
International Conference

FROM DELC TO VELSPACE

Plovdiv, 26–28 March 2014

49

SOLIDREFLECTOR: A MULTISTAGE, INTERACTIVE

DECOMPILATION FRAMEWORK

Vassil Vassilev, Martin Vassilev, Petya Petrova

Abstract. The paper describes a multistage, interactive analysis and decompilation

framework – SolidReflector. Some of the key algorithms responsible for the

generation of intermediate representations are outlined and accompanied with

examples. The work presents loose-coupled visualization techniques pairing code

representations with their visual counterparts. We identify the benefits and the

applications of the multistage decompilation. We discuss the pros of the

interactivity of the decompiler in areas such as university education.

Keywords: decompiler, multistage decompilation

Mathematics Subject Classification 2010: 68N20, 97R99

1. INTRODUCTION

Good understanding and analysis of the software are essential for computer

science. The tendency of increasing codebases and the complexity of the software

systems outlines already the profile of the contemporary and future computer

specialists. A common denominator usually is the ability to understand quickly

complex systems that may be implemented and integrated decades ago. Most of the

time tools such as text editors, static analyzers and IDEs can help. In university

these tools are used to show the students various aspects of the practical materials.

Very often the tools are static and able to show only one layer of information, such

as the source code of an application.

There are multiple layers between the source and machine code. Considerable

part of the information flow in the process of translation remains hidden. Inevitably

it leads to the troubled understanding, which approach is the most efficient in order

to implement the desired behavior. This becomes a central issue with the modern

compilers, which use multi-stage compilation [1]. Understanding the different

stages is not easy not only for students but for experts, too.

A goal of the developed framework is to reveal the process of translation of the

high-level source code to machine executable code by inverting the compilation

chain. Thus, if we simplified, we could classify the tool as a decompiler and the

framework as a decompilation framework. In this paper we will try to prove this

50

would be an oversimplification. Alongside with the framework we provide a

standalone tool, demonstrating features of the framework.

The paper is divided as follows: Section 2, related work; Section 3, architecture

and concepts, discussing the challenges in building a multistage, open and user-

friendly system; Section 4, implementation, motivates the concrete realization

details and taken decisions; Section 5, application scenarios, suggests possible

applications of the work in a few domains; and Section 6, conclusion, briefly

summarizes the presented work and gives future perspectives of the project.

2. RELATED WORK

Classification of the framework is not easy. If we said it is a decompilation

toolchain, we would need to review a few decompilers. SolidReflector builds flow

graphs, which are very common for the static analyzers.

.NET Reflector is a class browser, decompiler and static analyzer for .NET

based applications [2]. It is the first assembly browser based on CLI (Common

Language Infrastructure) and it is capable of working with every .NET/Mono-

targeted assemblies. The decompiler recreates readable high-level source code, but

it does not reproduce suitable and informative code models. Another disadvantage

is the fact that .NET Reflector is a commercial product and it is not platform

independent. Moreover, it lacks interactive manipulation of the loaded assemblies.

Since .NET Rеflector became commercial product the IL Spy project was

started. This is an open source tool used to browse and decompile C# assemblies

including ones with C# version 4.0 and 5.0 [3]. Disadvantage of IL Spy is the lack

of interactivity, the absence of multiple code model generation and the platform

dependence on Windows.

Most of the available code analyzers focus on just analyzing the source code,

their common feature is restricted to providing the read only abilities of previewing

and browsing the code and information related to the loaded executables. They

provide only static and non-interactive analyses. Very few show the multistage

translation layers. Moreover, these tools are oriented towards the expert, turning

them into not very appropriate for education purposes.

3. ARCHITECTURE & CONCEPTS

The system has many diverse ingredients coming from different domains, such as

compiler construction, simulation and data visualization. Loose coupling becomes

a must in order to separate concerns and provide a good extensible model. The

implementation follows the MVC pattern [4] and provides a modular subsystem.

Many aspects of the translation process require code models (intermediate

representations) at different levels of abstraction. The problem is that the above-

51

mentioned types of representations are challenging to understand when displayed

in raw form. There are not enough tools, which can show multiple layers of

information about certain piece of software, and allowing the user to interactively

browse and change the displayed contents. The implementation of interactive

application analyzers would be greatly beneficial in the field of education as well.

SolidReflector is a tool developed in the context of SolidOpt [5]. SolidOpt is a

framework for carrying out automatic optimizations, developed by the same

research group. It is capable of analysing executable code and based on it to create

multiple models of the code at different levels of abstraction. SolidReflector uses

SolidOpt as a library, in order to build the needed representations of a .NET

assembly. Once the representation is built, it is extended with a graphical

visualization, showing implicit information such as nodes and edges in the flow

graphs, for example. Visual and non-visual code models are bound together to

create a hybrid graph of representations [5]. It allows the built representations to be

changed in flight. The changed representations can be lowered to an executable and

their execution can be simulated in a secure environment. A major advantage of

this setup is that it makes the multistage compilation a little more comprehensive.

Understanding how the representation of the program works usually needs trial

and error learning. This implies our representations to be mutable and to execute

the changes. In combination with user-friendly organisation of the interface the

representation turns into an interactive representation. Many of the built

representations in SolidReflector have interactive layer making them easy to

change and comprehend.

SolidReflector contains various graphical primitives ready to be used for as

building blocks to display the representations’ data. The primitives can be

inherited, modified and grouped into new composite forms in order to achieve

better exposition of data.

After a change in a representation by the user, the modifications have to be

propagated down to the assembly, i.e. to the executable code. In order to verify

effect of the modification, the user could test it within an isolated scope by

performing a simulative execution. Due to security reasons the assembly execution

is rather simulated than executed, i.e. the application is never executed natively, but

in a controlled environment. It is implemented by creating a dedicated application

domain with restricted permissions, where the execution takes place.

For instance, changing the nodes of method’s control flow graph can alter the

semantics not only of the method itself, but the entire program. The modification of

the semantics can be done only using the interactive interface and moving the links

between the nodes only through the graphical user interface.

SolidReflector uses a plugin-based architecture and it can be divided into a core

and plugins [6], [7]. The core can be described as the mechanism responsible for

providing base infrastructure suitable for manipulating and loading plugins. It

provides a basic graphical interface that can be used for docking different types of

controls.

52

4. IMPLEMENTATION

The tool is written in C# and can run on multiple platforms such as Linux, Mac and

Windows. It can provide descriptive information about CLI [8] assemblies by

building representations of the code such as control flow graphs, call graphs and

three address code.

4.1. ASSEMBLY BROWSER PLUGIN

The Assembly Browser stores multiple loaded assemblies ( on Figure 1). It

provides a convenient tree-like hierarchy representation of the assembly data. The

tree consists of four levels. The first level shows the assembly name; the second

level shows the list of modules defined by the assembly; the third level shows the

list of types defined by the module; the fourth level – the list of methods, fields and

events defined by the type. There is a changes monitoring mechanism implemented

that is observing each assembly. If a loaded assembly is externally modified a

warning in the application is generated and then the assembly is reloaded.

4.2. COMMON INTERMEDIATE LANGUAGE

VISUALIZER PLUGIN

The loaded assemblies ( on Figure 1) contain various meta information regarding

the assembly itself or modules, types, methods and common intermediate language

(CIL) instructions used in it.

4.3. CONTROL FLOW GRAPH

VISUALIZER PLUGIN

A control flow graph (CFG) is a graph representing the execution flow. Each graph

node contains instructions grouped in basic blocks. Each basic block is filled with

linear instructions, i.e. instructions that do not change the control flow and that are

executed in a row – one after another. There is a branch or return instruction at the

end of each basic block and the next instruction starts a new basic block. The edges

of the built graph model all possible branches between the basic blocks.

The control flow graph ( on Figure 1) is a graph based intermediate

representation of the CIL code. There are two types of branches:

 Structural – i.e. branches caused by the ‘normal’ possible changes in the

control flow of the program;

 Exceptional – i.e. branches caused by the exceptional possible changes in the

control flow of the program.

The listed pseudocode in Listing 1 gives the concept of creating and connecting

the basic blocks.

53

void function CreateBlocks()
 Foreach (instr in instructions)
 {
 If IsBlockLeader(inst),
 set block to CreateNewBlock();
 block.add(instr)
 If IsBlockTerminator(instr),
 BlockList.add(block);
 }

void function ConnectBlocks()
 Foreach (block in BlockList)
 {
 Set targets to GetTargetInstructions(LastInstr)
 Foreach (target in targets)
 {
 Set succ to GetNodeContaining(target);
 block.Successors.add(succ);
 succ.Predecessors.add(block);
 }
 }

Listing 1: Pseudocode creating structure CFG

Table 1 presents an example of an exception-free (structure) CFG. It represents

the control flow of an if-else statement (left). In the middle is shown the

corresponding CIL code generated after compilation of the high-level code and on

the right is the interactive representation of the control flow graph.

High-Level Code (C#) CIL CFG

static void Main()
{
int a = 2;
int b = 0;

if (a == b)

 Console.Write
("a=b");
else

Console.Write("a!=b")
;
}

.method public
hidebysig static Void
Main () cil managed {
IL_00: ldc.i4.2

IL_01: stloc.0

IL_02: ldc.i4.0

IL_03: stloc.1

IL_04: ldloc.0

IL_05: ldloc.1

IL_06: bne.un IL_001a

IL_0b: ldstr "a = b"

IL_10: call Write
(String)

IL_15: br IL_0024

IL_1a: ldstr "a != b"

IL_1f: call
Write(String)

IL_24: ret
}

Table 1: C# to structure CFG transformation

Table 2 illustrates the exception-based CFG. The represents the control flow

graph of a try-catch-finally statement. Main difference in building exception CFG

54

is the exception handling model relies on the specifics of the design of the

executor. In the case of CLR, many of the control flow rules are not part of the

instruction object model. They are annotated by special instructions, which can be

only used when exception is being handled. CLR treatment of those instructions

sometimes is very complex and obscure, which makes part of the implementation

very cumbersome and tricky.

High-Level Code (C#) CIL CFG

static void Main() {
int a = 2;
int b = 0;

try
{
 a = a / b;
}

catch (Exception ex)
{
 Console.Write("Div by
0");
}

finally
 Console.Write("Exit");
}

.method public
hidebysig static Void
Main () cil managed {
IL_00: ldc.i4.2
IL_01: stloc.0
IL_02: ldc.i4.0
IL_03: stloc.1
IL_04: ldloc.0
IL_05: ldloc.1
IL_06: div
IL_07: stloc.0
IL_08: leave IL_0028
IL_0d: stloc.2
IL_0e: ldstr "Div by
0"
IL_13: call
Write(String)
IL_18: leave IL_0028
IL_1d: ldstr "Exit"
IL_22: call
Write(String)
IL_27: endfinally
IL_28: ret
.try L_0004 to L_000d
catch Exception
handler L_000d to
L_001d
.try L_0004 to L_001d
finally handler
L_001d to L_0028
}

Table 2: C# to exception CFG transformation

4.4. CALL GRAPH VISUALIZER PLUGIN

The call graph ( on Figure 1) is a representation responsible for modeling the

method calls in an application [1]. The call graph (CG) contains nodes and edges,

where:

 A method is represented by a node;

 Method call is represented as a node;

 An edge is created between method A and method B if A calls B.

In the right-most column in Table 3 is illustrated a call graph built for the

method ‘Main’ (shown in the left-most column).

The pseudocode for the recursive function responsible for the call graph

generation can be seen in the middle column of Table 3.

55

High-Level Code (C#) Pseudocode Call Graph
public int Zero()
{
 return 0;
}
public int One()
{
 return 1;
}
public int Two()
{
 return One() +
One();
}
public int Main()
{
 return Two();
}

void function VisitMethod(CGNode
node)
ForEach (instruction in
instructions)
 if (instruction.opcode ==
 MethodCall)
 {
 Set callee to new CGNode();
 node.MethodCalls.add(callee);
 VisitMethod(callee);
 }

Table 3: C# to Call Graph transformation

4.5. THREE ADDRESS CODE VISUALIZER

Three-address code (TAC) is an intermediate code representation where each

statement contains at most one operator on the right side of an instruction ( on

Figure 1). The three address instructions are based on two concepts – addresses and

instructions. The addresses can be names; constants; or temporaries. The

instructions can be: assignment instructions; copy instructions; unconditional

jumps; conditional jumps; procedure calls; return instructions; array manipulation

instructions; address and pointer instructions; type casts; etc. [1].

Implementing CIL to TAC transformation is not a trivial task. It needs to

transform the stack-based CIL into a close to a register-based representation. Thus,

the implementation requires the use of a simulation stack. The stack simulates

execution of the CLR instructions by iterating over them. In brief, when the

transformer encounters an instruction, whose semantics is storing information onto

the stack – it pushes this information onto the simulation stack. On encountering an

instruction, whose semantics is loading from the stack instruction, it takes the

information from the top of the simulation stack and does the translation depending

on its semantics.

On Listing 2 is illustrated how stloc.0 (store local variable on the stack) and

ldloc.0 (load local variable from the stack) are decompiled.

Listing 2: Pseudocode for CIL to TAC transformation

Set instr to GetFirstInstruction();
while (instr not null)
{
 switch (instr.OpCode)
 {
 case Code.Stloc_0:
 triplets.Add(Triplet(TripletOpCode.Assignment,
 GetFirstVar(), stack.Pop()));
 break;
 case Code.Ldloc_0:
 stack.Push(method.Body.Variables[0]);
 break;
 ...
 }
 set instr to instr.next()
}

56

In the example below (Table 4) is shown a CIL to TAC transformation. The

three-address code representation is designed to work with the CFG builder and a

CFG for the TAC could be build using the described algorithm in 4.3.

High-Level Code (C#) CIL TAC

public static int
Main()
{
 int i = 0;
 int j;
 j = i++;
 return j;
}

.method public
hidebysig static
Void Main () cil
managed {
IL_00: ldc.i4.0
IL_01: stloc.0
IL_02: ldloc.0
IL_03: dup
IL_04: ldc.i4.1
IL_05: add
IL_06: stloc.0
IL_07: stloc.1
IL_08: ldloc.1
IL_09: ret
}

Table 4: CIL to TAC transformation

Figure 1 shows the described tool in practice. It can build simultaneously

various representations in reverse to the multistage compilation order – providing a

multistage decompilation. The multistage decompilation shows very precise

information about the process of translation from a high-level language to CIL and

outlines the information flow in lowering high-level constructs into their low-level

counterparts. This greatly improves the comprehension of the entire process.

Figure 1: SolidReflector

5. CONCLUSION

SolidReflector evolves constantly and its prototype converges into a standalone,

usable tool. It combines all ingredients, necessary for building an interactive tool,

able to show many layers of a software system and outlining the use of reverse

engineering in the education. It works on any CLR [8] assemblies and it can

display different representations of the program logic alongside with interactive

57

visualization. It was already used to study the specifics of CLR and the quality of

the generated by the compiler code. This makes it an excellent candidate as an

education tool in courses such as compiler construction and performance

optimizations. Another usage scenario is for experienced programmers. They could

use the tool to study which high-level constructs get compiled more efficiently.

A possible future direction would be to cover other virtual machines such as the

java virtual machine (JVM) and LLVM. This is not a trivial endeavor, which can

broaden even more the application scenarios. There is a lot of space for future

improvements but the most important ones are the ability to build an interactive

abstract syntax tree (AST) representation and actual source code. The AST would

greatly improve the code retargeting features, i.e. decompilation from one

executable format and then translating it into another.

Improvements in the interactivity are always a vital component. Depending on

information about the ways of use, the interface and commands can be further

tweaked to match the most common usage setups.

REFERENCES

[1] A Aho et al., Compilers – Principles, Techniques and Tools 2nd edition

[2] .NET Reflector. http://www.reflector.net/ (visited in March 2014)

[3] Il Spy. http://ilspy.net/ (visited in March 2014)

[4] Krasner, G. and S. Pope, A cookbook for using the model-view controller user

interface paradigm in smalltalk-80, J. Object Oriented Program, 1 (3), 1988,

26–49.

[5] Penev, A., Computer Graphics and Geometric Modelling – A Hybrid

Approach, Journal of Pure and Applied Mathematics, 85 (4), 2013, 781–811.

[6] Vassilev, V. et al, SolidOpt – Innovative Multiple Model Software

Optimization Framework, IEEE and STRL: The Second Conference on

Creativity and Innovations in Software Engineering, 2009.

[7] Penev, A., D. Dimov and D. Kralchev, Open hybrid system for geometrical

modeling, In Proceedings of the 17th International conference SAER-2003

Conference, (1), 2003, 131–135.

[8] ECMA-335, Common Language Infrastructure (CLI), ISO/IEC 23271, 2012.

Faculty of Mathematics and Informatics,

University of Plovdiv “Paisii Hilendarski”

236 Bulgaria blvd, Plovdiv, Bulgaria

vvasilev@cern.ch, mrtn.vassilev@gmail.com, petya.petrova@hotmail.com

http://www.reflector.net/
http://ilspy.net/

58

SOLIDREFLECTOR – МНОГОСТЪПКОВ,

ИНТЕРАКТИВЕН ИНТРУМЕТАРИУМ ЗА

ДЕКОМПИЛАЦИЯ

Васил Василев, Мартин Василев, Петя Петрова

Резюме. В тази статия ние описваме многостъпков, интерактивно-

анализиращ и декомпилилиращ инструментариум – SolidReflector.

Представени са някои от основните алгоритми, отговарящи за

генерирането на междинни представяния, съпроводени от примери.

Демонстрирано е използването на слабо свързана система за визуализация,

която свързва моделите на кода с техните съответни визуализатори.

Показани са предимствата на многостъпковата декомпилация. Обсъждат

се предимствата на интерактивността на декомпилатора във сфери като

обучението.

