to be collinear with the 

vector r(c1 ,c2). 
 

 
Figure 6.2. 

 

[ ] [ ] [ ]( )( )( )1 2

(' ') : (' ') : (' ') :

3, , ,0 , , , , , , 0;

unassign x unassign y unassign t

factor Determinant Matrix c c Px Py Pt Qx Qy Qt

>

 > = 

 

From (12) we get that the points P, Q and R are 

collinear if and only if (c1
2
-c1-c1d1)y+(c2d1-c1c2-

c2)x+c1c2t=0 and therefore P,Q and R are collinear if 

and only if the centre O of reflection Φ in a point lays 

on the line g8 , except the point g7 ∩ g8. 

Let there holds b), i.e. c1=0. Then c2(d1-1)=0. 

Because of (4) it follows that d1=1. We find the 

function 2 2 9 10( , , ) ( , , ) ( , , )F x y t c d g x y t g x y t= , where g9: 

2x-t and g10: 2y+(c2-d2)x-c2t. 

1 1

(' 2 ') : (' 2 ') :

: 0 : : 1: ( ( , , ));

unassign d unassign c

c d factor F x y t

>

> = =
 

Because of (4) it follows that F consists of the two 

intersecting lines g9 and g10. It is easy to confirm that 
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M1, M2, M3, M4∈ g9 and M5, M6∈ g10. Indeed, we 

define the functions, that determine the lines g9 and 

g10  

9

8 2 2 2

: ( , , ) 2 :

: ( , , ) 2 ( ) :

g x y t x t

g x y t y c d x c t

> → ⋅ −

> → ⋅ + − ⋅ − ⋅
 

to check that M1, M2, M3, M4∈ g9 and M5, M6∈ g10 

9 1 1 1 9 2 2 2

9 3 3 3 9 4 4 4

1 5 5 5 10 6 6 6

( ( , , )); ( ( , , ));

( ( , , )); ( ( , , ));

( ( , , )); ( ( , , ));

factor g m n t factor g m n t

factor g m n t factor g m n t

factor g m n t factor g m n t

>

>

>

 

Therefore the point g9∩g10 is the centroid of ABCD. 

III.b.1) It is easy to observe that the points of the line 

g9 do not satisfy the conditions of Problem 3, because 

in this case the pairs of lines (AC, B′D′) and (BD, 

A′C′)  are coinciding lines (Fig. 6.3) and the points R 

and R′ are not clearly defined. 

 

 
Figure 6.3. 

 

We can prove these observation not only with 

elementary geometry but with the help of Maple.  

The lines AC and BD are parallel and O∈ g9 if and 

only if  2x-t=0. We get that in this case the lines AC: 

G5(u,v,t)=c2u=0 and B′D′ : G6(u,v,t)=d2u=0 

coincide. 

1 1 5 6

1
: 0 : : 1: : : ( ( , , )) : ( ( , , ));

2
c d x factor G u v t factor G u v t> = = =  

It can be observed in this case that the points (O,P,Q) 

are collinear, because the determinant 

[ ] [ ] [ ]( )( )3, , ,1 , , , , , , ;Determinant Matrix x y Px Py Pt Qx Qy Qt >  
 

is equal to zero. 

III.b.2) Let O lays on the line g10 : 2y+(c2-d2)x-c2t=0, 

except the point g9 ∩ g10. Now we will show that the 

points P,Q and R are collinear (Fig. 6.4). Really the 

point R is an intersection point of two different 

parallel lines B′D′ and AC. 

 
Figure 6.4. 

 

Thus the homogenous coordinates of the infinite 

point R are (0,1,0). The solution of the equation 

(13) 

0 1 0

0Qx Qy Qt

Px Py Pt

=  

gives the condition the points P,Q and R to be 

collinear i.e. the vector RP to be collinear with the 

vector r(0,1). 

From (13) we get that the points P, Q and R are 

collinear if and only if 2y+(c2-d2)x-c2t=0 and 

therefore P, Q and R are collinear  if and only if the 

centre O of the reflection Φ in a point lays on the line 

g10 , except the point g9 ∩ g10. 

[ ] [ ] [ ]( )( )( )
(' ') : (' ') : (' ') :

3, 0,1,0 , , , , , , 0;

unassign x unassign y unassign t

factor Determinant Matrix Px Py Pt Qx Qy Qt

>

 > = 

The determinant of A33 gives the type of the curve k. 

( )( )33 ;factor Determinant A>  

Thus we get  

det(A33)=4c2d2(d1c2-c1d2)(c1d2+c2-d1c2-d2). 

From (4) it follows that det(A33)≠0. Therefore the loci 

of the point O could not be parabola. 

We will consider two cases:  

a) Non of the points A,B,C, D lays in the convex hull 

of the other three;  

b) One of the points A,B,C,D lays in the convex hull 

of the other three. 

Let us holds a), then there holds one of the next pairs 

of conditions: 

• the points A and C lay in a different half planes 

determined by the line BD; 

• the points B and D lay in a different half planes 

determined by the line AC (Fig. 7.1); 

or 

• the points A and C lay in one of the half planes 

determined by the line BD; 

• the points B and D lay in one of the half planes 

determined by the line AC (Fig. 7.2); 

Combining the above conditions we get that non of 

the points A, B, C, D lays in the convex hull if and 

only if  

G9(a1,a2,1).G9(c1,c2,1) G5(b1,b2,1).G5(d1,d2,1) 

=d2.(c1d2+c2-d1c2-d2) c2.(c1d2 -d1c2)>0. 
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Therefore det(A33)>0 and the curve k is a hyperbola. 

9 9 1 2 5 5 1 2(0,0,1) ( , ,1) (1,0,1) ( , ,1);G G c c G G d d> ⋅ ⋅ ⋅  

Let us holds b), then there holds one of the next 

conditions: 

 

         
               Figure 7.1.                               Figure 7.2. 
 

•the points A and C lay in one of the half planes 

determined by the line BD; 

•the points B and D lay in a different half planes 

determined by the line AC (Fig. 7.3); 

or 

•the points A and C lay in a different half planes 

determined by the line BD; 

•the points B and D lay in one of the half planes 

determined by the line AC (Fig. 7.4); 

 

       
               Figure 7.3.                              Figure 7.4. 

 

Combining the above conditions we get that one of 

the points A,B,C, D lays in the convex hull of the 

other three if and only if G9(a1,a2,1).G9(c1,c2,1) 

G5(b1,b2,1).G5(d1,d2,1)=d2.(c1d2+c2-d1c2-d2) c2.(c1d2 -

d1c2)<0. 

Consequently we obtain that the type of the loci of 

the point O depends on the “convexity” of the 

vertexes A, B ,C, D of the quadrangle. 

 

 
Figure 8.1. 

i) loci of the point O is hyperbola if and only if non of 

the points A,B,C, D lays in the convex hull of the 

other three (Fig. 8.1 and 8.2); 

 

 
Figure 8.2. 

 

ii) the loci of the point O is ellipse if and only if one 

of the points A, B, C, D lays in the convex hull of the 

other three (Fig. 8.3). 

 

 
Figure 8.3. 

□ 

 

4. THE SPECIAL FUNCTION OF DGS SAM 
“SWAP FINITE & INFINITE POINTS” 

 
The benefits of the special function “Swap finite & 

infinite points” of DGS Sam are illustrated by many 

examples in [HJ07].  We suggest a construction, 

which simulates in GeoGebra the function “Swap” 

from [KTZ13]. This construction allows to optimize 

the construction process and to present the 

similarities and the differences for a whole class of 

homologies. 

We will illustrate this with the next problem. Let us 

recall the definition of a harmonic homology first 

(see [Cox87], p. 55). 

Definition 2: A homology Ф with a center О and axis 

о is called harmonic, when any pair of corresponding 

points (А, А′) are harmonic conjugated with the pair 

(O, A1), where А1 is the intersecting point of the axis 

о with the line AA′. 

There exist three possible harmonic homologies in 

the extended Euclidian plane: 

a) О is a finite point, о is a finite line;  

b) О is a finite point, о is the infinite line. Now the 

homology Ф is a reflection in the point O;  
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c) О is an infinite point, о is a finite line. If the lines 

passing through the infinite center O are orthogonal 

the axis o, then the homology Ф is a reflection in the 

line o. 

Problem 3: Let ABCD be a parallelogram. 

i) Let Ф(O∞, o, A→A′) be a homology, such that the 

pairs of points (А, А′) and (O, A1), where А1 = o ∩ 

AA′ are harmonic conjugates. Find the image 

A′B′C′D′=Ф(ABCD). 

ii) Let  Ф(O, o, A→A′) be a homology, such that the 

pairs of points (А, А′) and (O, A1), where А1 = o ∩ 

AA′ are harmonic conjugates. Find the image 

A′B′C′D′=Ф(ABCD).  

iii) Let Ф(O, ω, A→A′) be a homology, such that the 

pairs of points (А, А′) and (O, A1), where А1 = ω ∩ 

AA′ are harmonic conjugates. Find the image 

A′B′C′D′=Ф(ABCD). 

We would like to make some comments on the 

figures that give the construction.  

1) The user can follow step-by-step the construction 

with the help of the Check Boxes 1-8 (Fig.9.1). The 

Check Boxes 1-8 control the visibility of the objects. 

If the user wants to make a more detailed 

presentation, then he can increase the number of the 

Check Boxes.   

2) The slider k=1,2,3 is used to present the cases i) 

for k=1, ii) for k=2 or iii) for k=3. It is possible to 

change the slider k, i.e. to change the center and the 

axis of the homology, at any time of the presentation. 

This gives a possibility to compare the constrictions 

that are made in the different cases i), ii) and iii).  

3) All this is obtained with the use of the operator 

“If”. We define the intersection points ip, that are 

obtained throughout the constructions, with the help 

of the operator “If”. When the line o is a finite line 

then ip is a finite point, which is the usual intersection 

of two finite lines. When the line o is the infinite line 

ω then ip is the intersection of the infinite line ω with 

a finite line l , which is a vector collinear with l. The 

intersection point ip is used to construct the next line 

in the construction. If ip is a finite point then we 

construct a line through two finite points. If ip is an 

intersection of ω with a finite line, i.e. a vector (an 

infinite point), then we construct a line through a 

point with direction the vector (infinite point) ip.  

The definitions of the seven lines, that depend on the 

finite or infinite choice of the point O are: 

If[k ≟ 1, Line[i_3, u], If[k ≟ 2, Line[i_3, O], 

Line[O, w]]] 

If[k ≟ 1, Line[A, u], Line[A, O]] 

If[k ≟ 1, Line[Y_2, u], Line[Y_2, O]] 

If[k ≟ 3, Line[i_4, z], Line[i_4, i_1]] 

If[k ≟ 3, Line[i_5, v], Line[i_5, i_2]] 

If[k ≟ 1, Line[B, u], Line[B, O]] 

If[k ≟ 1, Line[D, u], Line[D, O]] 

4) The lines through O are defined with the help of 

the operator “If” too. When O is a finite point then 

we construct a line through two finite points, when 

O∞ is an infinite point we use the command a line 

defined by a point and a vector, which is the direction 

of O∞. 

Solution: Figure 9.1. presents the solution of case i), 

when the infinite center O∞ is orthogonal to the axis 

o. 

 

 
Figure 9.1. 

 

Once we have done the construction in one of the 

cases then it is simple to generate all of the other 

cases. We can rotate the vector O∞ to change the 

angle between o and O∞ (Fig. 9.2) 

 

 
Figure 9.2. 

 

The sketch of case ii) is obtained by swapping the 

points O∞ and O for the construction. The swapping is 

obtained by changing k=1 to k=2. The solution is 

presented on Figure 9.3. It is possible to follow the 

construction with the help of the Check Boxes 1-8.  

 

 
Figure 9.3. 

 

The case iii) is obtained, when k=3, which “swaps” 

the finite line o with the infinite line ω and the 
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infinite point O∞ with the finite point O. In this case 

we get a reflection in a point (Fig. 9.4). 

 

 
Figure 9.4. 

 

The presented type of construction gives the 

possibility to see the similarities and the differences 

between the three cases.  □ 

We are working on writing of a code for GeoGebra to 

implement all the mentioned above operations as an 

easy to use tools (intersection of infinite line with a 

finite line, swapping of infinite point with a finite 

point, swapping infinite line with a finite line). 

Problem 4: The quadrangles PP′QQ′, PP′RR′, 

QQ′RR′ defined in Problem 2 are parallelograms 

only in the cases b) and c) of Problem 3 (Fig. 9.1, 

9.2, 9.4); 

Problem 5: The points P, Q, R, P′, Q′, R′ , defined in 

Problem 2 lay on a conic section in all of the cases 

a), b) and c) of Problem 3. 

Proof: Indeed, it is enough to apply Pascal’s theorem 

for the points PQR P′ Q′ R′. Because of the property 

of the harmonic homology (Φ=Φ
-1

) it follows that the 

points PQ ∩ P′ Q′ =1, QR ∩ Q′ R′ =2 and  R P′ ∩ 

R′P =3 lay on the axis of Φ . Hence P, Q, R, P′, Q′, R′ 

are points of one conic section.                              □ 

 
5. OPEN PROBLEM 
 

It is well known that any involutory collineation is a 

harmonic homology ([Cox49], p.55). The main 

problem in the present work deals with the case b) of 

Problem 3. It will be interesting to solve the main 

problem in the cases a) and c) of Problem 3, i.e. 

Open Problem: Let ABCD be a complete quadrangle 

and Φ be an arbitrary harmonic homology with 

center O and axis o. Let us denote A′ B′ C′ D′ 

=Φ(ABCD) and P=AB∩C′D′, P′ =A′B′∩CD, 

Q=BC∩A′D′, Q′=B′C′∩AD, R=AC∩B′D′, 

R′=A′C′∩BD .   

Find the loci of the center О, when the points P, Q, R, 

P′, Q′, R′ are collinear. 

Find the loci of the axe o, when the points P, Q, R, P′, 

Q′, R′ are collinear. 

It is not difficult to see that the quadrangles PP′QQ′, 

PP′RR′, QQ′RR′ from Problem 2 are parallelograms 

only in the cases b) and c) (Fig. 9.1, 9.2, 9.4). It 

should be easy to prove that the points P, Q, R, P′, Q′, 

R′ lay on a conic section in all of the cases a), b) and 

c). 
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