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1 Introduction

The existence of higher order Fréchet smooth norms and bump functions and its impact on the
geometrical properties of a Banach space have been subject to many investigations beginning
with the classical result for Lp–spaces in [1] and [6]. An extensive study and bibliography may
be found in [2]. As any negative result on the existence of Gâteaux smooth bump functions
immediately applies to the problem of existence of Fréchet smooth bump functions and norms
the question arises of estimating the best possible order of Gâteaux smoothness of bump func-
tions in a given Banach space. A variational technique (the Ekeland variational principle) was
applied in [2] to show that in `1(Γ), Γ uncountable, there is no continuous Gâteaux differen-
tiable bump function. Following the same idea and using Stegall’s variational principle, an
extension of this result to Banach spaces with uncountable unconditional basis was given in
[4] and to Banach spaces with uncountable symmetric basis in [9]. As an application in [4] it
was shown that in `p(Γ), Γ uncountable, there is no continuous p–times Gâteaux differentiable
bump function when p is odd and there is no continuous ([p] + 1)–times Gâteaux differentiable
bump function in the case p 6∈ N. This is essentially different from the case `p(N), p-odd, where
equivalent p–times Gâteaux differentiable and even uniformly Gâteaux differentiable norms are
constructed (see [10] and [8] respectively). As examples of the main result in [9], Orlicz `M(Γ)
and Lorentz d(w, p,Γ), Γ uncountable are considered and estimates for the order of Gâteaux
smoothness of bump functions are obtained. Recently a deep result on embedding of `p spaces
in Orlicz–Lorentz sequence spaces d0(p,M) have been found in [5]. It is shown there that
`p ↪→ d0(w, M) iff `p ↪→ hM iff p ∈ [αM , βM ]. This result naturally arises the question for find-
ing upper estimates for the order of Gâteaux smoothness of bump functions in Orlicz–Lorentz
spaces.

It is worthwhile to mention that results about differentiability of bump functions in `p(Γ)
can not be used directly for `M(Γ) and d(w, p,Γ). Indeed, in [3] it is proved that `p(A)
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is isomorphic to a subspace of d(w, p,Γ) iff A is countable. On the other hand `M(Γ) for
M ≡ tp(1 + | log t|)q at zero, p ≥ 1, q 6= 0, contains an isomorphic copy of `p(A) iff A is
countable. The problem of embedding `p(A) or `M(A) into d(w, M,Γ), Γ uncountable is open.

In this note we give one new application of the main result of [9] in Orlicz–Lorents spaces
d(w, M,Γ), Γ uncountable for finding upper estimates for the order of Gâteaux smoothness of
bump functions.

Let U be an open set in a Banach space X and let f : U → R be continuous. Following
[4] we shall say that f is G0

ω,k–smooth, k ∈ N in U for some ω : (0, 1] → R+, limt→0 t−kω(t) = 0
if for any x ∈ U , y ∈ X the representation holds

f(x + ty) = f(x) +
k∑

i=1

ti

i!
f (i)(x)(yi) + Rk

f (x, y, t),

where f (i), i = 1, 2, . . . k are i–linear bounded symmetric forms on X and lim
t→0

|Rk
f (x, y, t)|
ω(|t|) = 0.

If U = X we use the notation G0
ω,[p] instead of G0

ω,[p](X) and Gk, k ∈ N for the set of all

continuous k–times Gâteaux differentiable functions on X, for which limt→0 |Rk
f (x, y, t)|/|t|k =

0. We say that the norm ‖ · ‖ in X is k–times Gâteaux differentiable if it is from the class
Gk(X\{0}).

2 Preliminaries

We use the standard Banach space terminology from [7]. Let us recall that an Orlicz function M
is an even, continuous, non-decreasing convex function such that M(0) = 0 and lim

t→∞M(t) = ∞.

We say that M is non–degenerate Orlicz function if M(t) > 0 for every t > 0.
A weight sequence w = {wn}∞n=1 is a positive decreasing sequence such that w1 = 1 and

limn→∞ W (n) = ∞, where W (n) =
∑n

j=1 wj, for any n ∈ N.
The Orlicz–Lorentz space d(w, M,Γ) is the space of all real functions x = x(α) defined

on the set Γ, for which

I(λx) = sup

{ ∞∑

i=1

wiM(λx(αi))

}
< ∞

for some λ > 0, where the supremum is taken over all sequences {αi}∞i=1 of different elements
on Γ. There exists a sequence {α∗i }∞i=1, such that |x(α∗1)| ≥ |x(α∗2)| ≥ . . . ≥ |x(α∗i )| ≥ . . .,
limi→∞ x(α∗i ) = 0, |x(α∗)| = 0 if α 6= α∗i for i ∈ N and I(λx) =

∑∞
i=1 wiM(λx(α∗i )). The space

d(w, M,Γ), equipped with the Luxemburg norm:

‖x‖ = inf
{
λ > 0 : I

(
x

λ

)
≤ 1

}

is a Banach space.
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By supp x we denote the set {α ∈ Γ : x(α) 6= 0}.
The symbol eγ, γ ∈ Γ will stand for the unit vectors.
If M(u) = up, 1 ≤ p < ∞ then d(w, M,Γ) is the Lorentz space d(w, p,Γ). If wi = 1

for every i ∈ N then d(w,M,Γ) is the Orlicz space `M(Γ). In this case we use the notation
I(x) = M̃(x)

To every Orlicz function M the following numbers are associated:

αM = sup

{
p > 0 : sup

0<u,v≤1

M(uv)

upM(v)
< ∞

}
,

βM = inf

{
q > 0 : inf

0<u,v≤1

M(uv)

uqM(v)
> 0

}
.

We consider only spaces generated by an Orlicz function M satisfying the ∆2–condition
at zero i.e. βM < ∞, which implies of course

M(uv) ≥ uqM(v), u, v ∈ [0, 1](1)

for some q > βM (see [7]).
Finally we mention that the unit vectors {eγ}γ∈Γ form a symmetric basis of d(w, M,Γ)

with symmetric constant 1, which is boundedly complete [5], [7].
For a function g : (0, 1] → R+ denote:

dM(g) = sup

{
M(uv)

g(u)M(v)
: u, v ∈ (0, 1]

}
.

Let recall a well known definition. Let X have symmetric basis {eγ}γ∈Γ with a symmetric
constant 1 and let z ∈ X, z 6= 0, z =

∑∞
i=1 uieγi

, γi 6= γj for i 6= j. A sequence {zk}∞k=1,
zk =

∑∞
i=1 uieαi,k

, αi,k 6= αj,l for (i, k) 6= (j, l), αi,k ∈ Γ is called a block basis generated by the
vector z.

We will apply a general result for upper estimates for the order of Gâteaux smoothness of
bump functions in Banach space with a symmetric, boundedly complete basis with a symmetric
constant 1, obtained in [9].

Theorem 1 [9] Let X be a Banach space, let {eγ}γ∈Γ, ]Γ > ℵ0 be a symmetric, boundedly
complete basis in X with a symmetric constant 1 and let:

lim
n→∞

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥
n−

1
k = 0

for every z ∈ X.
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Let ω : [0, 1] → R+ be such that for every x ∈ X there exist y ∈ X, suppy ∩ suppx = ∅
and a sequence tn ↘ 0, which satisfy the inequality

‖x + tny‖ − ‖x‖ ≥ ω(tn), n ∈ N.

Then in X there is no continuous:
(i) G0

ω,k–smooth bump when ω(t) = o(tk);
(ii) G0

ω,k+1–smooth bump when ω(t) = o(tk+1), k–even;
(iii) k–times Gâteaux differentiable bump if ω(t) = tk;
(iv) (k + 1)–times Gâteaux differentiable bump if ω(t) = tk+1, k–even.

3 Main result

Theorem 2 Let M be an Orlicz function. If f is a continuous k–times Gâteaux differentiable
bump function in d(w, M,Γ), then

k ≤ EM =





[αM ], dM(t[αM ]) < ∞

αM − 1, αM ∈ N, dM(tαM ) = ∞.

4 Auxiliary lemmas

To apply Theorem 1 for d(w, M,Γ) we need the following lemmas.

Lemma 4.1 Let p ≥ 1 and let M be an Orlicz function satisfying the conditions lim
t→0

M(t)

tp
= 0,

dM(tp) = c < ∞. Then every block basis {zj}∞j=1 of the unit vector basis {eγ}γ∈Γ in d(w,M,Γ),
generated by one vector, satisfies

lim
n→∞

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥
n−

1
p = 0.

Proof: Let z =
∑∞

i=1 uieγi
∈ d(w,M,Γ). Let {ej,i}∞i=1, j ∈ N be a disjoint subsets of {eγ}γ∈Γ.

Then we define zj =
∑∞

i=1 uiej,i. Let µ(t) =
M(t)

tp
. It follows that limt→0 µ(t) = 0 and µ(t1) ≤

cµ(t2) for every 0 < t1 < t2 ≤ 1. Let λn(z) =
∑n

j=1 zj. Then I(λn(z)) =
∞∑

i=1

ni∑

j=n(i−1)+1

wjM(u∗i ).

For every ε > 0 there exists m ∈ N such that

∞∑

i=m+1

ni∑

j=n(i−1)+1

wjM(u∗i ) <
ε

2c
.
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By the definition of the function µ it follows

∞∑

i=1

ni∑

j=n(i−1)+1

wj|u∗i |pµ
(

u∗i
‖λn(z)‖

)
= ‖λn(z)‖p

∞∑

i=1

ni∑

j=n(i−1)+1

wjM

(
u∗i

‖λn(z)‖

)
= ‖λn(z)‖p.

Using the inequality

1 = I

(
λn(z)

‖λn(z)‖

)
=

∞∑

i=1

ni∑

j=n(i−1)+1

wjM

(
u∗i

‖λn(z)‖

)
≥

n∑

j=1

wjM

(
u∗1

‖λn(z)‖

)

we get that lim
n→∞ ‖λn(z)‖−1 = 0.

For every m ∈ N we have

m∑

i=1

ni∑

j=n(i−1)+1

wj|u∗i |pµ
(

u∗i
‖λn(z)‖

)
/n ≤ w1 + w2 . . . wn

n

m∑

i=1

|u∗i |pµ
(

u∗i
‖λn(z)‖

)
.

Because limj→∞ wj = 0 it follows that for every ε > 0 and every m ∈ N there exists N ∈ N
such that for any n ≥ N holds

m∑

i=1

ni∑

j=n(i−1)+1

wj|u∗i |pµ
(

u∗i
‖λn(z)‖

)
/n ≤ ε

2
.

On the other hand for all n ∈ N such that ‖λn(z)‖−1 ≤ 1 we can write the chain of inequalities

∞∑

i=m+1

ni∑

j=n(i−1)+1

wj |u∗i |pµ
(

u∗i
‖λn(z)‖

)
/n ≤ c

∞∑

i=m+1

ni∑

j=n(i−1)+1

wj|u∗i |pµ(u∗i )/n

≤ c
∞∑

i=m+1

ni∑

j=n(i−1)+1

wjM(u∗i )/n ≤
ε

2n
.

Therefore for every ε > 0 and n ≥ N holds

‖λn(z)‖p

n
=

∞∑

i=1

ni∑

j=n(i−1)+1

wj|u∗i |pµ
(

u∗i
‖λn(z)‖

)
/n ≤ ε

2
+

ε

2n
< ε

and thus

lim
n→∞

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥
n−

1
p = 0

¤
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Lemma 4.2 Let dM(ω) = ∞ then for any x ∈ d(w,M,Γ) there exist y ∈ d(w, M,Γ) with
supp y ∩ supp x = ∅ and a sequence tn ↘ 0 such that

‖x + tny‖ ≥ ‖x‖+ cω(tn)(2)

for some constant c > 0 and any n ∈ N.

Proof: We note first that

lim inf
t→0

ω(t)

t
= 0.

If x = 0 choose sequence tn ↘ 0 such that limn→∞ ω(tn)/tn = 0. Then (2) holds trivially
for any y 6= 0 with c = ‖y‖ > 0.

WLOG suppose that M(1) = 1.
Fix an arbitrary x =

∑∞
n=1 xneγn ∈ d(w,M,Γ) and ‖x‖ = 1. Just for simplicity of

notations we will assume that |x1| ≥ |x2| ≥ . . . ≥ |xn| ≥ . . ..
We will choose sequences tn ↘ 0 and vn ↘ 0 inductively:
1) t1 = v1 = u1 = 1, k0 = 0, k1 = 1.

2) Find k2 > k1, k2 ∈ N such that
1

21
k2∑

j=k1+1

wj

< M(v1) and M(xi) <
M(t1v1)

2
for i ≥ k2.

Find t2 < t1, v2 < v1 such that
M(t2v2)

ω(t2)M(v2)
> 22 and M(v2) <

1

22
k2∑

j=k1+1

wj

.

3) Find k3 > k2, k3 ∈ N such that
1

22
k3∑

j=k2+1

wj

< M(v2) and M(xi) <
M(t2v2)

2
for i ≥ k3.

Find t3 < t2, v3 < v2 such that
M(t3v3)

ω(t3)M(v3)
> 23 and M(v3) <

1

23
k3∑

j=k2+1

wj

.

If we have chosen tn−1, vn−1 and kn−1 then

4) Find kn > kn−1, kn ∈ N such that
1

2n−1
kn∑

j=kn−1+1

wj

< M(vn−1) and M(xi) <
M(tn−1vn−1)

2

for i ≥ kn.

Find tn < tn−1, vn < vn−1 such that
M(tnvn)

ω(tn)M(vn)
> 2n and M(vn) <

1

2n
kn∑

j=kn−1+1

wj

.
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For a sequence {An}∞n=1 of finite disjoint subsets of Γ, such that An ∩ supp x = ∅,
]An = kn − kn−1 put yn = vn

∑
γ∈An

eγ and y =
∑∞

n=1 yn.
Obviously

I(y) =
∞∑

n=1

kn∑

j=kn−1+1

wjM(vn) = w1M(v1) +
∞∑

n=2

M(vn)
kn∑

j=kn−1+1

wj ≤ 1 +
∞∑

n=2

1

2n
< ∞,

which ensures y ∈ d(w, M,Γ). We have supp (x + tny) = supp x ∪ (∪∞n=1An) for any t 6= 0 and
therefore

I(x + tny)− I(x) ≥ I(x + tnyn)− I(x)

≥
kn+1∑

j=1

wjM(xj) +
kn+2∑

j=kn+1+1

wjM(tnvn) +
∞∑

j=kn+2+1

wjM(xj+kn+1−kn+2)−
∞∑

j=1

wjM(xj)

= M(tnvn)
kn+2∑

j=kn+1+1

wj −
kn+2∑

j=kn+1+1

wjM(xj) +
∞∑

j=kn+2+1

wj(M(xj+kn+1−kn+2)−M(xj))

≥ 1

2
M(tnvn)

kn+2∑

j=kn+1+1

wj ≥ 1

2
2nω(tn)M(vn)

kn+2∑

j=kn+1+1

wj

≥ 2n−1ω(tn)
M(vn)

2n+1M(vn+1)
≥ ω(tn)

4
.

(3)

Remove as many elements of the sequence {tn}∞n=1 as necessary to have

0 < dn = ‖x + tny‖ − 1 ≤ 1

and keep the same notation for the remaining sequence. Now (1) implies

I(x + tny)− I(x) = I
(
‖x + tny‖ x+tny

‖x+tny‖
)
− 1 ≤ ‖x + tny‖q − 1

= (1 + dn)q − 1 ≤ q2q−1dn,
(4)

for some q > βM .
Combining (3) and (4) we obtain

‖x + tny‖ − 1 ≥ cω(tn),

where c =
1

q2q+1
.

Let now x 6= 0 be arbitrary. Find y such that supp y∩ supp x = ∅ and

∥∥∥∥∥
x

‖x‖ − tny

∥∥∥∥∥−1 ≥
cω(tn). Obviously for y = ‖x‖y we have

‖x + tny‖ − ‖x‖ ≥ c‖x‖ω(tn).

¤
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5 Gâteaux differentiability of bumps in d(w,M,Γ) and d(w, p,Γ)

Theorem 3 Let M be an Orlicz function and ω : (0, 1] → R+, dM(ω) = ∞.
(i) If αM 6∈ N then there is no continuous G0

ω,[αM ]–smooth bump function in d(w, M,Γ);

(ii) If αM ∈ N then there is no continuous G0
ω,αM

–smooth bump function, provided dM(tαM ) < ∞
in d(w,M,Γ) and there is no continuous G0

ω,αM−1–smooth bump function, provided dM(tαM ) =
∞ in d(w,M,Γ).

Proof: The proof in all cases is straightforward, applying Lemma 4.1 for appropriate p, Lemma
4.2 and Theorem 1. ¤
Proof of Theorem 2: The proof in the two cases is straightforward, applying Theorem 3. ¤

It is well known that in a Banach space X a norm of some order of smoothness generates
a bump function with the same order of smoothness (see e.g. [2]), therefore the next Corollary
is a direct consequence of Theorem 2

Corollary 5.1 Let M be an Orlicz function. If | · | an equivalent norm in d(w,M,Γ), which
is k–times Gâteaux differentiable then k ≤ EM .

As a consequence of Theorem 3 and Theorem 2 we get for M(t) = tp, p ≥ 1 the results
from [9].

Corollary 5.2 (Theorem 3 [9]) Let p ≥ 1, wn ↘ 0,
∑∞

n=1 wn = ∞ and ω : (0, 1] → R+ be such
that ω(t) = o(tp). Then there is no continuous G0

ω,[p]–smooth bump function in d(w, p,Γ).

Proof: Indeed in this case αM = p and dtp(ω) = ∞. If p 6∈ N then by Theorem 3 i) follows
that there is no continuous G0

ω,[p]–smooth bump in d(w, M,Γ). If p ∈ N then dtp(t
p) = 1 < ∞

and by Theorem 3 ii) there is no continuous G0
ω,p–smooth bump in d(w,M,Γ). ¤

Corollary 5.3 (Corollary 2 [9]) Let p ≥ 1, wn ↘ 0,
∑∞

n=1 wn = ∞. If f is a continuous
k–times Gâteaux differentiable bump function in d(w, p,Γ), then k ≤ [p].

Proof: In this case it is obvious that dtp(t
[p]) < ∞ and dtp(t

p) < ∞. Therefore by Theorem 2
it follows that k ≤ [p]. ¤
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