
International Conference

FROM DELC TO VELSPACE

Plovdiv, 26–28 March 2014

319

ARCHITECTURE FOR A GRID-RESOURCE

MANAGEMENT AND SCHEDULING SYSTEM

Dilyana Totseva

Abstract. In this study a generalized framework for real-time calculations roots of

equations, on grid architecture is demonstrated. These calculations are done using

different algorithms for factorization. The framework takes parts in the BOINC

project – comprehensive, multi-resource grid computing system. Using this grid

network, the calculations are distributed as separate processes and are submitted

to computational resources without prior knowledge of the underlying job

submission and queuing systems. Some of the algorithms presented in the previous

articles take part in this framework which helps to reduce the calculation time and

improve the accuracy of the results.

Keywords: information systems, software architecture, grid, grid resource

management

1. GRID RESOURCE MANAGEMENT

AND SCHEDULING SYSTEM

In the research related to heavy calculation, there are a lot of barriers, which can be

faced and can be resolved by participating into projects based on grid calculations.

Finding resources can be a really expensive process and would limit the results

which should be accomplished. Also, some of the expensive accessible resources

need a lot of time to be approved.

This can be solved by building a grid computing based framework for real-time

calculations of roots of equations which use the resources of already established

open infrastructure of network resources. The grid resource management and

scheduling system is based on the grid developing concept [1] – in distributed

computing, different computers within the same network share resources. Using

such network gives the abilities for establishing parallel calculations, [2]

optimization of the time consumed for calculations, using free resources all over

the world, automating the job calculations. Using the grid computing resources, the

calculations are characterized with low latency and high-bandwidth interconnects.

One of the strongest advantages to participate in a grid-based network is the

user’s ability to have access to constant supply of shared resources. [3]

320

2. SYSTEM ARCHITECTURE

2.1. OVERVIEW

After analyzing various platforms for grid computing, it was decided that the

BOINC project be used as a distributed computing platform. By taking part in that

project, since it is a widely used platform, we increase the chance of volunteers

contributing to take part in the researches’ calculations.

The presented architecture follows the Client-Server model supported by

BOINC. The client server model is one of the most common application models of

network computing and is a common type of distributed systems design

architecture. On the server side we have the BOINC project, hosted on the BOINC

server. The BOINC project’s server supports large number of volunteers. Once the

BOINC client is installed on the user's machine, it becomes responsible for the

communication with various project servers. The BOINC client manages the

applications, computes the results and then reports them back. Through the client

side, the user is able to review the result of the current calculation and assign new

tasks.

2.2. MODULES

Iterative algorithms for polynomial factorization based on known methods for

simultaneous finding of all simple zeroes, part of previous research, have been

included in the established project. On the client side, these algorithms for

factorization have been represented as a separate application’s business modules.

These components include:

 Algorithm based on Dvorchuk’s method for polynomial factorization into

quadratic factors;

 Parallel algorithm for polynomial factorization proposed in recent years for

finding roots of quadratic polynomial;

 Parallel algorithm for polynomial factorization established after researches

for improvement the efficiency and the calculation of the first proposed,

 Weierstrass – Dochev factorization method;

 Tanabe method.

2.3. DISTRIBUTED ARCHITECTURE SYSTEM LAYERS

2.3.1. WEB INTERFACE

The first building block provides a client user interface for job submission and

monitoring through which the users can automatically identify current calculation

results and the computed factors of the polynomial. The application has a set of

web pages, installed on a web server where all the session information is saved.

321

The user can access each page remotely with any browser. Mobile application

interface will be supported also.

With the user interface we can follow the status of the projects in which we

participate. We are able to push new jobs which are then processed through the

business layer. Once the calculations are completed we are able to follow the

received results.

2.3.2. BUSINESS LAYER AND DATA PROCESSING BLOCK

In this part of the system the calculation requests are processed. The framework

provides an instrument for automated processing of the requests. In the current

system we are concentrated on the push model: work is sent from some submitting

node to some computational resource, which then accepts and processes the job,

returning the results to the submitter. After the calculations are complete, the

related information is stored on the data source. The grid based framework

provides an abstraction layer that allows jobs to be submitted to computational

resources without prior knowledge of the underlying job submission and queuing

systems.

This framework has been designed to consider the possibility for new

functionalities to be added in the future, including new implemented modules.

Additional authorization layer provides authorization capabilities through which

we can restrict the users accessing the system and submitting the calculation

requests.

2.3.3. BOINC SERVER

BOINC (Berkeley Open Infrastructure for Network Computing) is a software

system which provides the ability easily to establish scientific research while

creating and operating with public-resource computing projects. The projects

depend on communication requirements and are established with large storage - the

project supports that requirements. University institutions, private companies and

private PC owners can participate in multiple BOINC projects, sharing calculation

resources and can control how this resources to be allocated. [4]

BOINC is oriented to single user and project. Once the project is set up, the

platform automatically matches work, which to be processed with hosts suitable to

execute it, taking into account estimated memory and disk requirements as well as

architecture and operating system constraints. [5] [6]

Once the job is submitted, BOINC clients (i.e., server, desktop PCs) contact a

server that acts as a central repository of work to retrieve jobs to be executed (pull).

2.3.4. DATABASE LAYER

Database layer contains three separate nodes: User Database which describes users,

including their email address, name, web password, and authenticator; BOINC

322

Database stores information about the platforms, users, hosts, the work units and

the received results; Application Database stores information relevant to the

application as the algorithms included, the submitted jobs, the receive results.

2.3.5. DATA SERVER

Grid based software considers a specific job, finds suitable resources on the

network and distributes the tasks. At a later stage, the task is monitored through the

system - the current progress, the completed calculations, returned errors or failing

tasks, if any. If needed, specific tasks can be rescheduled. Once the job is

completed, all the results are collected by the data server.

Figure 1. Architecture Blocks

3. APPLICATION COMPONENTS

3.1. CONTEXT Manager

With the context manager is possible to maintain the metadata information for the

Application Components. Using the Context Manager could be resolved metadata

about the application – application class name, application methods and their

parameter information. At a later stage, the information is processed by the Jobs

Invoker and Analyzer to construct the tasks and their dependencies.

4.1. APPLICATION PROGRAMMING MODEL

Iterative algorithms for polynomial factorization have been implemented as

separate modules. Each of these algorithms is constructed as separate task which is

called by the Job Scheduler. The framework is designed to consider the possibility

323

for new implemented modules to be added as part of the grid calculations. Each

method for polynomial factorization is presented as separate task and is called from

the application. Using this approach is a least impact on the original grids’

programming architecture.

Figure 2. Programming Model

4.2. JOBS INVOKER AND JOB ANALYZER

When specific method invocation occurs within the application, the Job Analyzer

method is triggered. It validates the method input data and verifies the method

dependencies including the order of their execution. Part of the algorithms have

been split in independent methods, it is Job Analyzer’s task to validate that the

current method state and that it is ready to be invoked. In the cases when we have a

job with no dependencies, this task is in state ‘ready for invocation.’

Figure 3. Job Analyzer

Following the diagram, we are able to run calculations of independent

algorithms for polynomial factorization in parallel on the grid. For successfully

completed calculations of the proposed algorithm, first its dependent calculations

for Coefficients A and Coefficients B should be completed. Upon the successful

324

completion of coefficients calculations, the tasks are sent for parallel execution on

the grid. [7]

Once the application triggers a certain method call, this dynamically generates

the job. Using two simple API methods and an additional flag in the database, we

track which job is invoked of the framework for calculations. We leave the actual

invocation of the method to Job Metadata Scheduler and Management.

4.3. JOBS METADATA SCHEDULER AND MANAGEMENT

Using the Job metadata scheduler, we are able to set up the calculation process,

executed on a predefined period. First is selected the job, which we want to execute

and the time period when this to be performed. Once the process is set up, on each

job submitted through that layer we provide the input files to BOINC server set up.

Using the scheduler, the server on predefined periods we check the current job

status and the current results accomplished. Once the job is accomplished, we send

the results back to the application and the user is able to observe and analyze them.

[8]

The infrastructure for scheduling and sending jobs for calculation on the

BOINC Client does not make any changes to the base software structure - these

sides of the system are independent.

4. RESULTS VALIDATION

The calculations processed on our distributed system are algorithms for

factorization and while the calculations are performed by grid resources, this could

raise challenging concerns during execution. Scheduling algorithms for

factorization is an important task for which several factors should be taken into

consideration. One of those factors is the validation of the results.

In rare cases the results of the jobs could be with invalid data. This could be caused

in the cases when project volunteers have consistent or sporadic hardware

problems, typically causing errors in floating-point computation. Also some of

them may maliciously return wrong results. [9]

For solving these specific issues for the established application are supplied two

server-side methods:

ValidateParis_handler(RESULT& new_result, RESULT& canonical_result, bool& retry);

The handler is called by BOINC code and compares new received results to the

valid one. In case of errors, it sets the new result's validate_state to either

VALIDATE_STATE_INVALID or VALIDATE_STATE_VALID. If it has a

recoverable error while reading an output file of either result, it returns retry=true,

which causes the ValidatePairs_handler to arrange the workunit to be examined

again in a few hours.

Assimilate_handler(WORKUNIT& wu, vector<RESULT> &results, RESULT& canonical_result)

325

The handler is called by BOINC code and it checks that all of the results are

received. Then it creates a list of the results, reads the referenced result file and

inserts the result and its signals into the Application Database.

5. CONCLUSION

There are many factors behind the continued interest in grid computing – the

increasing availability of networked resources – PCs, workstations, servers

combined with the increasing bandwidth on networks already reached into the

gigabit range. On the other side, we also have evolution of key standards such as

TCP/IP and Ethernet in networking. The established architecture and the presented

design of the software system, using BOINC network, obtain resources, giving the

power of expensive supercomputers, which otherwise would have been extremely

expensive. Participating in the Berkeley Open Infrastructure for Network

Computing, the architecture is focused on large-scale resource sharing in

distributed systems in a flexible, secure and dynamic coordinated sharing way.

We have focused on a grid resource management and scheduling system based on

resource collaboration models, combined with the ability to simply integrate

business modules and dynamic applications. The used approach allows easy setup

of scientific projects in which any volunteer users can take part and contribute.

ACKNOWLEDGMENTS

Research was partially supported by Fund Scientific Research MU13FMI002,

Paisii Hilendarski University of Plovdiv.

REFERENCES

[1] Joseph, J., M. Ernest and C. Fellenstein, Evolution of grid computing

architecture and grid adoption models, IBM Systems journal, Vol. 43, no 4,

2004.

[2] Pan, Y., Ch. Wu and W. Huang, A Grid Resource Broker with Dynamic

Loading Prediction Scheduling Algorithm in Grid Computing Environment,

Proc. of the International Conference on Grid Computing Applications

(GCA), 2008.

[3] Pan, Y., Ch. Wu, Ch. Liu, Hs. Yu and W. Huang, The Lightweight Approach

to Use Grid Services with Grid Widgets on Grid WebOS, CCGRID 2010,

575–576.

[4] Anderson, D., BOINC: A System for Public-Resource Computing and Storage,

University of California at Berkeley, ISBN: 0-7695-2256-4, 4–10.

326

[5] Mnaouer, C., Ragoonath, An Adaptive Priority Tuning System for Optimized

Local CPU Scheduling using BOINC Clients, Journal of Physics: Conference

Series, Vol. 256, ISBN: 978-1-61782-246-9, 200–216.

[6] Visegradi, J., Kovács and P. Kacsuk, Efficient extension of gLite VOs with

BOINC based desktop grids, Future Generation Comp. Syst. 32, 2014, 13–23.

[7] Balaton, Z., G. Gombás, P. Kacsuk, A. Kornafeld, J. Kovács, Cs. Marosi, G.

Vida, N. Podhorszki and T. Kiss, SZTAKI Desktop Grid: a Modular and

Scalable Way of Building Large Computing Grids, IPDPS, 2007, 1–8.

[8] Narravula, S., A. Marnidala, A. Vishnu, K. Vaidyanathan and D. Panda, High

performance distributed lock management services using network-based

remote atomic operations In Cluster Computing and the Grid, 2007. CC-

GRID 2007, Seventh IEEE International Symposium on, 2007, 583–590.

[9] Costa, F., L. Veiga and P. Ferreira, Internet-scale support for map-reduce

processing, J. Internet Services and Applications, Vol. 4, (1), 2013, 1–17.

Faculty of Mathematics and Informatics

Paisii Hilendarski University of Plovdiv

236, Bulgaria Blvd.,

4003 Plovdiv, Bulgaria

e-mail: dilyana.totseva@gmail.com

АРХИТЕКТУРА НА РАЗПРЕДЕЛЕНА СИСТЕМА ЗА

УПРАВЛЕНИЕ НА ПАРАЛЕЛНИ ИЗЧИСЛЕНИЯ

Диляна Тоцева

Резюме. В тази статия е представена архитектура на система за

управление на паралелни изчисления, използваща разпределени ресурси.

Системата е включена към проекта BOINC – споделена, мулти-ресурна

система за мрежови изчисления. Използвайки мрежата на BOINC,

изчисленията са разпределени като паралелни независими процеси. Част от

алгоритми за факторизация, представени в предишни проучвания и статии,

са включени в представената система. Паралелните калкулации, извършени

чрез разпределени ресурси, се използват за пресмятане корените на

уравнения в реално време. С този подход е постигнато оптимизиране на

времето необходимо за изчисления и подобряване точността на

резултатите.

mailto:dilyana.totseva@gmail.com

