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Abstract: We investigate MO sequence spaces `Φ with a dual `∗Φ, which is stabilized
asymptotic `∞ with respect to the unit vector basis. We give a complete characterization
of the bounded relatively weakly compact subsets K ⊂ `Φ. We prove that `Φ is saturated
with asymptotically isometric copies of `1 and thus `Φ fails the fixed point property for closed,
bounded convex sets and non–expansive (or contractive) maps on them.
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1 Introduction

The notion of asymptotic `p spaces first appeared in [14], where the collection of spaces that
are now known as stabilized asymptotic `p spaces were introduced. Later in [13], more general
collection of spaces, known as asymptotic `p spaces were introduced. Characterization of the
stabilized asymptotic `∞ MO sequence space was given in [5]. It is found in [17] that if the dual
of a MO sequence space `Φ is stabilized asymptotic `∞ space with respect to the unit vector
basis then `Φ is saturated with complemented copies of `1 and has the Schur property.

A characterization of the relatively weakly compact sets in an Orlicz spaces LM [0, 1], such

that the function N complementary to M satisfies limt→∞
N(λt)
N(t)

= ∞ for some 1 < λ < ∞ is

given in [2]. Using the technique of [2] and [17] we generalize this result for MO sequence
spaces. More precisely we characterize the relatively weakly compact sets of a MO sequence
space `Φ, which dual `∗Φ is stabilized asymptotic `∞ space with respect to the unit vector basis.

In the second part of this note we prove that MO spaces `Φ with stabilized asymptotic
`∞ dual are saturated with asymptotically isometric copies of `1. The notion of asymptotically
isometric copy of `1 in a Banach space appeared in [7] and is used to investigate the fpp for
non–expansive mappings of the non–reflexive subspaces of L1[0, 1]. Using the ideas of [1], [7]
and [17] we show that any subspace of `Φ contains an asymptotically isometric copy of `1,
provided that `∗Φ is stabilized asymptotic `∞ space with respect to the unit vector basis and as
a consequence of [7] this class of MO sequence spaces fails the fpp for closed, bounded, convex
sets in `Φ and non–expansive maps on them. Let us mention that such a conclusion could
have been drawn directly by using the recent characterization of the MO sequence spaces `Φ

having fpp given in [16]: An MO sequence space has fpp for closed bounded convex sets and
non–expansive maps on them iff it is reflexive. The examples at the end show that sometimes
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to check reflexivity is more difficult than to check that `∗Φ is stabilized asymptotic `∞ with
respect to the unit vector basis, due to the engagement of several constants in the definition of
the δ2–condition for a MO function Φ.

2 Preliminaries

We use the standard Banach space terminology from [11]. Let us recall that an Orlicz function
M is even, continuous, non-decreasing convex function such that M(0) = 0 and limt→∞ M(t) =
∞. We say that M is non–degenerate Orlicz function if M(t) > 0 for every t > 0. A sequence
Φ = {Φi}∞i=1 of Orlicz functions is called a Musielak–Orlicz function or MO function in short.

The MO sequence space `Φ, generated by a MO function Φ is the set of all real sequences
{xi}∞i=1 such that

∑∞
i=1 Φi(λxi) < ∞ for some λ > 0. The Luxemburg’s norm in `Φ is defined

by

‖x‖Φ = inf

{
r > 0 :

∞∑

i=1

Φi(xi/r) ≤ 1

}
.

We denote by hΦ the closed linear subspace of `Φ, generated by all x = {xi}∞i=1 ∈ `Φ, such
that

∑∞
i=1 Φi(λxi) < ∞ for every λ > 0.

If the MO function Φ consists of one and the same function M one obtains the Orlicz
sequence spaces `M and hM .

Let 1 ≤ pi, i ∈ N be a sequence of reals. The MO sequence space `Φ, where Φ = {tpi}∞i=1

is called Nakano sequence space and is denoted by `{pi}. In [4] it was proved that two Nakano
sequence spaces `{pi}, `{qi} are isomorphic iff there exists 0 < C < 1 such that

∞∑

i=1

C1/|pi−qi| < ∞ .

An extensive study of Orlicz and MO spaces can be found in [11] and [15] .

Definition 2.1 We say that the MO function Φ satisfies the δ2 condition at zero if there exist
constants K, β > 0 and a non–negative sequence {cn}∞n=1 ∈ `1 such that for every n ∈ N

Φn(2t) ≤ KΦn(t) + cn

provided t ∈ [0, Φ−1
n (β)].

The spaces `Φ and hΦ coincide iff Φ has δ2 condition at zero.
Recall that given MO functions Φ and Ψ the spaces `Φ and `Ψ coincide with equivalence

of norms iff Φ is equivalent to Ψ, that is there exist constants K, β > 0 and a non–negative
sequence {cn}∞n=1 ∈ `1, such that for every n ∈ N the inequalities

Φn(Kt) ≤ Ψn(t) + cn and Ψn(Kt) ≤ Φn(t) + cn
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hold for every t ∈ [0, min(Φ−1
n (β), Ψ−1

n (β))], [9] and [12].
Throughout this paper M will always denote Orlicz function while Φ - an MO function.

As the properties we are dealing with are preserved by isomorphisms without loss of generality
we may assume that Φ consists entirely of non–degenerate Orlicz functions, such that for every
i ∈ N the Orlicz function Φi is differentiable, Φ

′
i(0) = 0 and Φi(1) = 1 [17].

Definition 2.2 For an Orlicz function M , such that limt→0 M(t)/t = 0 the function

N(x) = sup{t|x| −M(t) : t ≥ 0},
is called function complementary to M .

Definition 2.3 The MO function Ψ = {Ψj}∞j=1, defined by

Ψj(x) = sup{t|x| − Φj(t) : t ≥ 0} , j = 1, 2, ..., n, ...

is called complementary to Φ.

Let us note that the condition limt→0 M(t)/t = 0 secures that the complementary function
N is always non-degenerate. Observe that if N is function complementary to M , then M is
complementary to N and if the MO function Ψ is complementary to the MO function Φ, then
Φ is function complementary to Ψ. Throughout this paper the function complementary to the
MO function Φ is denoted by Ψ.

It is well known that h∗M ∼= `N and h∗Φ ∼= `Ψ. Well known equivalent norm in `Φ is

the Orlicz norm ‖x‖O
Φ = sup

{∑∞
j=1 xjyj :

∑∞
j=1 Ψj(yj) ≤ 1

}
, which satisfies the inequalities (see

e.g.[10])
‖ · ‖Φ ≤ ‖ · ‖O

Φ ≤ 2‖ · ‖Φ .

We will use the Hölder’s inequality:
∑∞

j=1 |xjyj| ≤ ‖x‖O
Φ‖y‖Ψ, which holds for every

x = {xj}∞j=1 ∈ `Φ and y = {yj}∞j=1 ∈ `Ψ, where Φ and Ψ are complementary MO functions.
By {ej}∞j=1 and {e∗j}∞j=1 we denote the unit vector basis in hΦ and hΨ respectively. For

a Banach space X with a basis {vi}∞i=1 and element x ∈ X, x =
∑∞

i=1 xivi we define suppx =
{i ∈ N : xi 6= 0}. We write n ≤ x if n ≤ min{suppx} and x < y if max{suppx} < min{suppy}.
We say that x is a block vector with respect to the basis {vi}∞i=1 if x =

∑q
i=p xivi for some finite

p and q and we say that x is a normalized block vector if it is a block vector and ‖x‖ = 1.

Definition 2.4 A Banach space X is said to be stabilized asymptotic `∞ with respect to a basis
{vi}∞i=1, if there exists a constant C ≥ 1, such that for every n ∈ N there exists N ∈ N, so
that whenever N ≤ x1 < . . . < xn are successive normalized block vectors, then {xi}n

i=1 are
C–equivalent to the unit vector basis of `n

∞, i.e.

1

C
max
1≤i≤n

|ai| ≤
∥∥∥∥∥

n∑

i=1

aixi

∥∥∥∥∥ ≤ C max
1≤i≤n

|ai|.
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The following characterization of the stabilized asymptotic `∞ MO sequence spaces is due
to Dew:

Proposition 2.1 (Proposition 4.5.1 [5]) Let Φ = {Φj}∞j=1 be a MO function. Then the follow-
ing are equivalent:
(i) hΦ is stabilized asymptotic `∞ (with respect to its natural basis {ej}∞j=1);
(ii) there exists λ > 1 such that for all n ∈ N, there exists N ∈ N such that whenever N ≤ p ≤ q
and

∑q
j=p Φj(aj) ≤ 1, then

q∑

j=p

Φj(aj/λ) ≤ 1

n
.

An easy sufficient condition for hΦ to be stabilized asymptotic `∞ with respect to the unit
vector basis is the following:

Proposition 2.2 (Proposition 4.5.3 [5]) Let ϕλ(j) = inf{Φj(λt)/Φj(t) : t > 0}. If lim
j→∞

ϕλ(j) =

∞ for some λ > 1 then hΦ is stabilized asymptotic `∞ with respect to the unit vector basis.

Let X be a Banach space. By Y ↪→ X we denote that Y is isomorphic to a subspace of
X .

Definition 2.5 We say that a collection K ⊂ hΦ has equi–absolutely continuous norms if
for every ε > 0 there is N ∈ N such that sup{‖∑∞

k=n xkek‖ : x = {xk}∞k=1 ∈ K} < ε for every
n ≥ N .

Definition 2.6 We say that a Banach space (X, ‖ ·‖) is asymptotically isometric to `1 if it has
a normalized basis {vn}∞n=1 such that for some sequence {λn}∞n=1 increasing to 1 we have that

∞∑

n=1

λn|tn| ≤
∥∥∥∥∥
∞∑

n=1

tnvn

∥∥∥∥∥(1)

for all x =
∑∞

n=1 tnvn ∈ X.
Whenever (X, ‖·‖) contains a normalized sequence {x(n)}∞n=1 satisfying (1) then the closed

linear span of {x(n)}∞n=1 is asymptotically isometric to `1

We say that X is saturated with subspaces with the property (*) if in every infinite
dimensional subspace Z of X there is an infinite dimensional subspace Y of Z isomorphic to a
space with the property (*).
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3 Weakly Compact Sets of MO Sequence Spaces

Lemma 3.1 Let Φ be a MO function, which has δ2 condition at zero and K ⊂ hΦ. Suppose
that K fails to have equi–absolutely continuous norms. Then there are ε0 > 0 and sequences
{x(n)}∞n=1 ⊂ K, {pn, qn}∞n=1, pn, qn ∈ N, pn ≤ qn < pn+1, limn→∞ pn = limn→∞ qn = ∞ such
that ∥∥∥∥∥∥

qn∑

i=pn

x
(n)
i ei

∥∥∥∥∥∥
> ε0(2)

for every n ∈ N.

Proof: Since K does not have equi–absolutely continuous norms there are ε > 0, {αn}n∈N,
αn ∈ N and {z(n)} ⊂ K such that ∥∥∥∥∥∥

∞∑

i=αn

z
(n)
i ei

∥∥∥∥∥∥
> ε.

Let n1 = 1. We choose n2 > n1 such that
∥∥∥∥∥∥

αn2−1∑

i=αn1

z
(n1)
i ei

∥∥∥∥∥∥
> ε/2.

Put p1 = αn1 , q1 = αn2 − 1, x(1) = z(n1). We choose n3 > n2 such that
∥∥∥∥∥∥

αn3−1∑

i=αn2

z
(n2)
i ei

∥∥∥∥∥∥
> ε/2.

Put p2 = αn2 , q2 = αn3 − 1, x(2) = z(n2).
If we have selected x(1), x(2), . . . , x(k) by x(s) = z(ns), ps = αns , qs = αns+1−1 for 1 ≤ s ≤ k,

then we choose nk+1 > nk such that
∥∥∥∥∥∥

αnk+2
−1∑

i=αnk+1

z
(nk+1)
i ei

∥∥∥∥∥∥
> ε/2.

Now we put pk+1 = αnk+1
, qk+1 = αnk+2

− 1 x(k+1) = z(nk+1).
Obviously the sequence {x(k)}∞k=1 verifies (2) with ε0 = ε/2. ¤

Lemma 3.2 ([2]) Let X be a Banach space. Suppose that {xn} ⊂ X is weakly null and
{x∗n} ⊂ X∗ is weakly∗ null. Then for each ε > 0 there is a subsequence {nk}∞k=1 of positive
integers so that for each k ∈ N holds:

∑

j 6=k

∣∣∣x∗nj
(xnk

)
∣∣∣ < ε.
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Theorem 1 Let Φ be a MO function, which has δ2 condition at zero and with a complementary
function Ψ such that hΨ is stabilized asymptotic `∞ with respect to the unit vector basis {e∗j}∞j=1.
Then any weakly null sequence in `Φ has equi–absolutely continuous norms.

Proof: Theorem 1 Suppose the contrary. There is a weakly null sequence {x(n)}∞n=1 ⊂ `Φ

that fails to have equi–absolutely continuous norms. By Lemma 3.1 there exist ε0 > 0 and
strongly increasing sequences {pn}∞n=1, {qn}∞n=1, pn, qn ∈ N, pn ≤ qn < pn+1 such that

∥∥∥∥∥∥

qn∑

i=pn

x
(n)
i ei

∥∥∥∥∥∥
> ε0.

Choose y(n) ∈ hΨ such that supp y(n) = {i}qn
i=pn

,
∑qn

k=pn
Ψk(y

(n)
k ) ≤ 1 and

∣∣∣∑qn

k=pn
y

(n)
k x

(n)
k

∣∣∣ > 3
4
ε0.

For a fixed x ∈ `Φ by Holder’s Inequality:

∣∣∣∣∣
∞∑

k=1

xky
(n)
k

∣∣∣∣∣ =

∣∣∣∣∣∣

qn∑

k=pn

xky
(n)
k

∣∣∣∣∣∣
≤

∥∥∥∥∥∥

qn∑

k=pn

xkek

∥∥∥∥∥∥
Φ

∥∥∥y(n)
∥∥∥

O

Ψ
.

As x is fixed and limn→∞ pn = limn→∞ qn = ∞ it follows that

lim
n→∞

∥∥∥∥∥∥

qn∑

k=pn

xkek

∥∥∥∥∥∥
Φ

= 0.

Thus {y(n)}∞n=1 is weak∗ null sequence. By Lemma 3.2 there is a subsequence of naturals {nk}∞k=1

so that
∑

j 6=k

∣∣∣∣∣∣∣

qnj∑

i=pnj

y
(nj)
i x

(nk)
i

∣∣∣∣∣∣∣
< ε0/2.

We claim that

lim
k→∞

∞∑

j=1

Ψj


y

(nk)
j

λ


 = lim

k→∞

qnk∑

j=pnk

Ψj


y

(nk)
j

λ


 = 0,(3)

where λ > 1 is the constant from Proposition 2.1. Indeed, by assumption hΨ is stabilized
asymptotic `∞ space and there exists λ > 1 such that for every m ∈ N there is N ∈ N so

that whenever

qnk∑

j=pnk

Ψj(y
(nk)
j ) ≤ 1 then the inequality

qnk∑

j=pnk

Ψj


y

(nk)
j

λ


 ≤ 1/m holds for every

qnk
≥ pnk

≥ N . Thus lim
nk→∞

qnk∑

j=pnk

Ψj


y

(nk)
j

λ


 = 0.
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Therefore there is subsequence {nkm}∞m=1 such that

∞∑

m=1

qnkm∑

i=pnkm

Ψi


y

(nkm )
i

λ


 ≤ 1.

Let y =
∑∞

m=1 y(nkm ). Obviously y ∈ hΨ and since {x(n)}∞n=1 is weakly null we must have

lim
m→∞ y(x(nkm )) = lim

m→∞

∞∑

j=1

qnkj∑

i=pnkj

y
(nkj

)

i x
(nkm )
i = 0.

But
∣∣∣∣∣∣∣

∞∑

j=1

qnkj∑

i=pnkj

y
(nkj

)

i x
(nkm )
i

∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣∣

qnkm∑

i=pnkm

y
(nkm )
i x

(nkm )
i

∣∣∣∣∣∣∣
− ∑

j 6=m

∣∣∣∣∣∣∣

qnkj∑

i=pnkj

y
(nkj

)

i x
(nkm )
i

∣∣∣∣∣∣∣
≥ 3

4
ε0 − 1

2
ε0 =

1

4
ε0,

a contradiction. ¤
Let us recall that C is weakly sequentially compact if every sequence of points in C has

a subsequence weakly convergent to a point of C.
For the proof of the next result we need:

Theorem 2 (Eberlein–Smulian, see e.g. [8]) Let X be a separable Banach space and C be a
weakly closed subset of X. Then C is weakly compact if and only if C is weakly sequentially
compact.

By Theorem 1 it follows immediately

Corollary 3.1 Let Φ be a MO function, which has δ2 condition at zero and with a complemen-
tary function Ψ such that hΨ is stabilized asymptotic `∞ with respect to the basis {e∗j}∞j=1. Then
a bounded set K ⊂ `Φ is relatively weakly compact iff K has equi–absolutely continuous norm.

Proof: Necessity) Suppose that K ⊂ hΦ is relatively weakly compact. If K fails to have equi–
absolutely continuous norms then by Lemma 3.1 there are ε0 > 0 and sequences {x(n)}∞n=1 ⊂ K,
{pn, qn}∞n=1, pn, qn ∈ N, pn ≤ qn < pn+1 such that

∥∥∥∥∥∥

qn∑

i=pn

x
(n)
i ei

∥∥∥∥∥∥
> ε0

for every n ∈ N.
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By Eberlein–Smulian theorem there are x ∈ `Φ and a subsequence {x(nk)}∞n=1 such that
x(nk) −→ x weakly in `Φ. Thus by Theorem 1 {x(nk) − x}∞k=1 has equi–absolutely continuous

norms. Hence limk→∞
∥∥∥∑qnk

i=pnk
(x

(nk)
i − xi)ei

∥∥∥ = 0 and obviously limk→∞
∥∥∥∑qnk

i=pnk
xiei

∥∥∥ = 0. But

ε0 <

∥∥∥∥∥∥

qnk∑

i=pnk

x
(nk)
i ei

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

qnk∑

i=pnk

xiei

∥∥∥∥∥∥
+

∥∥∥∥∥∥

qnk∑

i=pnk

(x
(nk)
i − xi)ei

∥∥∥∥∥∥
−→
k→∞

0,

which is a contradiction.
Sufficiency) Let K be a bounded set with equi–absolutely continuous norms. Let {x(n)}∞n=1

be an arbitrary sequence of elements in K. Obviously there exists L such that |x(n)
k | ≤ L for

every n, k ∈ N. Thus there exists a subsequence {x(ni)}∞i=1 such that limi→∞ x
(ni)
k = xk for every

k ∈ N.
Let ε > 0. There exists N ∈ N such that for every s ≥ N and every i ∈ N the inequality

holds
∥∥∥∑∞

k=s x
(ni)
k ek

∥∥∥ < ε/3. Fix s ≥ N . There is M ∈ N such that for every ni, nj ≥ M and

every k = 1, 2, . . . , s the inequality |x(ni)
k −x

(nj)
k | ≤ ε

3s
holds. Thus we can write the inequalities:

‖x(ni) − x(nj)‖ =
∥∥∥∑∞

k=1 x
(ni)
k ek −∑∞

k=1 x
(nj)
k ek

∥∥∥

≤
∥∥∥∑s

k=1 x
(ni)
k ek −∑s

k=1 x
(nj)
k ek

∥∥∥ +
∥∥∥∑∞

k=s+1 x
(ni)
k ek −∑∞

k=s+1 x
(nj)
k ek

∥∥∥

≤
∥∥∥∑s

k=1 |x(ni)
k − x

(nj)
k |ek

∥∥∥ +
∥∥∥∑∞

k=s+1 x
(ni)
k ek

∥∥∥ +
∥∥∥∑∞

k=s+1 x
(nj)
k ek

∥∥∥

< ε
3s

s + ε
3

+ ε
3

= ε.

Consequently {x(ni)}∞n=1 is a Cauchy sequence and thus it is norm convergent to x ∈ `Φ

and thus it is weakly convergent. ¤
Remark: Let us mention that for the proof of the sufficiency in Corollary 3.1 we do not

need that `Ψ is stabilized asymptotic `∞ with respect to the unit vector basis {e∗j}∞j=1.

4 Fixed Point Property for MO Sequence Spaces

The next Lemma is similar to that in [17], where it is shown that for every normalized block
basis {x(n)}∞n=1 of the unit vector basis {ej}∞j=1 in `Φ contains a subsequence such that [x(ni)]∞i=1

is isomorphic to `1.

Lemma 4.1 Let Φ be a MO function, which has δ2 condition at zero and hΨ, generated by the
MO function Ψ, complementary to Φ, is stabilized asymptotic `∞ with respect to the unit vector
basis {e∗j}∞j=1. Then every normalized block basis {x(n)}∞n=1 of the unit vector basis {ej}∞j=1 in

`Φ contains a subsequence {x(ni)}∞i=1 such that [x(ni)]∞i=1 is asymptotically isometric to `1.
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Proof: Let {x(n)}∞n=1 be a normalized block basis of the unit vector basis {ej}∞j=1 in `Φ,

where x(n) =
∑mn+1

j=mn+1 x
(n)
j ej, {mn}∞n=1 strictly increasing sequence of naturals. Let {λn}∞n=1

be an increasing sequence, such that limn→∞ λn = 1. For every n ∈ N there exists y(n) =∑∞
j=1 y

(n)
j e∗j ∈ hΨ such that

∞∑

j=1

Ψj(y
(n)
j ) ≤ 1

∞∑

j=1

y
(n)
j x

(n)
j ≥ λn.

WLOG we may assume that supp y(n) ≡ supp x(n).
For the sequence {y(n)}∞n=1 and the constant λ > 1 from Proposition 2.1 holds:

lim
n→∞

∞∑

j=1

Ψj


y

(n)
j

λ


 = lim

n→∞

mn+1∑

j=mn+1

Ψj


y

(n)
j

λ


 = 0.

The proof is essentially the same as for (3).

Now passing to a subsequence we get a sequence {y(nk)}k∈N , y(nk) =
∑mnk+1

j=mnk
+1 y

(nk)
j e∗j

such that
∞∑

k=1

mnk+1∑

j=mnk
+1

Ψj


y

(nk)
j

λ


 ≤ 1.

Denote y =
∑∞

k=1 y(nk) =
∑∞

k=1

(∑mnk+1

j=mnk
+1 y

(nk)
j e∗j

)
. Obviously y ∈ `Ψ and ‖y‖Ψ ≤ λ. As

lim
s→∞

∥∥∥∥∥∥

∞∑

k=s

mnk+1∑

j=mnk
+1

y
(nk)
j e∗j

∥∥∥∥∥∥
Ψ

= 0

there exists s0 ∈ N such that
∥∥∥∥∥∥

∞∑

k=s0

mnk+1∑

j=mnk
+1

y
(nk)
j e∗j

∥∥∥∥∥∥
Ψ

≤ 1

2
.

Consequently ∥∥∥∥∥∥

∞∑

k=s0

mnk+1∑

j=mnk
+1

y
(nk)
j e∗j

∥∥∥∥∥∥

O

Ψ

≤ 2

∥∥∥∥∥∥

∞∑

k=s0

mnk+1∑

j=mnk
+1

y
(nk)
j e∗j

∥∥∥∥∥∥
Ψ

≤ 1.

Denote y =
∑∞

k=s0

∑qnk
j=pnk

y
(nk)
j e∗j . Then ‖y‖O

Ψ ≤ 1. Now using Hölder’s inequality for any

sequence {tn}∞n=1, such that
∑∞

k=s0
tk−s0+1x

(nk) ∈ `Φ we get
∥∥∥∥∥∥

∞∑

k=s0

tk−s0+1x
(nk)

∥∥∥∥∥∥
Φ

≥ 1

‖y‖O
Ψ

∞∑

k=s0

mnk+1∑

j=mnk
+1

|tk−s0+1y
(nk)
j x

(nk)
j |

≥
∞∑

k=s0

|tk−s0+1|
mnk+1∑

j=mnk
+1

y
(nk)
j x

(nk)
j ≥

∞∑

k=s0

|tk−s0+1|λk.
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Theorem 3 Let Φ be a MO function, which has δ2 condition at zero and hΨ, generated by the
MO function Ψ, complementary to Φ, is stabilized asymptotic `∞ with respect to the unit vector
basis {e∗j}∞j=1. Then `Φ is saturated with asymptotically isometric copies of `1.

Proof: According to a well known result of Bessaga and Pelczinski [3] every infinite dimen-
sional closed subspace Y of `Φ has a subspace Z isomorphic to a subspace of `Φ, generated by
a normalized block basis of the unit vector basis of `Φ. Now to finish the proof it is enough to
observe that by Lemma 4.1 the space Z contains an asymptotically isometric copy of `1. ¤

By using a result from [7] that states that a Banach spaces containing an asymptotically
isometric copy of `1 fail the fixed point property for closed, bounded, convex sets and non–
expansive (contractive) maps on them, we easily get:

Corollary 4.1 Let Φ be a MO function, which has δ2 condition at zero and hΨ, generated by
the MO function Ψ, complementary to Φ, is stabilized asymptotic `∞ with respect to the unit
vector basis {e∗j}∞j=1. Then `Φ fails the fixed point property for closed, bounded, convex sets in
`Φ and non-expansive (or contractive) maps on them.

We give at the end some examples of MO sequence space, saturated with asymptotically
isometric copies of `1.

Example 1:([17]) Sometimes we know only the complementary function Ψ. For example

let the MO function Ψ = {Ψj}∞j=1 be defined by Ψj = eαje
− αj

|x|cj , where limj→∞ αj = ∞ and
0 < cj. Then `Ψ is stabilized asymptotic `∞ with respect to the unit vector basis {e∗j}∞j=1

because

lim
j→∞

inf

{
Ψj(2x)

Ψj(x)
: 0 ≤ x ≤ 1

}
= lim

j→∞
inf

{
e

αj
2
cj−1

2
cj |x|cj : 0 ≤ x ≤ 1

}
= lim

j→∞
e

αj
2
cj−1

2
cj = ∞.

Thus we conclude that `Φ is saturated with asymptotically isometric copies of `1 and fails fpp
for closed, bounded, convex sets in `Φ and non-expansive (or contractive) maps on them.

Example 2:([5]) Consider the Nakano sequence space `{pn}, where pn =
log2(n + 1)

log2

(
n + 1

2

) .

It is well known that `∗{pn}
∼= `{qn}, where 1/pn + 1/qn = 1, i.e. qn = log2(n + 1). It is easy

to see that limn→∞ pn = limn→∞
log2(n + 1)

log2

(
n + 1

2

) = 1 and thus according to [4] and [12] `{pn} is

saturated with spaces isomorphic to `1. Moreover according to [5] `{qn} is stabilized asymptotic
`∞ with respect to the unit vector basis {e∗j}∞j=1 and thus `{pn} is saturated with asymptotically
isometric copies of `1 and fails fpp for closed, bounded, convex sets in `Φ and non-expansive
(or contractive) maps on them.
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