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ABSTRACT: We investigate MO sequence spaces ¢ with a dual £}, which is stabilized
asymptotic £, with respect to the unit vector basis. We give a complete characterization
of the bounded relatively weakly compact subsets K C fp. We prove that (¢ is saturated
with asymptotically isometric copies of /1 and thus /¢ fails the fixed point property for closed,
bounded convex sets and non—expansive (or contractive) maps on them.
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1 Introduction

The notion of asymptotic ¢, spaces first appeared in [14], where the collection of spaces that
are now known as stabilized asymptotic ¢, spaces were introduced. Later in [13], more general
collection of spaces, known as asymptotic ¢, spaces were introduced. Characterization of the
stabilized asymptotic £, MO sequence space was given in [5]. It is found in [17] that if the dual
of a MO sequence space (g is stabilized asymptotic /., space with respect to the unit vector
basis then /4 is saturated with complemented copies of ¢; and has the Schur property.

A characterization of the relatively weakly compact sets in an Orlicz spaces Lj/[0, 1], such
given in [2]. Using the technique of [2] and [17] we generalize this result for MO sequence
spaces. More precisely we characterize the relatively weakly compact sets of a MO sequence
space (g, which dual (3 is stabilized asymptotic ., space with respect to the unit vector basis.

In the second part of this note we prove that MO spaces f¢ with stabilized asymptotic
(s dual are saturated with asymptotically isometric copies of ¢;. The notion of asymptotically
isometric copy of ¢; in a Banach space appeared in [7] and is used to investigate the fpp for
non—expansive mappings of the non-reflexive subspaces of L;[0,1]. Using the ideas of [1], [7]
and [17] we show that any subspace of {4 contains an asymptotically isometric copy of ¢,
provided that £} is stabilized asymptotic ¢, space with respect to the unit vector basis and as
a consequence of [7] this class of MO sequence spaces fails the fpp for closed, bounded, convex
sets in fg and non—expansive maps on them. Let us mention that such a conclusion could
have been drawn directly by using the recent characterization of the MO sequence spaces fg
having fpp given in [16]: An MO sequence space has fpp for closed bounded convex sets and
non—expansive maps on them iff it is reflexive. The examples at the end show that sometimes

that the function N complementary to M satisfies lim;_ o = o0 for some 1 < \ < oo is
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to check reflexivity is more difficult than to check that ¢} is stabilized asymptotic ¢, with
respect to the unit vector basis, due to the engagement of several constants in the definition of
the d9—condition for a MO function ®.

2 Preliminaries

We use the standard Banach space terminology from [11]. Let us recall that an Orlicz function
M is even, continuous, non-decreasing convex function such that M (0) = 0 and lim;_,., M (t) =
oo. We say that M is non—degenerate Orlicz function if M (t) > 0 for every ¢t > 0. A sequence
O = {®,;}°, of Orlicz functions is called a Musielak-Orlicz function or MO function in short.

The MO sequence space (g, generated by a MO function ® is the set of all real sequences
{z;}$2, such that >>2°, ®;(Az;) < oo for some A > 0. The Luxemburg’s norm in /4 is defined
by

||| = inf {7" >0: i@z(xl/r) < 1}.

i=1

We denote by he the closed linear subspace of £, generated by all z = {x;}°, € {4, such
that >7°, ®;(Az;) < oo for every A > 0.

If the MO function ® consists of one and the same function M one obtains the Orlicz
sequence spaces £y; and hyy.

Let 1 < p;, i € N be a sequence of reals. The MO sequence space (¢, where & = {tP:},
is called Nakano sequence space and is denoted by €y,,;. In [4] it was proved that two Nakano
sequence spaces £, {151 are isomorphic iff there exists 0 < C' < 1 such that

i O/ 1pi—ail < 00.

i=1
An extensive study of Orlicz and MO spaces can be found in [11] and [15] .

Definition 2.1 We say that the MO function ® satisfies the 6o condition at zero if there exist
constants K, > 0 and a non—negative sequence {c,}>> | € {y such that for every n € N

®,(20) < KD, () +
provided t € [0, ®,(3)].

The spaces fg and hg coincide iff ® has d, condition at zero.

Recall that given MO functions ® and ¥ the spaces {¢ and ¢y coincide with equivalence
of norms iff ® is equivalent to W, that is there exist constants K, > 0 and a non—negative
sequence {c, }5°, € {q, such that for every n € N the inequalities

D, (Kt) <V, (t)+c, and U, (Kt) < P,(t) + ¢,
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hold for every ¢ € [0, min(®,'(5), ¥, 1(3))], [9] and [12].

Throughout this paper M will always denote Orlicz function while ® - an MO function.
As the properties we are dealing with are preserved by isomorphisms without loss of generality
we may assume that ® consists entirely of non—degenerate Orlicz functions, such that for every

i € N the Orlicz function ®; is differentiable, ®;(0) = 0 and ®;(1) = 1 [17].
Definition 2.2 For an Orlicz function M, such that lim;_o M (t)/t = 0 the function
N(z) = sup{t|z| — M(t): t > 0},
15 called function complementary to M.
Definition 2.3 The MO function ¥ = {W;}32,, defined by
U;(z) = sup{t|z| — ®;(t) : t >0},7=1,2,...,n, ...
15 called complementary to P.

Let us note that the condition lim; o M(t)/t = 0 secures that the complementary function
N is always non-degenerate. Observe that if N is function complementary to M, then M is
complementary to N and if the MO function ¥ is complementary to the MO function ®, then
® is function complementary to W. Throughout this paper the function complementary to the
MO function ® is denoted by V.

It is well known that A}, = ¢y and h} = fy. Well known equivalent norm in f4 is

the Orlicz norm [|z]|§ = sup {Z‘;‘;l ziy; ey Yi(ys) < 1}, which satisfies the inequalities (see

e.g.[10
5.110) )
|- fle <l-lle <2l e

We will use the Holder’s inequality: >, [x;y;] < ||#]|§[lyllw, which holds for every
v ={z;}32, € lp and y = {y;}32, € ly, where ® and ¥ are complementary MO functions.

By {e;}%2, and {e}}32; we denote the unit vector basis in he and hy respectively. For
a Banach space X with a basis {v;}°; and element z € X, z = Y32, z;v; we define suppzr =
{i e N:z; #0}. We write n < z if n < min{suppz} and = < y if max{suppz} < min{suppy}.
We say that x is a block vector with respect to the basis {v;}{2, if x = >[_ x;v; for some finite
p and ¢ and we say that = is a normalized block vector if it is a block vector and ||z|| = 1.

Definition 2.4 A Banach space X is said to be stabilized asymptotic (o, with respect to a basis
{v;}32,, if there exists a constant C' > 1, such that for every n € N there exists N € N, so
that whenever N < 1 < ... < x, are successive normalized block vectors, then {x;}I, are
C —equivalent to the unit vector basis of (7, i.e.

n
Z ;T

i=1

1
1 <C
c < C max |a;]

max i <

(2




The following characterization of the stabilized asymptotic £, MO sequence spaces is due
to Dew:

Proposition 2.1 (Proposition 4.5.1 [5]) Let ® = {®;}32, be a MO function. Then the follow-
g are equivalent:

(i) he is stabilized asymptotic o, (with respect to its natural basis {e;}52, );

(i) there exists X > 1 such that for alln € N, there exists N € N such that whenever N < p < q
and Y5_, ®;(a;) < 1, then

> (/) <

An easy sufficient condition for he to be stabilized asymptotic £, with respect to the unit
vector basis is the following:

Proposition 2.2 (Proposition 4.5.3 [5]) Let px(j) = inf{®,;(At)/P;(t) : t > 0}. If im ¢, (j) =
j—00
oo for some A > 1 then he is stabilized asymptotic Lo with respect to the unit vector basis.

Let X be a Banach space. By Y — X we denote that Y is isomorphic to a subspace of
X.

Definition 2.5 We say that a collection K C hg has equi—absolutely continuous norms if
for every e > 0 there is N € N such that sup{|| X522, Trer|| : © = {xx}32, € K} < e for every
n>N.

Definition 2.6 We say that a Banach space (X, || -||) is asymptotically isometric to ¢y if it has
a normalized basis {v,}°° | such that for some sequence {\,}>2, increasing to 1 we have that

(1) S Aaltal <
n=1

[e%S)
> tntn
n=1

forallx =377 t,v, € X.
Whenever (X, ||-]|) contains a normalized sequence {x™}>° | satisfying (1) then the closed
linear span of {x™}2° | is asymptotically isometric to {,

We say that X is saturated with subspaces with the property (*) if in every infinite
dimensional subspace Z of X there is an infinite dimensional subspace Y of Z isomorphic to a
space with the property (*).



3 Weakly Compact Sets of MO Sequence Spaces

Lemma 3.1 Let ® be a MO function, which has 65 condition at zero and K C hg. Suppose
that K fails to have equi—absolutely continuous norms. Then there are g > 0 and sequences

{e™}22, C K, {pn an )2t Portn €N, po < gn < Pogr, limy oo pr = limy o gn = 00 such
that

(2)

dn

> z™e;

1=pn

> €p

for every n € N.

Proof: Since K does not have equi-absolutely continuous norms there are € > 0, {ay, }nen,
a, € N and {z™} C K such that

> 2Me;

> €.
1=Qn
Let ny = 1. We choose ny > n; such that
ozn271
> eyl > /2.
i:anl

Put p1 = ap,, ¢ = ap, — 1, 2@ = 2" We choose n3 > ny such that

OénS —

lew)@i

i:an2

> e/2.

Put P2 = Oy, Q2 = Olpg — 17 $(2) = Z(HZ)'
If we have selected (M), 2@, ... 2®) by 2 = 2() o=@, gy = ap,,, —1for 1 < s <k,
then we choose nyg; > ny such that

O‘"k+2_1

Z Z§Hk+1)€i

i:a"k-»—l

> ¢e/2.

Now we put pri1 = Qnyyyy Qort = Qny,p — 1 aFHD = 20000,
Obviously the sequence {z(")}2° | verifies (2) with gy = £/2. O

Lemma 3.2 (/2]) Let X be a Banach space. Suppose that {x,} C X is weakly null and
{zX} € X* is weakly* null. Then for each € > 0 there is a subsequence {ny}3>, of positive
integers so that for each k € N holds:

< E.

>

J7#k




Theorem 1 Let ® be a MO function, which has dy condition at zero and with a complementary
function W such that hy is stabilized asymptotic Lo, with respect to the unit vector basis {€}}32
Then any weakly null sequence in fe has equi—absolutely continuous norms.

j=1

Proof: Theorem 1 Suppose the contrary. There is a weakly null sequence {z™}22, C /g
that fails to have equi-absolutely continuous norms. By Lemma 3.1 there exist ¢y > 0 and
strongly increasing sequences {p, 151, {¢ 1521, Pny@n € N, pp < gn < pny1 such that

> £g.

an
Z x§") e

1=pn

Choose y™ € hy such that supp y™ = {i} S0 Wy, (n )) <1 and ‘Zk . ykn).%',(g M > S¢0.
For a fixed x € {g by Holder’s Inequality:

el

—pn —pn

As z is fixed and lim,, . p, = lim,,_ ¢, = 0o it follows that

lim

n—oo

Z L€

k=pn

(o3}

Thus {y™}2° | is weak* null sequence. By Lemma 3.2 there is a subsequence of naturals {n}32,
so that

n;
SIS y§”f>x§”k) < &9/2.

J#k |1=Pn,

We claim that

(3) lim > U, J)\ = lim Y U ] =0,

k—oo .
J=pPny,

where A > 1 is the constant from Proposition 2.1. Indeed, by assumption hg is stabilized
asymptotic /., space and there exists A > 1 such that for every m € N there is N € N so

qny, any, ( )
that whenever Z W, ( (”’“)) <1 then the inequality »_ ; (yj ) < 1/m holds for every

- A

nE—00 . A
J=Pny

Qn, = Dn, > N. Thus lim Z‘If J = 0.



Therefore there is subsequence {ny,, }°°_; such that

0 any, . (”km)
D IZ (?JA) <1

m=1 i:pnkm

Let y = 3°°_, y™m). Obviously y € hy and since {2}, is weakly null we must have

I
lim y(x(”’“m)) = n%lnéoz Z yz-( kj)xgnkm) =0.

m— oo 1 i
J= 'L—pnk],

But

oo Ik ny, g,

(ne;) ug (ng,) 3 1 1

I I A I i D D D D e i e

Jj=1 i:pnk], i:pnkm Jj#Em i:p”kj
a contradiction. O

Let us recall that C' is weakly sequentially compact if every sequence of points in C' has
a subsequence weakly convergent to a point of C.
For the proof of the next result we need:

Theorem 2 (Eberlein-Smulian, see e.g. [8]) Let X be a separable Banach space and C be a
weakly closed subset of X. Then C' is weakly compact if and only if C' is weakly sequentially
compact.

By Theorem 1 it follows immediately

Corollary 3.1 Let ® be a MO function, which has d5 condition at zero and with a complemen-
tary function W such that hy is stabilized asymptotic Lo, with respect to the basis {e;f 721- Then
a bounded set K C lg is relatively weakly compact iff K has equi—absolutely continuous norm.

Proof: Necessity) Suppose that K C hg is relatively weakly compact. If K fails to have equi—
absolutely continuous norms then by Lemma 3.1 there are 9 > 0 and sequences {z(™}>, C K,

{Pn, @ )220, Prs@n €N, pp < g < Poya such that

qn
> z™e;

1=pn

> €p

for every n € N.



By Eberlein-Smulian theorem there are z € f4 and a subsequence {z(™)}°  such that
() — x weakly in £p. Thus by Theorem 1 {z(™) — 2}2° | has equi-absolutely continuous

. dn . . dn
norms. Hence limy_, HZZ’:I;?nk (xz(n’“) — x;)e;|| = 0 and obviously limy_., HZZ»:’;% zie;|l = 0. But
ny, ( ) qny, any, ( )
ng ng
go < Z x; Ve < Z i€l + Z (x; " —z;)e;|| — 0,
i:p"k i:pnk i:p"k k—o0

which is a contradiction.
Sufficiency) Let K be a bounded set with equi-absolutely continuous norms. Let {z(™}22

be an arbitrary sequence of elements in K. Obviously there exists L such that |x,(€”)| < L for
every n, k € N. Thus there exists a subsequence {z(")}° such that lim; ., x,(gn") = xy, for every
ke N.

Let € > 0. There exists N € N such that for every s > N and every i € N the inequality

holds HZZ‘;S x,(cni)ekH < ¢/3. Fix s > N. There is M € N such that for every n;,n; > M and

every k =1,2,...,s the inequality |x§€”) — x,gnj )| < 5. holds. Thus we can write the inequalities:
Hx(m‘) - x(nj)” = I, Q:l(cni)ek B xl(gnj)ek:H

< Xk xl(c ey, — 2k=1 T ekH + szozs-&-l xl(s ey, - Dkzst1 Ty ekH

< 12k ’x](fn) - $1(cnj)|€kH + HZ;O:SH x/(cni)ekH + HZ’?;S“ xl(cnj)ekH

£ o€ E_
< sty t3z=e

Consequently {2(")} | is a Cauchy sequence and thus it is norm convergent to = € {g
and thus it is weakly convergent. O

Remark: Let us mention that for the proof of the sufficiency in Corollary 3.1 we do not
need that /y is stabilized asymptotic £, with respect to the unit vector basis {e}}32,.
4 Fixed Point Property for MO Sequence Spaces

The next Lemma is similar to that in [17], where it is shown that for every normalized block
basis {z(™}22, of the unit vector basis {€;}32, in £ contains a subsequence such that [z(")]22,
is isomorphic to /5.

Lemma 4.1 Let ® be a MO function, which has do condition at zero and hy, generated by the
MO function ¥, complementary to ®, is stabilized asymptotic (o, with respect to the unit vector
basis {€;}52,. Then every normalized block basis {x™}22, of the unit vector basis {e;}52; in

(e contains a subsequence {x™)}2, such that [x™)]2, is asymptotically isometric to (.
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Proof: Let {z(™}>2, be a normalized block basis of the unit vector basis {e;}32; in (g,

where z(" = Y [L’( ej, {my}2, strictly increasing sequence of naturals. Let {\,}22,

be an increasing sequence, such that lim, .. A, = 1. For every n € N there exists y™ =
ol y](n)e*f € hg such that

S UMy <1 S yMa >,
j=1

J=1

WLOG we may assume that supp y™ = supp ™.
For the sequence {y™}°2, and the constant A\ > 1 from Proposition 2.1 holds:

9] y(n) My41 (n)
lim » 0, [ Z—] =1lm > = 0.
n—o0 = A n—>oo] Mo )\
The proof is essentially the same as for (3).

Now passing to a subsequence we get a sequence {y™) )y, y™) = et (n) o

J=Min,+1 9] J
such that
co Mnp+1 y(”k)
Z Z \Ilj j)\ S 1

k=1j=mpn, +1

Denote y = 232, y™) = 3252, (S04 1 yi™er). Obviously y € £y and [|y[ls < A. As

oo  Mnp+1

> Xy

k=s j=rmn, +1

=0

lim
S—00

v
there exists sy € N such that

Mpp+1

SOy y™e

k=s0 j=mn, +1

l\:)\»—

<

7
Consequently

mnk+1

>y y](-"’“)e}‘

k=s0 j=mn, +1

mnk+1

SOy y™e

k=s0 j=mn, +1

<2 <1

'\
qny, (nk) e*

Denote y = >332, 252, ;5 ¢j- Then ||?H\11 < 1. Now using Holder’s inequality for any
sequence {t, }o2;, such that 3572 tk_soﬂas(”k) € lp we get

00 Mng+1
Y bgpaz™| > o s1v™P 2]
k=s0 & =50 j=Mn; +1
Mpp+1
2 Z [th—so+1] Z y](nk) > Z |th—so+1]| M-
k=so ] mnk"!‘l k=sg



O

Theorem 3 Let ® be a MO function, which has dy condition at zero and hy, generated by the
MO function ¥, complementary to ®, is stabilized asymptotic (o, with respect to the unit vector

basis {€;}32,. Then lg is saturated with asymptotically isometric copies of (.

Proof: According to a well known result of Bessaga and Pelczinski [3] every infinite dimen-
sional closed subspace Y of {4 has a subspace Z isomorphic to a subspace of /¢, generated by
a normalized block basis of the unit vector basis of {¢. Now to finish the proof it is enough to
observe that by Lemma 4.1 the space Z contains an asymptotically isometric copy of /. O

By using a result from [7] that states that a Banach spaces containing an asymptotically
isometric copy of ¢; fail the fixed point property for closed, bounded, convex sets and non—
expansive (contractive) maps on them, we easily get:

Corollary 4.1 Let ® be a MO function, which has d5 condition at zero and hy, generated by
the MO function ¥, complementary to ®, is stabilized asymptotic £, with respect to the unit
vector basis {e}'f 521- Then ly fails the fized point property for closed, bounded, convex sets in
(g and non-expansive (or contractive) maps on them.

We give at the end some examples of MO sequence space, saturated with asymptotically
isometric copies of /;.

Example 1:([17]) Sometimes we know only the complementary function W. For example

.
let the MO function ¥ = {¥;}22, be defined by ¥; = ee ==V where lim; . a; = 0o and
0 < ¢;. Then fy is stabilized asymptotic (o, with respect to the unit vector basis {e}}32,
because

U, (2 271 _ 2% 1
lim inf i ):O§x§1 = lim inf ea]”\z“:ogxgl = lim ™ 27 = 0.
: U;(x) j—o0 j—o0

Thus we conclude that /¢ is saturated with asymptotically isometric copies of ¢; and fails fpp
for closed, bounded, convex sets in ¢ and non-expansive (or contractive) maps on them.

logy(n + 1)
n+1\"

‘o, ( 2 )

It is well known that £, & £}, where 1/p, +1/¢, = 1, i.e. g, = logy(n +1). It is easy

logy(n +1)
n+1

Example 2:([5]) Consider the Nakano sequence space (y,,}, where p, =

to see that lim,,_.c p, = lim, = 1 and thus according to [4] and [12] £y, is

log,
saturated with spaces isomorphic to £;. Moreover according to [5] £, is stabilized asymptotic
{oo With respect to the unit vector basis {e;}32, and thus £y, ; is saturated with asymptotically
isometric copies of ¢; and fails fpp for closed, bounded, convex sets in /¢ and non-expansive
(or contractive) maps on them.
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