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Abstract. The aim of the present paper is to study one of possi-
ble generalizations of the Mackey-Glass model of respiratory dynamics.
Existence of unique global absolutely continuous positive solutions of the
Cauchy problem, their boundedness and permanence are proved. More-
over, an example is given which shows that the conditions introduced in
this paper are sharp and cannot be weakened even for ordinary differen-
tial equations of this type.
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1. Introduction

The following classical model

(1.1)
dy(t)

dt
= λ− aVmaxy(t)y

n(t− τ)

bn + yn(t− τ)

is introduced by Mackey and Glass [1] to explain dynamic diseases, such as the
Cheyne-Stokes phenomenon (periodic breathing). Here y(t) denotes the arterial
concentration of CO2, Vmax denotes the maximum ventilation rate of CO2, λ is
the CO2 production rate, and the delay τ > 0 is the time between oxygenation
of blood in the lungs and stimulation of chemoreceptors in the brainstem.
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According to [1], the ventilation function aVmaxy(t)y
n(t−τ)

bn+yn(t−τ) is a sigmoidal type

function of y with parameters b, n > 0 to be adjusted to fit the experimental
data. Detailed description of the nature of model (1.1) and its applications
can be found in [1, 2]. Several mathematical results for (1.1) are established
in [2–7].

In the remarkable work [8] the following generalization of equation (1.1)

(1.2)
dx(t)

dt
= α(t)− β(t)x(t)

xn(h(t))

1 + xn(h(t))
, t ≥ 0.

is considered.
In the same work for the equation (1.2) several results about existence

of global absolutely continuous positive solutions and their permanence are
obtained. The stability of the equilibrium and oscillatory properties of the
solutions are studied too.

The aim of the present paper is to study for any p, n > 0 the nonlinear
delay equation

(1.3)
dx(t)

dt
= α(t)− β(t)x(t)

xp(τ(t))

1 + xn(τ(t))
, t ≥ 0,

which is one of the possible generalizations of (1.2), mentioned in [8], where
only the case n = p is considered. Existence of global absolutely continuous
positive solutions, their boundedness and permanence are proved. Moreover,
an example is given which shows that the conditions introduced by us are sharp
and can not be weakened even for ordinary differential equations.

2. Preliminaries

Suppose that inf
t∈R+

τ(t) > −∞ and consider equation (1.3) with the initial

condition

(2.1) x(t) = φ(t), t ∈ [−T, 0], −T = inf
t∈R+

τ(t) ≤ 0,

where α, β : R+ → R+, R+ = [0,∞), τ : R+ → [−T,∞), n, p > 0 and
φ : [−T, 0] → R+.

We will say that the conditions (S) hold, when the following conditions
S1-S3 are fulfilled:

S1. The functions α, β are Lebesgue measurable and locally essentially bounded.
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S2. The function τ(t) is a Lebesgue measurable, locally bounded and satis-
fying for t ≥ 0 the inequalities τ(t) ≤ t and sup

t∈R+

(t− τ(t)) ≤ r < ∞.

S3. The function φ(t) is Borel measurable, bounded and φ(0) > 0.

For every f : J → R, J ⊂ R for which sup
t∈J

|f(t)| < ∞ we set by definition

the norm ||f || = sup
t∈J

|f(t)|.

Lemma 2.1. Let the conditions (S) hold.
Then there exists a unique positive global absolutely continuous solution

on R+ of the initial value problem (IVP) (1.3), (2.1).

Proof. Let φ(t) be an arbitrary fixed initial function and let Mφ denote
the set of all functions y : [−T,∞) → R such that y(t) = φ(t), t ∈ [−T, 0] and
y|R+ is a continuous function.

Let us denote by Dφ the following set Dφ = {(t, y)|t ∈ R+, y ∈ Mφ}. The
set Dφ can be equipped with a distance function

d((t1, y1), (t2, y2)) = |t1 − t2|+ ||y∗1 − y∗2 ||

(see [9, Chapter 3, Subs. 2.4]), where y∗i (t) = yi(t), ti ≥ T and if 0 ≤ ti < T .
Then y∗i (t) = yi(t), −ti ≤ t ≤ 0 and y∗i (t) = yi(−ti), −T ≤ t ≤ −ti, i = 1, 2.

Let us define a functional F : Dφ → R by

(2.2) F (t, y(t)) = α(t)− β(t)y(t)
yp(τ(t))

1 + yn(τ(t))
.

For each y ∈ Mφ the function F (t, y(t)) is defined for almost all t ∈ R+ and is
a Lebesgue integrable function on every closed subinterval J ⊂ R+. Moreover,
from (2.2) it follows that for almost all t ∈ R+ the functional F is continuous
in every y ∈ Mφ.

Let ϵ > 0 be arbitrary, (t0, y0) ∈ Dφ is an arbitrary point and

U((t0, y0), ϵ) = {(t, y) ∈ Dφ|d((t, y), (t0, y0)) ≤ ϵ}

is a bounded neighborhood of the point (t0, y0). Since the function W (u, v) =
uvp(1+vn)−1 has continuous partial derivatives in every bounded subset of the
set {(u, v) ∈ R2|v ≥ 0}, then from conditions (S) it follows that there exists a
Lebesgue integrable on J function ζ : J → R+ (eventually depending on t0, ϵ
and J), such that the inequalities

|F (t, y(t))| ≤ ζ(t), |F (t, y1(t))− F (t, y2(t))| ≤ ζ(t)||y1 − y2||
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hold for all points (t, y), (t, y1), (t, y2) ∈ U((t0, y0), ϵ). Then there exists a
point tφ > 0 such that IVP (1.3), (2.1) has a unique solution x : (0, tφ) → R+

which is absolutely continuous on every closed interval J∗, J∗ ⊂ (0, tφ) (see [9,
Chapter 3, Subs. 2.4]). Moreover, if lim

t→tφ−0
x(t) is finite, then tφ = ∞.

Since x(0) = φ(0) > 0 according to condition S3 and because x(t) is
continuous on [0, tφ), then there exists δ ∈ (0, tφ) such that x(t) > 0 as t ∈ [0, δ).
We shall prove that x(t) > 0 for any t ∈ [0, tφ). Assume, on the contrary, that
x(t) ≤ 0 for some t ∈ [0, tφ) and denote t̃ = inf{t ∈ [0, tφ) : x(t) ≤ 0} > 0.

Thus, we have x(t) > 0 for t ∈ [0, t̃) and x(t̃) = 0. On the other hand,

from the conditions (S) it follows that the function xp(τ(t))
1+xn(τ(t)) is bounded and

nonnegative on the interval [−r, t̃]. Consequently, there exists a positive con-
stant

Ct̃ = sup
t∈[0,t̃]

xp(τ(t))

1 + xn(τ(t))
,

which implies x′(t) ≥ −Ct̃β(t)x(t). Hence

x(t̃) ≥ x(0) exp(−Ct̃

t̃∫
0

β(s)ds) > 0.

The last inequalities violate our assumption that x(t̃) = 0. Therefore, the
solution is positive for each t ∈ [0, tφ).

Equation (1.3) yields x′(t) ≤ α(t), hence x(t) ≤ x(0)+
t∫
0

α(s)ds. It means

that lim
t→tφ−0

x(t) < ∞ and therefore tφ = ∞.

Thus we have proved the existence of the unique positive global absolutely
continuous solution of the IVP (1.3), (2.1).

�
Definition 2.1 ([8]). All positive solutions of a given equation are said to

be permanent if there exist m > 0 and M > 0 such that for any solution x(t)
we have

m ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ M.

Definition 2.2. If at least one of the constants m and M depends on some
of the solutions, then we will say that the solutions are weakly permanent.

Definition 2.3. We will say that the property P is ultimately fulfilled for
some function f : [−r,∞) → R if there exists a point tp ≥ 0 such that for the
function f the property P holds for each t ≥ tp.
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3. Main results

Theorem 3.1. Let the following conditions be fulfilled:
1. The conditions (S) hold.
2. There exist positive numbers a,A, b and B such that

0 < a ≤ α(t) ≤ A < ∞ and 0 < b ≤ β(t) ≤ B < ∞.

3. p ≥ n.
Then all positive solutions of (1.3) are weakly permanent.

Proof. Let x(t) be an arbitrary global positive solution of IVP (1.3), (2.1),
existing according to Lemma 2.1.

Then from (1.3) it follows that for t ≥ 0 we have x′(t) ≤ A and since
p ≥ n it is simple to see that the function H(x) = xp

1+xn is strictly increasing
for x > 0.

(a) Let assume that there exists a solution x(t) such that lim
t→∞

x(t) =

0. Then from (1.3) it follows that there exists a number ϵ ∈ (0, a), such
that ultimately we have x′(t) ≥ a − ϵ > 0. Thus, x(t) is ultimately strictly
increasing, which is a contradiction. Hence, for each positive solution is fulfilled
lim sup
t→∞

x(t) > 0.

(b) Let assume that there exists a solution x(t) such that lim
t→∞

x(t) = ∞.

Since H(x) is strictly increasing for x > 0, then from (1.3) it follows that
ultimately x′(t) < 0 and therefore x(t) is ultimately strictly decreasing, which
is impossible. Hence, for each positive solution is fulfilled lim inf

t→∞
x(t) < ∞.

(c) Let lim sup
t→∞

x(t) = ∞. From case (b) it follows that lim inf
t→∞

x(t) = q ≥ 0

and therefore there exists a sequence {tk}, where lim
k→∞

tk = ∞, such that

lim
k→∞

x(tk) = ∞ and x′(tk) ≥ 0 for each k ∈ N, where by N we denote the set

of all natural numbers. For all t ≥ r we have 0 < x(t) ≤ x(τ(t)) + rA and
therefore lim

k→∞
x(τ(tk)) = ∞. Then from (1.3) we obtain

(3.1) 0 ≤ x′(tk) = α(tk)− β(tk)x(tk)
xp(τ(tk))

1 + xn(τ(tk))
.

From (3.1) it follows that lim
k→∞

α(tk) = ∞, which contradicts condition 2

of Theorem 3.1. Thus for each positive solution lim sup
t→∞

x(t) < ∞.
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(d) Let us suppose that lim inf
t→∞

x(t) = 0. Then from (a) and (c) it follows

that 0 < lim sup
t→∞

x(t) = q∗ < ∞ and there exists a sequence {t∗k}, lim
k→∞

t∗k = ∞,

such that lim
k→∞

x(t∗k) = 0 and x′(t∗k) ≤ 0 for each k ∈ N. Then from (1.3) it

follows

(3.2) 0 ≥ x′(t∗k) = α(t∗k)− β(t∗k)x(t
∗
k)

xp(τ(t∗k))

1 + xn(τ(t∗k))
.

Since 0 < lim sup
t→∞

x(t) = q∗ < ∞ then (3.2) implies that lim inf
k→∞

α(t∗k) ≤ 0 which

contradicts condition 2 of Theorem 3.1.
The proof is complete.

�
Theorem 3.2. Let the following conditions be fulfilled:
1. The conditions (S) hold.
2. There exist positive numbers a,A, b and B such that

0 < a ≤ α(t) ≤ A < ∞ and 0 < b ≤ β(t) ≤ B < ∞.

3. p < n < p+ 1.
Then all positive solutions of (1.3) are weakly permanent.

Proof. Let x(t) be an arbitrary positive solution of the IVP (1.3), (2.1)
and let us suppose that lim

t→∞
x(t) = 0. Then the solution x(t) is bounded and

the function

H(x(τ(t))) =
x(τ(t))p

1 + x(τ(t))n

is bounded too. Then similarly to case (a) in Theorem 3.1 we can conclude
that x(t) is ultimately strictly increasing, which is impossible.

If for some solution we suppose that lim inf
t→∞

x(t) = 0, then from the case

considered above it follows that lim sup
t→∞

x(t) = q∗ > 0. Then there exists a

sequence {t∗k}, lim
k→∞

t∗k = ∞, such that lim
k→∞

x(t∗k) = 0 and x′(t∗k) ≤ 0 for each

k ∈ N and for all t ≥ r we have 0 < x(τ(t)) ≤ x(t)+rA. Since sup
k

x(τ(tk)) < ∞,

then from (1.3) and (3.2) it follows that lim inf
t→∞

α(t∗k) ≤ 0, which is impossible.

Let assume that there exists a solution x(t) such that lim
t→∞

x(t) = ∞. Then

the inequalities

(3.3) 0 < x(τ(t))− rA ≤ x(t) ≤ x(τ(t)) + rA
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are ultimately fulfilled.
From (1.3) and (3.3) it follows that there exists a number C > 0 such that

the inequality

(3.4) 0 < C <
(x(τ(t))− rA)

n−p
xp(τ(t))

1 + xn(τ(t))
≤ xn−p(t)xp(τ(t))

1 + xn(τ(t))

ultimately holds.
Since 1 + p − n > 0, then from (1.3) and (3.4) it follows that ultimately

x′(t) < 0 and therefore x(t) is ultimately strictly decreasing, which is impossi-
ble.

Let us consider the last case: lim sup
t→∞

x(t) = ∞ and lim inf
t→∞

x(t) = q > 0.

Then similarly as in case (c) from the proof of Theorem 3.1 we can conclude
that lim sup

t→∞
α(t) = ∞ , which contradicts condition 2 of Theorem 3.2.

�
Example 1. Let consider IVP (1.3), (2.1) in the case when

τ(t) = t, t ≥ −1, p = 1, n = 2, α(t) ≡ β(t) ≡ 1, t ∈ [0,∞),

ϕ(t) ≡ x(0) =
3

√
2
√
2 + 3 +

3

√
2
√
2− 3, t ∈ [−1, 0].

Then (1.3) obtains the form

x′ =
1

1 + x2
.

This IVP satisfies conditions 1 and 2 of Theorems 3.1 and 3.2, but not
conditions 3 of these theorems because p+ 1 = n.

The unique solution of IVP satisfies the equality x3+3x− (3t+4
√
2) = 0

and since 1 + (3t+4
√
2)

2

4 > 0 (the cubic function has a unique real positive root
for each t ∈ R+), then

x(t) =
3

√√√√3t+ 4
√
2

2
+

√
(1 + (

3t+ 4
√
2

2
)

2

+
3

√√√√3t+ 4
√
2

2
−

√
(1 + (

3t+ 4
√
2

2
)

2

It is simple to see that this solution is unbounded above when t ∈ [0,∞).
This example illustrates that if p+ 1 ≤ n, then IVP (1.3), (2.1) can have

an unbounded solution even for ordinary differential equations, and therefore
the conditions 3 of Theorem 3.1 and 3.2 are necessary for its validity.
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Theorem 3.3. Let the following conditions be fulfilled:
1. The conditions (S) hold.
2. There exist positive numbers a,A, b and B such that

0 < a ≤ α(t) ≤ A < ∞ and 0 < b ≤ β(t) ≤ B < ∞.

3. Either p ≥ n or p < n < p+ 1.
Then all positive solutions of (1.3) are permanent.

Proof. From Theorems 3.1 and 3.2 it follows that every positive solution
of (1.3) is weakly permanent. This means that the constants m and M depend
on the solution x(t), i.e. m = m(x),M = M(x) . Let us assume that there
does not exist a constant m > 0, such that m ≤ m(x) for each positive solution
x(t) of (1.3).

Then there exists a sequence of positive solutions of (1.3) and sequence
{tk} ⊂ R+, lim

k→∞
tk = ∞, such that x′

k(tk) ≤ 0 and xk(tk) <
1
k , k ∈ N. Then

from (2.2) for each k ∈ N follows the relation

(3.5) 0 ≥ x′
k(tk) = α(tk)− β(tk)xk(tk)

xp
k(τ(tk))

1 + xn
k (τ(tk))

.

Since |x(t) − x(τ(t))| ≤
t∫

τ(t)

|x′(s)|ds ≤ rA for t ≥ r and xk(tk) < 1
k ,

therefore xk(τ(tk)) ≤ 1 + rA for each k ∈ N. Thus, from (3.5) it follows that
lim inf
k→∞

α(tk) ≤ 0, which is impossible.

Similarly, let us assume that there does not exist a constant M > 0, such
that M(x) ≤ M for each positive solution x(t) of (1.3).

Then we can find a sequence of positive solutions {xk(t)} of (1.3) and a
sequence {tk} ⊂ R+, lim

k→∞
tk = ∞, such that x′

k(tk) ≥ 0 and k ≤ xk(tk), k ∈ N.
Therefore from (1.3) for each k ∈ N we have

(3.6) 0 ≤ x′
k(tk) = α(tk)− β(tk)xk(tk)

xp
k(τ(tk))

1 + xn
k (τ(tk))

.

Inequality (3.6) implies that lim sup
k→∞

α(tk) = ∞, which contradicts condi-

tion 2 of Theorem 3.3.
�
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ВЪРХУ ПЕРМАНЕНТНОСТТА НА ПОЛОЖИТЕЛНИТЕ
АБСОЛЮТНО НЕПРЕКЪСНАТИ РЕШЕНИЯ НА

ОБОБЩЕН МОДЕЛ НА MACKEY-GLASS

Христо Кискинов, Андрей Захариев, Стоян Златев

Резюме. В представената работа е изследвано едно от възможните
обобщения на уравнението на Mackey-Glass, моделиращо респираторната
динамика. Доказано е съществуването на единствено глобално, положи-
телно абсолютно непрекъснато решение на задачата на Коши, неговата
ограниченост и перманентност. Приведен е пример, който показва че въ-
ведените в статията условия не могат да бъдат отслабени даже и в случая
на обикновенни диференциални уравнения от този тип.
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