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Abstract. The aim of the present paper is to study one of possi-
ble generalizations of the Mackey-Glass model of respiratory dynamics.
Existence of unique global absolutely continuous positive solutions of the
Cauchy problem, their boundedness and permanence are proved. More-
over, an example is given which shows that the conditions introduced in
this paper are sharp and cannot be weakened even for ordinary differen-
tial equations of this type.
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1. Introduction

The following classical model

dy(t) . avmamy(t)yn (t — T)
(11) ? =A- b"‘f'y"(t_T)

is introduced by Mackey and Glass [1] to explain dynamic diseases, such as the
Cheyne-Stokes phenomenon (periodic breathing). Here y(¢) denotes the arterial
concentration of COs, V4. denotes the maximum ventilation rate of COs, A is
the COs production rate, and the delay 7 > 0 is the time between oxygenation
of blood in the lungs and stimulation of chemoreceptors in the brainstem.
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According to [1], the ventilation function % is a sigmoidal type

function of y with parameters b, n > 0 to be adjusted to fit the experimental
data. Detailed description of the nature of model (1.1) and its applications
can be found in [1, 2]. Several mathematical results for (1.1) are established
in [2-7].

In the remarkable work [8] the following generalization of equation (1.1)

" (h(t))
1+ zn(h(t)’

(12) PO — o) - o)

t> 0.

is considered.

In the same work for the equation (1.2) several results about existence
of global absolutely continuous positive solutions and their permanence are
obtained. The stability of the equilibrium and oscillatory properties of the
solutions are studied too.

The aim of the present paper is to study for any p, n > 0 the nonlinear
delay equation

aP(r(t))

(1.3) 1+ 2n(7(t))’

t>0,

which is one of the possible generalizations of (1.2), mentioned in [8], where
only the case n = p is considered. Existence of global absolutely continuous
positive solutions, their boundedness and permanence are proved. Moreover,
an example is given which shows that the conditions introduced by us are sharp
and can not be weakened even for ordinary differential equations.

2. Preliminaries

Suppose that inf+ 7(t) > —oo and consider equation (1.3) with the initial
teR

condition

(2.1) 2(t) = (1), 1€ [-T,0], ~T = inf 7(t) <0,

where o, 8 : RT — RT, RT =[0,00), 7: RT — [-T,00), n,p > 0 and
©:[-T,0] - R*.

We will say that the conditions (S) hold, when the following conditions
S1-S3 are fulfilled:

S1. The functions «, (8 are Lebesgue measurable and locally essentially bounded.
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S2. The function 7(¢) is a Lebesgue measurable, locally bounded and satis-
fying for ¢ > 0 the inequalities 7(¢) < ¢ and sup (¢t — 7(t)) < r < oo.
teR+

S3. The function ¢(t) is Borel measurable, bounded and ¢(0) > 0.
For every f:J — R, J C R for which sup|f(t)| < co we set by definition
ted
the norm || f|| = sup | f(¢)].
teJ

Lemma 2.1. Let the conditions (S) hold.
Then there exists a unique positive global absolutely continuous solution
on RT of the initial value problem (IVP) (1.3), (2.1).

Proof. Let ¢(t) be an arbitrary fixed initial function and let M., denote
the set of all functions y : [T, 00) — R such that y(t) = p(¢t), t € [-T,0] and
y|g+ is a continuous function.

Let us denote by D,, the following set D, = {(t,y)|t € R",y € M,}. The
set D, can be equipped with a distance function

d((t1,y1), (t2,92)) = [t1 — ta| + [y — w3l

(see [9, Chapter 3, Subs. 2.4]), where y(t) = y;(¢),t; > T and if 0 < t; < T.
Then y (t) = yi(t), —t; <t <0and y;(t) = y;(—t;), —T <t < —t;, i=1, 2.
Let us define a functional F': D, —+ R by

yP (7 (1))
L+yn(7(1)

For each y € M, the function F(t,y(t)) is defined for almost all t € R+ and is
a Lebesgue integrable function on every closed subinterval J C RT. Moreover,
from (2.2) it follows that for almost all ¢ € RT the functional F is continuous
in every y € M,,.

Let € > 0 be arbitrary, (to,yo0) € D,, is an arbitrary point and

U((to;y0),€) = {(t,y) € Dy|d((t,y), (to,v0)) < €}

is a bounded neighborhood of the point (to,yo). Since the function W (u,v) =
uvP(14v™)~! has continuous partial derivatives in every bounded subset of the
set {(u,v) € R?|v > 0}, then from conditions (S) it follows that there exists a
Lebesgue integrable on J function ¢ : J — RT (eventually depending on tg, €
and J), such that the inequalities

[E(ty(0)] < (1), [FEy(t) = F(ty2(6)] < C)lyr — w2l

45

(2.2) F(t,y(t) = a(t) = B(t)y(t)



H. Kiskinov, A. Zahariev, S. Zlatev

hold for all points (t,y), (t,y1), (t,y2) € U((to,%0),€). Then there exists a
point ¢, > 0 such that IVP (1.3), (2.1) has a unique solution z : (0,t,) — R
which is absolutely continuous on every closed interval J,, J, C (0,t,) (see [9,
Chapter 3, Subs. 2.4]). Moreover, if ti£m70 x(t) is finite, then ¢, = oco.

Since z(0) = ¢(0) > 0 according to condition S3 and because z(t) is
continuous on [0, t,,), then there exists 6 € (0,t,) such that z(t) > 0ast € [0,0).
We shall prove that x(t) > 0 for any ¢ € [0,%,). Assume, on the contrary, that
z(t) <0 for some t € [0,t,) and denote ¢ = inf{t € [0,,) : 2(t) < 0} > 0.

Thus, we have z(t) > 0 for t € [0,#) and x(f) = 0. On the other hand,
from the conditions (S) it follows that the function %
nonnegative on the interval [—r,#]. Consequently, there exists a positive con-

stant P (s
Gy )
teo,g L+ (7))
which implies 2/(t) > —C;B(t)z(t). Hence

is bounded and

x(t) > x(0) exp(—Cg/B(s)ds) > 0.

The last inequalities violate our assumption that x(t) = 0. Therefore, the
solution is positive for each t € [0,1,,).

Equation (1.3) yields z’(t) < a(t), hence z(t) < x(0) + [ a(s)ds. It means

OHN

that lim x(¢) < oo and therefore t, = oco.
t—t,—0

Thus we have proved the existence of the unique positive global absolutely
continuous solution of the IVP (1.3), (2.1).
O

Definition 2.1 ([8]). All positive solutions of a given equation are said to
be permanent if there exist m > 0 and M > 0 such that for any solution x(t)
we have
m < liminf z(t) < limsup z(t) < M.

t—o0 t— 00
Definition 2.2. If at least one of the constants m and M depends on some
of the solutions, then we will say that the solutions are weakly permanent.

Definition 2.3. We will say that the property P is ultimately fulfilled for
some function f : [—r,00) — R if there exists a point t,, > 0 such that for the
function f the property P holds for each t > t,,.
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3. Main results

Theorem 3.1. Let the following conditions be fulfilled:
1. The conditions (S) hold.
2. There exist positive numbers a, A,b and B such that

0<a<a(t)<A<ooand 0<b<p(t)<B<oo.

3. p>n.
Then all positive solutions of (1.3) are weakly permanent.

Proof. Let z(t) be an arbitrary global positive solution of IVP (1.3), (2.1),
existing according to Lemma 2.1.

Then from (1.3) it follows that for ¢ > 0 we have /() < A and since
p > n it is simple to see that the function H(x) = is strictly increasing
for x > 0.

(a) Let assume that there exists a solution x(¢) such that tlglgo z(t) =

P
T+am

0. Then from (1.3) it follows that there exists a number € € (0,a), such
that ultimately we have z/(t) > a — e > 0. Thus, z(¢) is ultimately strictly
increasing, which is a contradiction. Hence, for each positive solution is fulfilled
limsup z(t) > 0.
t—o0
(b) Let assume that there exists a solution z(t) such that tliglo x(t) = 0.

Since H(x) is strictly increasing for & > 0, then from (1.3) it follows that

ultimately 2’(t) < 0 and therefore x(¢) is ultimately strictly decreasing, which

is impossible. Hence, for each positive solution is fulfilled litm inf z(t) < oc.
—00

(c) Let limsup z(t) = oco. From case (b) it follows that litm infz(t)=¢>0
t—o00 —+o0
and therefore there exists a sequence {tr}, where klim ty = oo, such that
—00
klim x(tg) = oo and z'(ty) > 0 for each k € N, where by N we denote the set
—00

of all natural numbers. For all ¢ > r we have 0 < z(¢) < z(7(t)) + rA and
therefore klim x(7(tr)) = oo. Then from (1.3) we obtain
— 00

a? (7 (tr))

(3.1) 0 <2'(ty) = alty) — ﬁ(tk)z(tk)m'

From (3.1) it follows that klim a(ty) = oo, which contradicts condition 2
— 00

of Theorem 3.1. Thus for each positive solution lim sup z(t) < oco.
t—o0
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(d) Let us suppose that litm inf z(t) = 0. Then from (a) and (c) it follows
— 00

that 0 < limsup z(¢) = ¢* < oo and there exists a sequence {t}}, lim ¢} = oo,
t—o00 k—o0

such that klim z(tf) = 0 and 2/(t;) < 0 for each £ € N. Then from (1.3) it
—00
follows

aP(r(t}))

(32) 02 2'(1) = (i) ~ B0 T ey

Since 0 < limsup z(t) = ¢* < oo then (3.2) implies that likm inf a(¢}) < 0 which
t— — 00

contradicts condition 2 of Theorem 3.1.
The proof is complete.
O

Theorem 3.2. Let the following conditions be fulfilled:
1. The conditions (S) hold.
2. There exist positive numbers a, A,b and B such that

0<a<at)<A<ooand 0<b<p(t) <B<oo.
3. p<n<p+1.
Then all positive solutions of (1.3) are weakly permanent.

Proof. Let x(t) be an arbitrary positive solution of the IVP (1.3), (2.1)
and let us suppose that tlim x(t) = 0. Then the solution z(t¢) is bounded and
— 00

H(x(7(t))) = %

is bounded too. Then similarly to case (a) in Theorem 3.1 we can conclude
that x(t) is ultimately strictly increasing, which is impossible.
If for some solution we suppose that litm inf z(t) = 0, then from the case
—00

the function

considered above it follows that limsupz(f) = ¢* > 0. Then there exists a
t—o0
sequence {t;}, lim ¢} = oo, such that lim z(t;) = 0 and z/(¢}) < 0 for each
k—o0 k—o0

k € Nand for allt > r we have 0 < z(7(¢)) < z(t)+rA. Since sup z(7(tx)) < oo,
k

then from (1.3) and (3.2) it follows that litrginfoz(t,*c) < 0, which is impossible.

o0

Let assume that there exists a solution z(t) such that tlim z(t) = co. Then

—00

the inequalities
(3.3) 0<az(r(t) —rA<z(t) <z(r(t)) +rA
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are ultimately fulfilled.
From (1.3) and (3.3) it follows that there exists a number C' > 0 such that
the inequality

(2(r(1) —rA)" Par(r(t)) _ 2" ()2 (r(1)
L+ an(r(t)) — Lt+an(r(b)

(3.4) 0<C<

ultimately holds.

Since 1 +p —n > 0, then from (1.3) and (3.4) it follows that ultimately
2'(t) < 0 and therefore x(¢) is ultimately strictly decreasing, which is impossi-
ble.

Let us consider the last case: limsupz(t) = oo and liminf z(t) = ¢ > 0.
t—o00 t—o0

Then similarly as in case (¢) from the proof of Theorem 3.1 we can conclude

that lim sup a(t) = oo , which contradicts condition 2 of Theorem 3.2.
t—o00

U
Example 1. Let consider IVP (1.3), (2.1) in the case when

Tt)=t, t>-1, p=1,n=2, at) =8(t) =1, t €0,00),

mwzxwy:7m6+&+Vm@—3,teme
Then (1.3) obtains the form
1
1422
This IVP satisfies conditions 1 and 2 of Theorems 3.1 and 3.2, but not

conditions 3 of these theorems because p + 1 = n.
The unique solution of IVP satisfies the equality z° 4 3z — (3t +4v/2) = 0

2
and since 1+ M > 0 (the cubic function has a unique real positive root
for each t € RT), then

/
xr

2

3 3t+24\@+\/(1+(3t+24\/§ )

> s 3t 442 3t 4 4,/2
+ %f_ (1_&_(%[

x(t) = )

It is simple to see that this solution is unbounded above when ¢ € [0, c0).

This example illustrates that if p +1 < n, then IVP (1.3), (2.1) can have
an unbounded solution even for ordinary differential equations, and therefore
the conditions 3 of Theorem 3.1 and 3.2 are necessary for its validity.
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Theorem 3.3. Let the following conditions be fulfilled:
1. The conditions (S) hold.
2. There exist positive numbers a, A,b and B such that

0<a<aft) <A<ooand 0<b<f(t) < B<oo.

3. Eitherp>norp<n<p+1.
Then all positive solutions of (1.3) are permanent.

Proof. From Theorems 3.1 and 3.2 it follows that every positive solution
of (1.3) is weakly permanent. This means that the constants m and M depend
on the solution z(t), i.e. m = m(x), M = M(x) . Let us assume that there
does not exist a constant m > 0, such that m < m(z) for each positive solution
x(t) of (1.3).

Then there exists a sequence of positive solutions of (1.3) and sequence
{tx} C RT, kli_}ngo ty = 00, such that =z} (tx) < 0 and x(tx) < %, k € N. Then

from (2.2) for each k € N follows the relation

wi(7(tr))

(3.5) 0> a(te) = alty) — ﬂ(tk)wk(tk)m'

t
Since |z(t) — z(r(t))| < [ |2/(s)|ds < rA for t > r and z(ty) < 1,
7(t)
therefore x(7(t;)) < 1+ rA for each k € N. Thus, from (3.5) it follows that
1ikm inf a(t;) < 0, which is impossible.
— 00

Similarly, let us assume that there does not exist a constant M > 0, such
that M (z) < M for each positive solution z(t) of (1.3).

Then we can find a sequence of positive solutions {zy(¢)} of (1.3) and a
sequence {t;} C RT, klggO ty = 0o, such that «} (t) > 0 and k < i (tx), k € N.

Therefore from (1.3) for each k¥ € N we have
zp (7(tk))
14 2P (7(tr))
Inequality (3.6) implies that lim sup «(ty) = oo, which contradicts condi-

k—o0
tion 2 of Theorem 3.3.

(3.6) 0 < ap(tr) = alte) — B(tr)zr(tr)
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BbPXY ITEPMAHEHTHOCTTA HA ITIOJIO2ZKUTEJIHUTE
ABCOJIFOTHO HEIMPEK'bCHATUW PEINTEHUN A HA
OBOBHIEH MOJEJI HA MACKEY-GLASS

Xpucro Kuckunos, Anjipeit 3axapues, Crosin 3jiaTes

Pestome. B mpencraBenara pabora € mM3C/I€IBAHO €HO OT Bb3MOXKHUTE
00001mmenns Ha ypasuenuero Ha Mackey-Glass, momenupammo pecrmparopuara
JuHaMuKa. J{0Ka3aHo e ChbINEeCTBYyBaHETO HA €JMHCTBEHO T[VIODAJIHO, MOJIOKHU-
TeJIHO abCOJIIOTHO HENPEK'bCHATO pellieHne Ha 3ajadara Ha Kormm, Heroara
OTPaHUYEHOCT W IIEPMAaHEHTHOCT. 1IpuBejieH e mpumep, KONTO MOKAa3Ba Y€ Bb-
BEJICHUTE B CTATHUATA YCJIOBUSI HE MOTAT J1a ObJIaT OTCIA0EHN JaKe U B CJIydast
Ha OOMKHOBEHHU NUDEPEHITNATHN YPABHEHUsI OT TO3HW THII.
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