
International Conference

FROM DELC TO VELSPACE

Plovdiv, 26–28 March 2014

129

OPTIMIZING THE GLOBALIZATIONS IN

INFOSTATION ARCHITECTURE

Ivan Dimitrov, Vladimir Valkanov, Asya Stoyanova-Doycheva

Abstract. This paper considers the problem of finding an optimal deployment of

information resources on an InfoStation network in order to minimize the over-head and

reduce the time needed to satisfy user requests for resources. Two program realizations

for solving the problem of optimal deployment of resources are presented.

Key words: distributed eLearning Centre (DeLC), InfoStation network, request

globalization, over-head optimization.

INTRODUCTION

During the last decade in the Faculty of Mathematics and Informatics at the Plovdiv

University “Paisii Hilendarski” an educational portal is being developed which is called

Distibuted eLearning Center (DeLC) [3]. The communication infrastructure of DeLC is

based on a local area network (LAN) reinforced with information stations (InfoStations),

working as serving points with intelligent wireless access. In the standardized version

the information stations operate as mediators between mobile user devices and a server

on which all system applications and information resources are situated. During the

build-up of DeLC, this classic architecture is developed by location services on each

InfoStation which can be locally activated. By this decentralized placement of services

and information resources a balanced overhead of the communication network and better

productivity are aimed [5, 6].

However the decentralized placement of information resources has its setbacks as far

as system overload in accordance to the internal relations among information resources

during the execution of a query for a service. This overload is especially heavy when the

related resources are situated on different information stations. Respectively, the task for

reducing the overload is of vital importance in the decentralized approach and the degree

of overload depends on the way in which the information resources are distributed [2].

The goal of this current paper is to present the realization of a model (model for

Optimizing Resource Locations – OReL) [4] for optimizing information resource

130

locations on DeLC’s educational nodes. After the conducted research a conclusion was

reached that for the achievement of the goal a heuristic approach would be suitable,

specifically – the evolutionary strategy.

The program realization of OReL was performed as an iterative process which led to

the creation of two software products:

 OReLO – an object-oriented version which was realized in the Java programming

language in the Eclipse environment. This software can be integrated in object-

oriented applications which have to solve similar types of optimization problems;

 OReLA – an agent-oriented version which was realized in the Java programming

language in the JADE environment [1]. This component version will be an

integrated part of the virtual learning space [7].

OBJECT-ORIENTED REALIZATION OF THE MODEL – ORELO

The information resources are pieces of data which can be combined in different ways

according to the needs for a certain service. We would like the information resources to

be spread equally within the InfoStation network in order to avoid overload in the

communication environment. In order to achieve optimal distribution of the resources

we have to run a simulation of that system which we will do by using two graphs – one

dynamic and one static. The dynamic graph is formed from the InfoStation network

where:

 each node is an access point from the InfoStation network containing resources;

 the edges between the nodes will be called global connections or globalizations

and each one is a link (of a certain weight) between two resources;

The static graph is formed by the resources within the system and their relations

where:

 each node is a resource which is on a certain InfoStation;

 each edge illustrates the relation between two resources, i.e. the dependence of

one on the other;

For the realization of the algorithm we have to present the static graph in

programming language. For that goal we present the resources (nodes) as objects with

the information important for the system: name, position, list of connections of that

resource with other resources.

 The name serves for differentiating between the different nodes and for a key for

access to the object;

 The field “position” will store information for the resource’s location on the

InfoStation network.

 The list of the resource’s locations will contain objects of the type “connection”

which in turn will contain an object of type “node” (resource which is linked to

131

the current) and weight of the connection (a positive integer determining the

importance of that connection).

The meaning of that algorithm is in the change of positions of two randomly chosen

resources. After the change it is completely natural that the resources’ connections

change, i.e. some turn from global to local or vice versa. To find these changes out we

run a matrix (containing information for the resources’ location), the rating algorithm

and we find the mark of its globalizations (the sum of the global connections’ weights).

Our goal is to decrease this mark so if after the change the mark is a smaller number than

the initial, we say that there is improvement in the distribution, in the opposite case we

do not have a change (the result is worse or the same). In the case of improvement, the

initial state is terminated and the new state is saved as the same algorithm is applied

again until a local optimum is achieved. If the change is not successful, another random

change is made and the same rating process is repeated. To avoid program loops and

introduce an end condition (for finding a local optimum), we use a counter for the

unsuccessful iterations. If a certain iteration is an “improvement”, we reset the counter,

if it is not, we add one to it. When that variable reaches its critical value, which is

predetermined, the program stops. As a result, the optimized resource distribution which

is found is returned. The result may not be the absolute optimum for the entire system,

but local one.

PERFORMED TESTS AND RESULTS

The goals of the performed tests are the following:

 To test the algorithm efficiency;

 To test the impact of the size of input data (population) on the quality of the

solution given by the algorithm.

 To test the impact of the size of input data (population) on the time for executing

the algorithm.

 To make a comparative analysis between the different changes in the algorithm

end condition in each of the tests by comparing the quality of the generated

solutions and time for executing the algorithm.

 To prove the effectiveness of the algorithm.
The tests are run on a computer configuration which has a 64-bit operating system

Windows Windows 7 Ultimate (Service Pack 1) installed with the following parameters:

 Processor: Intel Core 2 Duo CPU T7500 @ 2.20GHz 2.20GHz

 RAM: Hynix DDR2 SODIM 2.00GB @ 667MHz

132

End condition
100

iterations

1000

iterations

5000

iterations

10000

iterations

Time for execution 1 s 3 s 9 s 18 s

Global connections 17 17 17 17

Local optimum 10 10 10 14

Iterations for achieving

the local optimum
52 41 133 26

Table 1. Results with 9 resources and 3 stations OReLО

End condition

100

iterations

1000

iterations

5000

iterations

10000

iterations

Time for execution 1 s 2 s 9 s 17 s

Global connections 27 27 27 27

Local optimum 16 16 16 16

Iterations for achieving

the local optimum 90 36 31 35

Table 2. Results with 9 resources and 5 stations OReLО

AGENT-ORIENTED MODEL REALIZATION – ORELA

The idea for this algorithm is already realized with an object-oriented approach. The goal

in creating the agent-oriented version is for it to be easily integrated in the already

existing DeLC architecture which consists of a large number of software agents. The

algorithm allows to separate the code in portions and create a multi-agent system. To

realize the goal, we will reengineer the initial object-oriented code. Starting the method

(and the method itself) for applying the evolutionary strategy will be integrated in an

agent called CrossOver. The agent which will contain in itself the rating algorithm will

be called the Rating agent. The agents will work in a container and will be able to

communicate among themselves with messages.

AGENTS OPERATION

An agent called Transformer will display two behaviors. One is constructing a matrix

out of the graph which contains the behavior of the InfoStation network resources. After

the algorithm is executed, an object from the type EnviromentModel is returned which

is ready to transport to the next agent (Rating). It is important to point out that in the

object from the type EnviromentModel there is a matrix in which the remaining

algorithms are executed (change of resources and rating of the result). When the Rating

133

agent finishes its action, it sends an optimized matrix to the Transformer agent which

renews the graph.

Agent (Rating): As we mentioned above, the Transformer agent sends a message to

the Rating agent. Before the evolutionary strategy is applied, a globalizations’ rating is

made based on the input matrix (environment). This matrix is sent to the CrossOver

agent. Certain processes – mutations, take place there and it returns a new – processed

matrix (better or worse). The algorithm for globalizations rating is applied to this matrix.

The agent uses the RatingAlgorithm to compare the matrices. The behavior of the Rating

agent determines which matrix is better (the initial matrix representing the environment

or its evolved copy) and sends it to the CrossOver agent. This operation is repeated

several times. Each returned matrix is compared. This cycle continues until a certain

number of negative iterations is achieved (iterations in which the evolved copy is not

better than the initial). The best matrix is saved and sent to the Transformer agent which

in turn has to renew the information in the graph.

Agent CrossOver. This agent receives messages only from the Rating agent. In those

messages there is a matrix on which the CrossOver agent executes operations of

selection and crossing. The newly-received matrix is placed in an object from the type

EnviromentModel and is sent to the Rating agent where it will be rated. This agent is

invariably connected to the Rating agent and the performance of the two agents is in a

master-slave dependency.

Figure 1.

The agent-oriented version of the optimization model was tested with the same input

data as the previous realization in order to compare the effectiveness of the two

architectures.

134

End condition
100

iterations

1000
iterations

5000
iterations

10000
iterations

Time for execution 406 ms 1 s 2 s 5 s

Global connections 17 17 17 17
Local optimum 10 10 10 14

Iterations for achieving

the local optimum
92 13 10 5

Table 3. Results with 9 resources and 3 stations OReLA

End condition

100
iterations

1000
iterations

5000
iterations

10000
iterations

Time for execution 374 ms 1 s 3 s 5 s
Global connections 27 27 27 27

Local optimum 16 16 16 16
Iterations for achieving

the local optimum 27 22 22 42
Table 4. Results with 9 resources and 5 stations OReLA

CONCLUSION

Both algorithm realizations produce positive results. We can make the following

generalization of the results:

 When the size of the input date is increased, the quality of the algorithm solution

is deteriorated.

 When the size of the input data is increased, the time for the algorithm execution

is increased.

 In both realizations, when the number of negative iterations is increased, the time

for execution of the program is increased. When the size of the input data is

decreased, the number of negative iterations can be decreased which will lead to

identical results. When the size of the input data is increased, the negative

iterations need to be increased because of the increase in the variations during

crossing and changing.

Having in mind the approximately similar results from the two program realizations,

the OReLA would be more suitable from an architectural standpoint, for solving the

optimization problems in DeLC for the following reasons:

 Agents mobility;

 Easy integration of the agents in the existing DeLC agent environment.

Nevertheless, OReLО would be applicable in other systems which require the solution

of similar optimization problems.

135

ACKNOWLEDGMENT

The authors wish to acknowledge the support of the Science Fund of the University of

Plovdiv “Paisii Hilendarski” (Research Project Ref. No. NI13-FMI-02).

REFERENCES

[1] Bellifemine, F., G. Caire and D. Greenwood, Developing Multi-Agent Systems with

JADE, Wiley, 2007.

[2] Stoyanov, S., I. Ganchev, I. Popchev and M. O’Droma, An Approach for the

Development of InfoStation-Based eLearning Architecture, Compt. Rend. Acad.

Bulg. Sci., Vol. 62, No. 9, 2008, 1189–1198.

[3] Stoyanov, S., I. Ganchev, I. Popchev, M. O’Droma and R. Venkov, DeLC –

Distributed eLearning Center, 1st Balkan Conference in Informatics, Thessaloniki,

Greece, 2003, 327–336, ISBN: 960-287-045-1.

[4] Stoyanov, S., I. Ganchev, I. Popchev and I. Dimitrov, Request Globalization in an

InfoStation Network, Compt. Rend. Bulg. Acad. Sci., Vol. 63, No. 6, 2010, 901–

908.

[5] Stoyanov, S. and I. Popchev, Evolutionary Development of an Infrastructure

Supporting the Transaction from CBT to e-Learning, Cybernetics and Information

Technologies (CIT), Vol. 2, 2006, 101–114.

[6] Stoyanov, S., I. Popchev, I. Ganchev and M. O’Droma, From CBT to e-Learning,

Information Technologies and Control, Vol. 4, 2005, 2–10, ISSN: 1312-2622.

[7] Вълканов, В., Контекстно-ориентирано управление на електронни услуги.

София, България: Академично издателство „Проф. Марин Дринов”, 2013,

ISBN: 978-954-322-701-3.
Иван Марков Димитров,

Владимир Николаев Вълканов,

Ася Стоянова-Дойчева Пловдивски университет „Паисий Хилендарски“

Факултет по математика и информатика

4003 Пловдив

бул. „България“ 236

ivandimitrov@uni-plovdiv.bg,

vvalkanov@uni-plovdiv.net,

astoyanova@uni-plovdiv.bg

mailto:ivandimitrov@uni-plovdiv.bg
mailto:vvalkanov@uni-plovdiv.net
mailto:astoyanova@uni-plovdiv.bg

136

ОПТИМИЗИРАНЕ НА ГЛОБАЛИЗАЦИИТЕ В

ИНФОСТЕЙШЪН АРХИТЕКТУРА

Иван Димитров, Владимир Вълканов, Ася Стоянова-Дойчева

Резюме. Публикацията разглежда проблема за намиране на оптимално

разпределение на ресурси в една Инфостейшън мрежа, с цел да се намали

натоварването на комуникационната среда при изпълнение на потребителските

заявки. Представени са две програмни реализации на модел за оптимално

разпределение на ресурси в разпределена среда.

