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Abstract. On 5-dimensional almost contact B-metric manifolds, the
form of any p-Ké&hler-type tensor (i.e. a tensor satisfying the properties
of the curvature tensor of the Levi-Civita connection in the special class
of the parallel structures on the manifold) is determined. The associated
1-forms are derived by the scalar curvatures of the p-Kéhler-type tensor
for the ¢p-canonical connection on the manifolds from the main classes
with closed associated 1-forms.

Key words: Almost contact manifold, B-metric, natural connection,
canonical connection, Kahler-type tensor, totally real 2-plane, sectional cur-
vature, scalar curvature.

Mathematics Subject Classification 2000: 53C05, 53C15, 53C50.

Introduction

The curvature properties of the almost contact B-metric manifolds are
investigated with respect to the Levi-Civita connection V and another linear
connection preserving the structures of the manifold. Such connections, which
curvature tensors possess the properties of the curvature tensor of V in the
class with V-parallel structures, play a significant role.

The present paper is organized as follows. In Sec. 1, we give some necessary
facts about the considered manifolds. Sec. 2 is devoted to the p-Kéhler-type
tensors, i.e. the tensors satisfying the properties of the curvature tensor of V in
the special class Fy. In Sec. 3, it is determined the form of any ¢-Ké&hler-type
tensor L on a 5-dimensional manifold under consideration. In Sec. 4, it is proved
that the associated 1-forms 6 and 6* are derived by the non-¢-holomorphic pair
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of scalar curvatures of the p-Kéhler-type tensor for the p-canonical connection
on the manifolds from the main classes with closed 1-forms. In Sec. 5, some of
the obtained results are illustrated by a known example.

1. Preliminaries

Let (M, ¢,&,m,g) be an almost contact manifold with B-metric or an al-
most contact B-metric manifold, i.e. M is a (2n+ 1)-dimensional differentiable
manifold with an almost contact structure (¢, &,n) consisting of an endomor-
phism ¢ of the tangent bundle, a vector field &, its dual 1-form 7 as well as M
is equipped with a pseudo-Riemannian metric g of signature (n,n + 1), such
that the following relations are satisfied

=0, *=-Id+n®E nop=0, n(E) =1,
9(x,y) = =gz, y) + n(z)n(y)

for arbitrary x, y of the algebra X(M) on the smooth vector fields on M.
Further, z, y, z will stand for arbitrary elements of X(M).
The associated metric g of g on M is defined by

g(x,y) = g(, py) +n(z)n(y).

Both metrics g and § are necessarily of signature (n,n + 1). The manifold
(M, p,&,m,g) is also an almost contact B-metric manifold.

The structural tensor F of type (0,3) on (M, p,&,n,g) is defined by the
equality F(z,y,z) = g((Va¢) y,2). It has the following properties:

F(z,y,2) = F(z,2,y) = F(z, 0y, 02) + n(y) F (2, &, 2) + n(2) F(2,y,§).
The following 1-forms are associated with F":
0(z) = g7 F(eiej,2), 0°(2) =g7F(ei, pe5,2), w(z)=TF(E§E 2),

where g% are the components of the inverse matrix of ¢ with respect to a basis
{e;;€} (i=1,2, ..., 2n) of the tangent space T, M of M at an arbitrary point
p € M. Obviously, the equality w(¢) = 0 and the relation 0* o p = —f o ©? are
always valid.

A classification of the almost contact manifolds with B-metric with respect
to F is given in [3]. This classification includes eleven basic classes F1, Fo, ...,
F11. Their intersection is the special class Fy determined by F(z,y,z) = 0.
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Hence Fy is the class of almost contact B-metric manifolds with V-parallel
structures, i.e. Vo =V =Vn=Vg=Vg=0.

In the present paper we consider the manifolds from the so-called main
classes F1, F4, F5 and Fyq, shortly the F;-manifolds (i = 1, 4, 5, 11). These
classes are the only classes where the tensor F' is expressed by the metrics g
and §g. They are defined as follows:

1
Fi: Fla,y,2) = 5-{a(@,09)0(02) + 9l 00)0(9%2) } .5

Fi: Flz,y,z) = —%{g(w’ ey)n(z) + g(ex, pz)n(y) };

0" (&)
2n

Fu: Flzy,2) =n() {ny)w(z) +n(z)w(y)},

where (for the sake of brevity) we use the denotation {A(x,y,2)}(y«») instead
of {A(x,y,z) + A(z, z,y)} for any tensor A(z,y, z).

Let us remark that the class F1 & F4 & F5 & F11 is the odd-dimensional
analogue of the class W; of the conformal Kéhler manifolds of the almost
complex manifold with Norden metric, introduced in [4].

Fs5: Flz,y,z)=— {9(z, oy)n(z) + g(z, 02)n(y) };

2. Curvature-like tensors

Let R = [V,V] — V[ be the curvature (1,3)-tensor of the Levi-Civita
connection V.
We denote the curvature (0, 4)-tensor by the same letter: R(z,y,z,w) =

9(R(z,y)z,w).
The Ricci tensor p and the scalar curvature 7 for R as well as their asso-

ciated quantities are defined respectively by

p(yvz) :gin(eiayazvej)a T:gijp(eiaej)7
2.1 g iy
( ) P*(y,z) :g”R(ei,y,Z,cpej), T :g”p*(eiaej)'

Definition 2.1. ([12]) Each (0,4)-tensor L on (M,¢,&,n,g) having the
following properties is called a curvature-like tensor:

(22) L($7yvz7w) = —L(y,x,z,w) = —L(x,y,w,z),
(2.3) S L(z,y,z,w)=0.

z,Y,z
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The above properties are a characteristic of the curvature tensor R.
Similarly to (2.1), the Ricci tensor, the scalar curvature and their associ-
ated quantities are determined for each curvature-like tensor L.

Definition 2.2. ([12]) A curvature-like tensor L on (M, ,&,n, g) is called
a p-Kahler-type tensor if it satisfies the condition

(24) L(xa%‘PZNPw) = _L(-Tayvzaw)-

This property is a characteristic of R on a Fy-manifold. Moreover, (2.4) is
similar to the property for a Kahler-type tensor with respect to J on an almost
complex manifold with Norden metric ([1]).

Lemma 2.1. If L is a p-Kéahler-type tensor on (M, p,&,m,g), then the
following properties are valid:
(2.5) L(pz, 0y, z,w) = L(z, oy, pz,w) = —L(z,y, z,w),
(2'6) L(E’ y7 Z? w) = L(x7 57 Z? w) = L(x7 y’ 67 w) = L(:Z:7 y7 Z? f) = 0’
(2.7) L(pz,y,z,w) = L(z, 0y, z,w) = L(z,y, pz,w) = L(z,y, z, pw).

Proof. Equalities (2.5) and (2.6) follow immediately from (2.2), (2.3) and
(2.4). Properties (2.5) and (2.6) imply (2.7).
O
We consider an associated tensor L* of L by the equality

L*(Jj’ y) Z’ w) = L(J;’ y7 Z? @w)'

Let us remark, the tensor L* is not a curvature-like tensor at all. If L
is a w-Kahler-type tensor, then L* is also a ¢-Kahler-type tensor. Then the
properties in Lemma 2.1 are valid for L*. Obviously, the associated tensor
of L* i.e. (L*)*,is —L. Consequently, we have the following

Corollary 2.1. Let L and its associated tensor L* be p-Kéahler-type ten-
sors on (M, ¢,&,m,g). Then we have

p(L*) = p*(L),
p*(L*) = —p(L),
T(L*) =77(L),
T(L*) = —7(L).
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2.1. Examples of curvature-like tensors of p-Kéhler type

Let us consider the following basic tensors of type (0,4) derived by the
structural tensors of (M, ¢, &, 7, g) and an arbitrary tensor S of type (0,2):

1(8) (@, y, 2,w) = {g(y, 2)S (@, w) + g(z,w)S (Y, 2) } |, ., -
Ya(S) (@, y, 2,w) = {g(y,02)S(z, pw) + g(x, W) S(y, 2) } 1, (15
Us(8) (@, y, 2,w) = —{g(y, 2)S(z, pw) + g(y, 02)S (2, w)

+9(x, ow)S(y, 2) + 9@, w)S(y, 92) b, 10
Ya(8) (@, y, 2, w) = {n(y)n(2)S(z,w) + n(@)n(w)S(y, 2) }, .,
Us(9) (@, y,z,w) = {n(y) z, ow) + n(@)n(w)S (Y, $2) } 1, 1

where we use the following denotation { A(z, y, z)}[r ) Instead of the difference
A(x,y, z) — Ay, z, z) for any tensor A(x,y,z). The tensor ¢ (S) coincides with
the known Kulkarni-Nomizu product of the tensors g and S.

The five tensors 1;(.S) are not curvature-like tensors at all. In [12] and [9],
it is proved that on an almost contact B-metric manifold:

1. 91(S) and 4(S) are curvature-like tensors if and only if S(x,y) = S(y, x);

2. o(S) and 5(S) are curvature-like tensors if and only if S(z,py) =
S(y, p);

3. 13(S) is a curvature-like tensor if and only if S(z,y) = S(y,z) and
S(x; y) = S(y, o).

Moreover, both of the tensors ¢ (S) — 12(S) — ¥4(S) and 3(S) + ¥5(S) are
of p-Kéhler type if and only if the tensor S is symmetric and hybrid with
respect o, i.e. S(z,y) = S(y,x) and S(x,y) = —S(pzx, py). In this case, their
associated tensors are the following:

(11 = o —1pa)" (S) = — (Y3 +¢s5) (S),
(V3 +15)" (S) = (1 — 2 — ¥4) (S).

The following tensors m; (¢ = 1,2, ..., 5), derived only by the metric
tensors of (M, ¢,&,n,¢), play an important role in differential geometry of an
almost contact B-metric manifold:

mi = %m«g), (i=1,2,3);  m=1ilg), (i=4,5)
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In [12], it is proved that m; (i =1, 2, ..., b) are curvature-like tensors and the
tensors

Ly =m —my — Ty, Ly =m3+ s
are p-Kahler-type tensors. Their associated p-Kéahler-type tensors are as fol-

lows
L] = —Lo, Ly = L.

3. p-Kahler-type tensors on a 5-dimensional almost contact
B-metric manifold

Let o be a non-degenerate totally real section in T,M, p € M, and «
be orthogonal to £ with respect to g, i.e. a L pa, a L £ Let k(a;p)(L)
and k*(a;p)(L) be the scalar curvatures of a with respect to a curvature-like
tensor L, i.e.

L(z,y,y,x . L(z,y,y, pz
Kasp) (L) = HEBBE) ) = K00 00)

= s =

1 ((E, Y,Y, LU)
where {z,y} is an arbitrary basis of «.
We recall two known propositions for constant sectional curvatures.

Theorem 3.1. ([16]) Let (M, ,&,n,g9) (dim M > 5) be an almost contact
B-metric Fy-manifold. Then M is of constant totally real sectional curvatures
v = v(p)(R) = k(a;p)(R) and v* = v*(p)(R) = k*(o;p)(R) if and only if
R =vLq +v*Ly. Both functions v and v* are constant if M is connected and
dimM > 7.

771(:1771/7:[/7 ‘T) ’

Theorem 3.2. ([17]) Each 5-dimensional almost contact B-metric Fy-
manifold has point-wise constant totally real sectional curvatures

v(p)(R) = k(esp)(R),  v*(p)(R) = k" (a; p)(R).
In this relation, we give the following

Theorem 3.3. Let (M,¢,£,m,9) be a 5-dimensional almost contact B-
metric manifold. Then each p-Kéhler-type tensor has the form

L= VLl + V*LQ,

where v = v(L) and v* = v*(L) = v(L*) are the sectional curvatures of
the totally real 2-planes orthogonal to & in T,M, p € M, with respect to L.
Moreover, (M, p,€&,m,g) is of point-wise contact sectional curvatures of the
totally real 2-planes orthogonal to & with respect to L.
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Proof. Let {e1, ez, pe1, pes, ) be an adapted o-basis of T,M with respect
to g, i.e.

—g(e1,e1) = —g(ea, e2) = g(per, pe1) = g(pez, pea) = 1,
g(ei7<pej) = 07 77(81) =0 (7" ,7 S {1’2})

Then an arbitrary vector in T, M has the form z = zlei+x2es+3 e +32pes+
n(x)&. Using properties (2.2), (2.3) and (2.4) for L(x,y, z, w), we obtain imme-
diately L = vLj 4+ v*Lo, where v = L(ey, ea,e2,€1), v* = L(ey, ez, €9, pe1) =
v(L*) = L*(ey,ea,ea,e1) are the sectional curvatures of o with respect to L,
because 71 (€1, eq,e2,e1) = 1.

Then, if {z,y} is an adapted ¢-basis of an arbitrary totally real 2-plane «
orthogonal to &, i.e.

g(z,y) = g(=, pr) = g(z, py) = g(y, vy) = n(z) = n(y) =0,

we get k(a;p)(L) = v(p)(L), k*(a;p)(L) = v*(p)(L), taking into account the
expression L = vLj + v*Ly. Therefore, (M, ¢,&,n,g) is of point-wise contact
sectional curvatures of o with respect to L.
O
The restriction of Theorem 3.3 to Fy coincides with Theorem 3.1 because R
is a p-Kahler-type tensor on a Fp-manifold.

3.1. Curvature tensor of a natural connection on a 5-dimensional
almost contact B-metric manifold

In [10], it is introduced the notion of a natural connection on the manifold
(M, ¢, &, m, g) as a linear connection D, with respect to which the almost
contact structure (p,&,n) and the B-metric g are parallel, i.e. Dy = D¢ =
Dn = Dg = 0. According to [13], a necessary and sufficient condition a linear
connection D to be natural on (M, ¢,&,n,g) is Do = Dg = 0.

Let K be curvature tensor of a natural connection D with torsion T.
Then K satisfies (2.2) and (2.4). Instead of (2.3), we have the following form
of the first Bianchi identity ([5])

6 K(x,y,z,w): 6 {T(T(Ivy)asz)+(DIT) (y,z,w)}.

T,Y,2 T,Y,z

If we set the condition & K(z,y,z,w) = 0 as for the curvature tensor R,
x,Y,z

then K is a p-Kéhler-type tensor and satisfies the condition of Theorem 3.3.
Therefore, we obtain
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Corollary 3.2. Let (M, ¢,£,n,9) be a 5-dimensional almost contact B-
metric manifold with a natural connection D with curvature tensor K of -
Kaéhler-type. Then K has the form

K= I/Ll + Z/*LQ,

where v = v(K) and v* = v*(K) = v(K*) are the sectional curvatures of
the totally real 2-planes orthogonal to & in T,M, p € M, with respect to K.
Moreover, (M, p,€,m,g) is of point-wise contact sectional curvatures of the
totally real 2-planes orthogonal to £ with respect to K.

4. Curvature tensor of the y-canonical connection

According to [15], a natural connection D is called a y-canonical connec-
tion on the manifold (M, ¢, £, n, g) if the torsion tensor T' of D satisfies the
following identity:

{T(x,y,2) = T(x, py,02) —n(x) {T (&, y,2) = T(E, ¢y, 2)}

Let us remark that the restriction the (p-canonical connection D of the
manifold (M, ¢,&,n,g) on the contact distribution ker(n) is the unique cano-
nical connection of the corresponding almost complex manifold with Norden
metric, studied in [2].

In [12], it is introduced a natural connection on (M, ¢, &,n, g), defined by

(4.1) Dy = Vay + %{(Vmw) oy + (Van)y - €} — n(y) Ve

In [14], the connection determined by (4.1) is called a ¢ B-connection. It is stud-
ied for some classes of (M, ¢, &,n,g) in [12], [6], [7] and [14]. The ¢B-connection
is the odd-dimensional counterpart of the B-connection on the corresponding
almost complex manifold with Norden metric, studied for the class Wy in [1].

In [15], it is proved that the p-canonical connection and the ¢B-connection
coincide on the almost contact B-metric manifolds in a class which contains
FieFseeFs @ T

According to [12], the necessary and sufficient conditions K to be a -
Kéhler-type tensor in F; (i = 1, 4, 5, 11) is the associated 1-forms 6, 8* and
w o ¢ to be closed. These subclasses we denote by F9 (i =1, 4, 5, 11).
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Bearing in mind the second Bianchi identity

S {(DJJK) (y,z) + K(T(m,y),z)} =0,

T,z
we compute the scalar curvatures for K determined by

T(K) =g"p(K)ij,  7(K)=7(K*) = g" ¢} p(K)ir,
where p(K);; is the Ricci tensor of K, and then we get the following

Lemma 4.2. For (M,¢,&,n,g9) in 9 (i = 1,4, 5, 11), the relations for
the scalar curvatures T = 7(K) and 7" = 7*(K) of K are:

(42) drop=—dr* - % (t04+776%), drfop=dr— % (770 — 76™).
Obviously, bearing in mind (4.2), we it follows that the pair (r,7*) on
(M, p,€,m,9) is a @-holomorphic pair of functions, i.e. dr = d7* o ¢ and
d7* = —d7 o ¢, if and only if the associated 1-forms 6 and 6* are zero. Such
one is the case for the class ;.
The system (4.2) can be solved with respect to # and 6* and then

(43) 0=—-n {dfl + df2 o (p} s 0" =n {dfl o — dfg} s
where f; = arctan (7*/7), fo = In /72 + 772

Let us consider the complex-valued function h = 7 + i7* or in polar form
h = |h|e’*. Then we have |h| = /72 + 7*2, a = arctan (7*/7).

Bearing in mind that Logh = In|h| + i, then (4.3) take the following
form:
(4.4) 0 =—n{da+d(In|h])op}, 6" =n{daoy—d(nlh|)}.

So, we obtain the following

Theorem 4.4. For (M, ¢,£,m,g) in 39 (i = 1,4, 5), the associated 1-forms
0 and 6* are derived by the non-p-holomorphic pair of the scalar curvatures
(1,7*) of the p-Kéhler-type tensor K for the p-canonical connection D by (4.4).

Corollary 4.3.
Fori=1

0 =n{daoyp®—d(In|h|) oy}, 0" =n{daop+d(In|h|)op?};

Foriv=14
0 = —nda(&)n, 0" =0;
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Fori=5
=0,  0°=-—nd(Inh|)(&)n.

5. Examples of almost contact manifolds with B-metric

Let us consider R?"™2 = {(u!,... w0l .. 0o") |u! 0" €R} as a
complex Riemannian manifold with the canonical complex structure J and a
metric g, defined by g(x,x) = —0;; A\°N + §;;p' 1!, where z = X' 8‘2,; +ut 827;.
Identifying the point p = (u',...,u"" 0!, .. 0" in R?"™2 with its posi-
tional vector Z, in [3] it is given a hypersurface S defined by

9(Z2,JZ) =0, ¢(Z,Z)=cosh®t, t>0.

The almost contact structure is determined by the conditions:

1
cosht

£= Z,  Jz=pz+n(2)JE,
where x, @z € T,,S and J¢ € (T,S)*. Then (S, ¢,&,n,g) is an almost contact
B-metric manifold in the class JFs.

Consequently, we characterize (S, p,&,n,g) by means of [8]. We compute
the following quantities for the constructed Fs-manifold:

. £§6"(£) () 1
1 = = sinh = = )
(5.1) 0 =0, 1 = sinh ¢d¢, 5 2 -

In [11], it is given that the 1-form 6* on a Fs-manifold is closed if and
only if 26*(&) = £60*(£)n(x). By virtue of (5.1), we establish that (5, ¢,&,n,9)
belongs to the subclass F2, since df* = 0.

The condition for the second fundamental form of the hypersurface S,
given in [3], the Gauss equation ([5]) and the flatness of R?"*2 imply the
following form of the curvature tensor of V

1

= ———— 9.
cosh?t

Then, taking into account (5.1) and the form of the curvature tensor K
of the (-canonical connection in F ([12])

* *2
L 0%©)

K =
R 2n 4n?

1,
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we obtain

1
5.2 K=——F514.
(5:2) cosh®t
Since L, is a p-Kéahler-type tensor, then K is also a p-Kahler-type tensor.
Therefore, we have

1

v(K)=K(e, e, e9,61) = ——,
(K) (e1,e2, €2,e1) cosh? ¢

V*(K> = K*(€17€2,€2,€1) = 07
which illustrates Theorem 3.3 and Corollary 3.2.
According to (5.2), the scalar curvatures are

_ dn(n — 1)

K
m(K) cosh?t

T(K) = 0.
Then, taking into account (5.1), the results for (S, ¢, £, 7, g) illustrate also Lem-
ma 4.2, Theorem 4.4 and Corollary 4.3.
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ITOYTN KOHTAKTHUW B-METPNYHUN MHOT'OOBPA3UA C
KPUBVMHHN TEH30PU OT KEJIEPOB TUII

Mamvo Manes, Mupociasa VBanosa

Pesrome. Oupejiesien e BHIBT HA BCEKH TEH30D OT (p-KeJiepoB THIl (T.e.
TEH30D, YJOBJIETBOPSBAII, CBOICTBATa Ha TE€H30pa Ha KPUBHUHA 33 CBbP3AHOCT-
Ta Ha JleBu-UuBuTa B CcrHeruajHus KJac HA TMapaJIeIHUTE CTPYKTYPU BbPXY
MHOT000PA3MeTo) BbpPXy H-MEPHU MOYTH KOHTAKTHU B-MeTpUIHH MHOrooOpa-
3ust. Acoruupanure 1-popMu ce mopaxKaaT OT CKAJAPHUTE KPUBUHU Ha TEH30DA
OT (Y-KEeJIEPOB THII 33 (Y-KAHOHUYIHATA CBBHP3AHOCT BBHPXY MHOr0o00pasusaTa OT
IJIABHHUTE KJIACOBE C'hC 3aTBOPEHU aconuupanu l-cdopmu.
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