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Abstract: Upper estimates for the order of Gâteaux smoothness of bump functions in
Orlicz spaces `M(Γ) and Lorentz spaces d(w, p,Γ), Γ uncountable, are obtained.
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1 Introduction

The existence of higher order Fréchet smooth norms and bump functions and its impact on the
geometrical properties of a Banach space have been subject to many investigations beginning
with the classical results for Lp–spaces in [1], [7]. An extensive study and bibliography may
be found in [2]. As any negative result on the existence of Gâteaux smooth bump function
immediately applies to the problem of existence of Fréchet smooth bump functions and norms
the question arises of estimating the best possible order of Gâteaux smoothness of bump func-
tion in a given Banach space. A variational technique (the Ekeland variational principle) was
applied in (Proposition II.5.5 [2]) to show that in `1(Γ), Γ–uncountable, there is no continuous
Gâteaux differentiable bump function. Following the same idea and using Stegall’s variational
principle, an extension of this result to Banach spaces with uncountable unconditional basis
was given in [6]. As an application it was shown that in `p(Γ), Γ uncountable, there is no con-
tinuous p–times Gâteaux differentiable bump function when p is odd and there is no continuous
([p] + 1)–times Gâteaux differentiable bump function in the case p 6∈ N. The same result was
obtained independently in [12]. This is essentially different from the case `p(N), p-odd, where
equivalent p–times Gâteaux differentiable and even uniformly Gâteaux differentiable norms are
constructed (see [14] and [11] respectively). Moreover, from the above results form [6], [13], [14],
it follows that `p(Γ), Γ uncountable, p odd, represent a negative answer to the question whether
the existence of a k–times Gâteaux differentiable bump function in each separable subspace of
a Banach space X implies the existence of such a bump function in the whole space X. We
mention that the analogous problem for Fréchet Ck–smooth bump functions (Problem V.3 [2])
is still unsolved. It turns out that the variational technique is useful in the case of spaces with
uncountable symmetric basis too (Theorem 1 below). As examples, Orlicz spaces `M(Γ) and
Lorentz spacesd(w, p,Γ), Γ uncountable, are considered. Estimates for the order of Gâteaux
smoothness of bump functions are obtained. As a corollary sharp estimates for the order of
Gâteaux differentiability of continuous bump functions in `M(Γ) are found. It is worthwhile to
mention that results about differentiability of bump functions in `p(Γ) cannot be used directly
for `M(Γ) and d(w, p,Γ). Indeed, in [5] it is proved that `p(A) is isomorphic to a subspace of
d(w, p,Γ) iff A is countable. On the other hand `M(Γ) for M ∼ tp(1 + | log t|)q at 0, p ≥ 1,
q 6= 0, contains an isomorphic copy of `p(A) iff A is countable.

Let U be an open set in the Banach space X and let f : U → R be continuous. Following
[6] we shall say that f is G0

ω,k–smooth, k ∈ N, in U (f ∈ G0
ω,k(U)) for some ω : (0, 1] → R+,
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limt→0 t−kω(t) = 0 if for any x ∈ U , y ∈ X the representation holds:

f(x + ty) = f(x) +
k∑

i=1

ti

i!
f (i)(x)(yi) + Rk

f (x, y, t),

where f (i)(x), i = 1, 2, . . . , k are i–linear bounded symmetric forms on X and

lim
t→0

|Rk
f (x, y, t)|/ω(|t|) = 0.

If U = X we use the notation G0
ω,[p] instead of G0

ω,[p](X) and Gk, k ∈ N, for the set of continuous

k–times Gâteaux differentiable functions on X, for which limt→0 |Rk
f (x, y, t)|/ω(|t|) = 0.

In what follows, for sake of simplicity we use “bump” instead of “bump function.”

2 Main Result

Let X have symmetric basis {eγ}γ∈N with symmetric constant 1 and 0 6= z ∈ X, z =
∑∞

i=1 uieγi
,

γi 6= γj for i 6= j. A sequence {zk}k∈N, zk =
∑∞

i=1 uieαi,k
, αi,k 6= αj,l for (i, k) 6= (j, l), αi,k ∈ Γ,

is called a block basis generated by the vector z.
Denote

λn(z) =

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥
.

Theorem 1 Let X be a Banach space, let {eγ}γ∈Γ, ]Γ > ℵ0 be a symmetric boundedly complete
basis in X with symmetric constant 1, and let k ∈ N, such that

lim
n→∞λn(z)n−1/k = 0,(1)

for every z ∈ X.
Let ω : [0, 1] → R+ be such that for every x ∈ X there exist y ∈ X, suppy ∩ suppx = ∅,

and sequence tn ↘ 0 that satisfy the inequality

‖x + tny‖ − ‖x‖ ≥ ω(tn), n ∈ N.

Then in X there is no continuous:
(i) G0

ω,k–smooth bump when ω(t) = o(tk);
(ii) G0

ω,k+1–smooth bump when ω(t) = o(tk+1), k even;
(iii) k–times Gâteaux differentiable bump if ω(t) = tk;
(iv) (k + 1)–times Gâteaux differentiable bump if ω(t) = tk+1, k even.

3 Proof of Theorem 1

We prove (i) and (ii). The proof of (iii) and (iv) is essentially the same. Suppose b is a
continuous bump, b ∈ G0

ω,k(X) (b ∈ G0
ω,k+1(X)). WLOG we assume b(x) = 0 for ‖x‖ ≥ 1. Put

δ(x) =

{
b−2(x), b(x) 6= 0
+∞, otherwise.
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Then for every x, y ∈ X, b(x) 6= 0 we have

lim
t→0

|Rk
f (x, y, t)|/ω(|t|) = 0

(
lim
t→0

|Rk+1
f (x, y, t)|/ω(|t|) = 0

)
.(2)

Let

ϕ(x) =

{
δ(x)− ‖x‖+ 2, b(x) 6= 0
+∞, otherwise.

Obviously ϕ(x) ≥ ‖x‖ for all x ∈ X. X has the Radon–Nicodym property. Applying Stegall
variational principle for ϕ in X we get x0 ∈ X, b(x0) 6= 0 and f ∈ X∗ such that for any y ∈ X
the inequality holds:

ϕ(x0 + y) ≥ ϕ(x0)− f(y).(3)

Let y0 ∈ X, supp y0 ∩ supp x0 = ∅ and tn ↘ 0, be such that

‖x0 + tny0‖+ ‖x0 − tny0‖ − 2‖x0‖ ≥ 2ω(tn)(4)

Let {yα}α∈A, supp yα ∩ supp x0 = ∅, ]A > ℵ0, be a block basis generated by y0. As for every

{αi}∞i=1 ⊂ A the sequence {yαi
}∞i=1 is symmetric basis in span{yαi

}∞i=1

‖·‖
satisfying (1), then

lim
i→∞

P (yαi
) = P (0)

provided P is polynomial, deg P ≤ k. This fact goes back to [1].
Then there exists α0 ∈ A such that

δ(j)(x0)(y
j
α0

) = 0, j = 1, 2, . . . , k

and Taylor’s formula gives

δ(x0 + tyα0) = δ(x0) + Rk
δ (x0, yα0 , t)

(
δ(x0 + tyα0) = δ(x0) +

tk+1

(k + 1)!
δ(k+1)(x0)(y

(k+1)
α0

) + R
(k+1)
δ (x0, yα0 , t)

)
.

Using 3 we obtain

Rk
δ (x0, yα0 ,±t) = δ(x0 ± tyα0)− δ(x0) ≥ ‖x0 ± tyα0‖ − ‖x0‖ ∓ f(yα0)

R
(k+1)
δ (x0, yα0 ,±t) ≥ ‖x0 ± tyα0‖ − ‖x0‖ ∓ t

(
f(yα0) + tk+1

(k+1)!
δ(k+1)(x0)(y

(k+1)
α0

)
)
.

(5)

Obviously (5) implies

|Rk
δ (x0, yα0 , t)|+ |Rk

δ (x0, yα0 ,−t)| ≥ ‖x0 + tyα0‖+ ‖x0 − tyα0‖ − 2‖x0‖
(
|Rk+1

δ (x0, yα0 , t)|+ |Rk+1
δ (x0, yα0 ,−t)| ≥ ‖x0 + tyα0‖+ ‖x0 − tyα0‖ − 2‖x0‖

)
.

(6)

As (4) implies
‖x0 + tnyα0‖+ ‖x0 − tnyα0‖ − 2‖x0‖ ≥ 2ω(tn)
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it is easy to obtain from (6)

|Rk
δ (x0, yα0 , tn)|+ |Rk

δ (x0, yα0 ,−tn)|
ω(|tn|) ≥ 2 > 0

|Rk+1
δ (x0, yα0 , tn)|+ |Rk+1

δ (x0, yα0 ,−tn)|
ω(|tn|) ≥ 2 > 0,

which contradicts δ ∈ G0
ω,k(X) (δ ∈ G0

ω,k+1(X)). Theorem1 is proved. ¤
In what follows we shall apply Theorem1 for Orlicz and Lorentz spaces, `M(Γ) and

d(w, p,Γ), Γ–uncountable.

4 Orlicz Spaces `M(Γ)

We recall that M is called an Orlicz function, provided M is an even, convex function with
M(0) = 0, M(t) > 0 for any t 6= 0. The Orlicz space `M(Γ) is the space of all vectors
x = {xγ}γ∈Γ such that

M̃(x/λ) =
∑

γ∈Γ
M(xγ/λ) < ∞

for some λ > 0, endowed with the norm

‖x‖ = inf{λ > 0 : M̃(x/λ) ≤ 1}.

According to [10] the Boyd indices of `M are determined by

αM = sup{p : sup{M(uv)/upM(v) : u, v ∈ (0, 1]} < ∞},

βM = inf{p : inf{M(uv)/upM(v) : u, v ∈ (0, 1]} > 0}.
We consider only spaces generated by Orlicz function M satisfying the ∆2-condition at 0, i.e.
βM < ∞, which implies of course

M(uv) ≥ uqM(v), u, v ∈ [0, 1](7)

for some q > βM (see [9], p.140).
Finally we mention that the unit vectors {eγ}γ∈Γ form a symmetric basis of `M(Γ) with

symmetric constant 1, which is boundedly complete.
For g : (0, 1] → R+ denote

dM(g) = sup{M(uv)/g(u)M(v) : u, v ∈ (0, 1]}.

To apply Theorem 1 for `M(Γ) we need the following Lemmas.

Lemma 4.1 Let p ≥ 1 and M be Orlicz function satisfying the conditions

lim
t→0

M(t)/tp = 0(8)
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dM(tp) = c < ∞.(9)

Then every block basis {zj}∞j=1 of the unit vector basis {eγ}γ∈Γ in `M(Γ), generated by one
vector, satisfies

lim
n→∞

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥
n−1/p = 0.

Proof: Let z =
∑∞

i=1 uieγi
∈ `M(Γ) and {ej,i}∞i=1, j = 1, 2, . . . be disjoint subsets of {eγ}γ∈Γ.

Then zj =
∑∞

i=1 uiej,i, j = 1, 2, . . . form a symmetric block basis of {eγ}, generated by z.
Denote µ(t) = M(t)/tp. From (8) and (9) it follows

lim
t→0

µ(t) = 0,(10)

µ(t1) ≤ cλ(t2), provided t1, t2 ∈ (0, 1], t1 < t2.(11)

Let ε > 0 arbitrary. Find m such that

∞∑

i=m+1

M(ui) < ε/2c.

From

1 = M̃




n∑

j=1

zj/

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥


 =

n∑

j=1

M̃


zj/

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥


 = nM̃


z/

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥




we obtain

lim
n→∞

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥

−1

= 0,(12)




∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥
n−1/p




p

=
∞∑

i=1

up
i µ


ui/

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥


 .(13)

Using (10) and (12) we obtain for large n

m∑

i=1

up
i µ


ui/

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥


 < ε/2.

On the other hand (11) implies

∞∑

i=m+1

up
i µ


ui/

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥


 ≤ c

∞∑

m+1

M(ui) < ε/2

and we get from (13) 


∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥
n−1/p




p

< ε

which completes the proof. ¤
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Lemma 4.2 Let dM(ω) = ∞. Then for every x ∈ `M(Γ) there exist y ∈ `M(Γ), supp y ∩
supp x = ∅ and a sequence {tn} ↘ 0, such that

‖x + tny‖ ≥ ‖x‖+ cω(tn)(14)

for some c > 0 and any n ∈ N.

Proof: We note first that
lim inf

t→0
ω(t)/t = 0.

If x = 0 choose sequence tn ↘ 0 such that limn→∞ ω(tn)/tn = 0. Then (14) holds true trivially
for any y 6= 0 with c = ‖y‖ > 0.

WLOG suppose M(1) = 1.
Fix arbitrary x =

∑∞
i=1 xieγi

∈ `M(Γ), ‖x‖ = 1 and choose sequences {tn}, {vn} such that

tn ↘ 0, vn ↘ 0, tn, vn > 0;(15)

M(tnvn)/ω(tn)M(vn) > 2n;(16)

M(vn) < 2−n.(17)

Put mn = [1/2nM(vn)] + 1 and find k1 ∈ N such that

M(xi) < M(u1v1)/2, i ≥ k1.

Define inductively a sequence of naturals {kn}∞n=1 such that

kn−1 + mn−1 ≤ kn,

M(xi) < M(tnvn)/2, i ≥ kn.

For a sequence {An}∞n=1 of finite disjoint subsets of Γ, such that An ∩ supp x = ∅, ]An = kn,
put

yn = vn

∑

γ∈An

eγ, y =
∞∑

n=1

yn.

Obviously M̃(y) =
∑∞

n=1 mnM(vn) ≤ 2, which secures y ∈ `M(Γ). We have supp (x + ty) =
supp x ∪ (

⋃∞
n=1 An) for any t 6= 0 and therefore

M̃(x + tny)− M̃(x) ≥ ∑

γ∈An

M(tnvn) = mnM(tnvn) ≥ M(tnvn)/2nM(vn).(18)

Remove as many elements of the sequence {tn} as necessary to have

0 < dn = ‖x + tny‖ − 1 ≤ 1

and keep the same notation for the remaining sequence. Now (7) implies

M̃(x + tny)− M̃(x) = M̃

(
‖x + tny‖ x + tny

‖x + tny‖

)
− 1

≤ ‖x + tny‖q − 1 = (1 + dn)q − 1 ≤ q2q−1dn,

(19)
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for some q > βM .
Combining (18) and (19) we obtain

‖x + tny‖ − 1 ≥ cM(tnvn)/2nM(vn),

where c = (q2q−1)−1.
Let x 6= 0 arbitrary. Find y, supp y ∩ supp x = ∅ such that

∥∥∥∥∥
x

‖x‖ + tny

∥∥∥∥∥− 1 ≥ cM(tnvn)/2nM(vn).

Obviously for y = ‖x‖y we have from (16)

‖x + tny‖ − ‖x‖ ≥ c‖x‖M(tnvn)/2nM(vn) ≥ c‖x‖ω(tn).

which ends the proof. ¤

Theorem 2 Let M be an Orlicz function, M 6∼ tn at 0 for n ∈ N and ω : (0, 1] → R+,
dM(ω) = ∞. Then

(a) if αM 6∈ N in `M(Γ) there is no continuous G0
ω,[αM ]–smooth bump;

(b) if αM ∈ N in `M(Γ) there is no continuous G0
ω,αM

–smooth bump, provided dM(tαM ) <
∞ and there is no continuous G0

ω,αM−1–smooth bump, provided dM(tαM ) = ∞.

The proof in all cases is straightforward, applying Lemma 4.1 for appropriate p and
Lemma4.2.

Corollary 1 Let M be Orlicz function, M 6∼ tn at 0 for n ∈ N. If f is a k–times Gâteaux
differentiable continuous bump in `M(Γ), then

k ≤ EM =





[αM ], dM(t[αM ]) < ∞

αM − 1, αM ∈ N, dM(tαM ) = ∞.

Remark 1: The above estimates for the order of Gâteaux differentiability are sharp.
Indeed, the statement is obviously true for αM 6∈ N or αM ∈ N, dM(tαM ) = ∞ because for such
M in `M(Γ) there exist equivalent even EM–times Fréchet differentiable norms (see [12]). On
the other hand if αM = k ∈ N, dM(tk) < ∞, then limt→0 M(t)/tk = 0 (otherwise M ∼ tk at 0).
Following step by step the construction from [12] with the corresponding changes in Lemmas
2 and 4 one can construct Orlicz function N ∼ M at 0 such that Ñ is k–times Gâteaux
differentiable and for any x, y ∈ `N(Γ)

∣∣∣∣∣∣
Ñ(x + ty)−

k∑

j=0

tj

j!
Ñ (j)(yj)

∣∣∣∣∣∣
≤

(
Ñ(x) + Ñ(y)

)
Φ(t) + cÑ(ty)

where Φ(t) = o(tk) depends only on M . This implies immediately that the norm in `N(Γ) is
k–times Gateaux differentiable in `N(Γ)\{0}.
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Remark 2: Using Lemma 4.1 for p even integer and the obvious inequality in `p+1(Γ),

‖x + ty‖+ ‖x− ty‖ − 2‖x‖ ≥ c(x, y)|t|p+1, supp x ∩ supp y = ∅,

we easily get as a corollary of Theorem 1 that in `p+1(Γ), p even, there is no continuous (p+1)–
times Gâteaux differentiable bump. This result was obtained independently in [13] and [6].

Remark 3: Some new results have been obtained recently for Orlicz spaces hM , with
αM = ∞. In [4], by using the fact that every separable isomorphically polyhedral Banach
space has equivalent analytic norm [3], it was proved that hM(Γ), αM = ∞ has analytic norm
iff Γ is countable and hM(Γ) is isomorphically polyhedral. On the other hand Leung [8] gave
an example of an Orlicz function M for which αM = ∞ but hM fails to be isomorphically
polyhedral. The corresponding Orlicz space hM is an example of a separable Banach space
with Fréchet C∞–smooth norm [12], which has no equivalent analytic norm.

5 Lorentz Spaces d(w, p,Γ)

Let 1 ≤ p < ∞ and let w = {wn}∞n=1 be a nonincreasing sequence of positive scalars such that
limn→∞ wn = 0 and

∑∞
n=1 wn = ∞.

We denote by d(w, p,Γ) the Lorentz space of all real functions x = x(α) defined on the
set Γ for which

‖x‖ = sup

{ ∞∑

n=1

wn|x(αn)|p
}1/p

< ∞

where the supremum is taken over all sequences {αn}∞n=1 of different elements of Γ. There exist
a sequence {α∗n}∞n=1 such that |x(α∗1)| ≥ |x(α∗2)| ≥ . . ., limn→∞ x(α∗n) = 0, x(α) = 0 if α 6= α∗n,
n = 1, 2, . . . and

‖x‖ =

{ ∞∑

n=1

wn|x(α∗n)|p
}1/p

.

The space d(w, p,Γ) is a Banach space and the canonical basis {eγ}γ∈Γ is a symmetric basis

[9].

Lemma 5.1 Let p ≥ 1. For every z ∈ d(w, p,Γ), limn→∞ λn(z)n−1/p = 0.

Proof: Let z =
∑∞

i=1 uieγi
, where |ui| ≥ |ui+1|, i ∈ N and zj =

∑∞
i=1 uiej,i, where {ej,i}∞i=1,

j = 1, 2, . . . are disjoint subsets of {eγ}γ∈Γ. Obviously

∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥

p

=

∥∥∥∥∥∥

n∑

j=1

∞∑

i=1

uiej,i

∥∥∥∥∥∥

p

=
∞∑

i=1

ni∑

j=n(i−1)+1

wj|ui|p.

Let ε > 0 arbitrary. Find m such that

∞∑

j=m+1

wi|ui|p < ε/2.(20)
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It is not hard to observe that (20) implies

∞∑

i=m+1

ni∑

j=n(i−1)+1

wj|ui|p/n ≤
∞∑

i=m+1

wn(i−1)+1|ui|p < ε/2.(21)

On the other hand
m∑

i=1

ni∑

j=n(i−1)+1

wj|ui|p/n ≤ w1 + · · ·+ wn

n

m∑

i=1

|ui|p.

Obviously limn→∞(w1 + · · ·+ wn)/n = 0 and for n large enough

m∑

i=1

ni∑

j=n(i−1)+1

wj|ui|p/n ≤ ε/2,(22)

which together with (20) implies




∥∥∥∥∥∥

n∑

j=1

zj

∥∥∥∥∥∥
n−1/p




p

< ε.

Lemma5.1 is proved. ¤

Lemma 5.2 For every x ∈ d(w, p,Γ) and every ω : (0, 1] → R+, ω(t) = µ(t)tp, limt→0 µ(t) = 0,
µ(t) ≥ t, there exist y ∈ d(w, p,Γ), supp y ∩ supp x = ∅ and sequence tn ↘ 0, such that

‖x + tny‖ ≥ ‖x‖+ c(x)ω(tn).(23)

Proof: Suppose ‖x‖ = 1 and let {xi}∞i=1 be the decreasing rearrangement of the nonzero
coordinates of x. Choose decreasing sequence {tn}∞n=1, such that µ(tn) ≤ 2−n and increasing
sequence of naturals {kn}∞n=1, ∞∑

i=kn+1

wi|xi|p < ω(tn),

kn∑

i=kn−1+1

wi ≥
kn−1∑

i=kn−2+1

wi.

Put un =
(
2µ(tn)/

∑kn+1

i=kn+1 wi

)1/p
, n = 1, 2, . . .. Obviously un > un+1 for every n ∈ N. Choose

a sequence {An}∞n=1 of disjoint subsets of Γ, An ∩ supp x = ∅, ]An = kn+1 − kn and consider
the sequence {yn}∞n=1, yn = un

∑
γ∈An

eγ. From

∞∑

n=1

up
n

kn+1∑

j=kn+1

wj = 2
∞∑

n=1

µ(tn) ≤ 2

it follows that y =
∑∞

i=1 yn ∈ d(w, p,Γ).
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Let us check that y satisfies (23). We have

‖x + tnyn‖p ≥
kn∑

j=1

wj|xj|p + tpnu
p
n

kn+1∑

j=kn+1

wj =
kn∑

j=1

wj|xj|p + 2ω(tn)

≥
∞∑

j=1

wj|xj|p + ω(tn) ≥ 1 + ω(tn).

Now from

‖x + tny‖p =

∥∥∥∥∥∥
x + tn

∞∑

j=1

yj

∥∥∥∥∥∥

p

≥ ‖x + tnyn‖p

we obtain
‖x + tny‖p ≥ 1 + ω(tn).

Denote ‖x + tny‖ = 1 + dn. Remove those tn for which 1 < |tn|‖y‖. Then from the
inequality

(1 + dn)p ≤ 1 + p2p−1dn

it follows (23) with c = (p2p−1)
−1

.
If ‖x‖ 6= 1 applying the above for x/‖x‖ we find y and tn ↘ 0 such that

‖x + tn‖x‖ y‖ ≥ ‖x‖+ c‖x‖ω(tn),

i.e. (23) with y = ‖x‖y and c(x) = c‖x‖.
Lemma 5.2 is proved. ¤
Using Lemmas 5.1 and 5.2 in Theorem 1 we get:

Theorem 3 Let p ≥ 1, wn ↘ 0,
∑∞

n=1 wn = ∞ and ω : [0, 1] → R+ be such that ω(t) = o(tp).
Then in d(w, p,Γ) there is no continuous G0

w,[p]–smooth bump.

Corollary 2 Let p ≥ 1, wn ↘ 0,
∑∞

n=1 wn = ∞. If f is a continuous k–times Gâteaux
differentiable bump in d(w, p,Γ), then k ≤ [p].
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