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abstract It is shown that in large class of separable Banach spaces with
an unconditional basis there is no 2–times Gâteaux differentiable bump functions.
This result is applied in Orlicz and Lorentz sequence spaces. A condition for nonex-
istence of 2–times Gâteaux differentiable bump functions in Orlicz and Lorentz
sequence spaces is found.
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1 Introduction

For many problems in the Geometry of Banach spaces and Nonlinear analysis
in Banach spaces it is of importance the existence of bump functions with
prescribed order of smoothness. One of the few results about higher order
Gâteaux differentiability in separable Banach spaces is due to M. Fabian,
Whitfield and V. Zizler. They have shown in [1] that there is no equivalent
2–times Gateaux differentiable norm in `p, 1 ≤ p < 2. F. Hernandes and S.
Troyanski have shown that in Banach spaces satisfying a lower p–estimate
for 1 ≤ p < 2 the order of Gâteaux smoothness can be only slightly better
than the Fréchet one [2].

This paper is devoted to the existence of Gâteaux differentiable bump
functions in Orlicz and Lorentz spaces. We begin with some definitions. Let
k ∈ N, ω : (0, 1] → R+ be an increasing function with limt→0 ω(t)/tk < ∞.
Let U be an open set in a Banach space X and f : X → R be continuous.
We shall say that f ∈ Gω,k(U), if for any x ∈ U , y ∈ X the representation

f(x + ty) = f(x) +
k∑

i=1

ti

i!
f (i)(x)(yi) + Rk

f (x, y, t),

holds, where f (i)(x), i = 1, . . . , k are i – linear bounded symmetric forms on
X and

lim
t→0

|Rk
f (x, y, t)|
ω(|t|) ≤ c(x, y) < ∞.
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The main tool in the paper will be
Stegall Variational Principle: Let X be a Banach space with the Radon–
Nikodym property. Let ε > 0 and ϕ : X → R∪{∞} be a lower semicontinuous
function, bounded below. Assume that D(ϕ) = {x ∈ X : ϕ(x) < ∞} 6= ∅ and
there exist a > 0 and d ∈ R such that for every x ∈ X,

ϕ(x) ≥ 2a‖x‖+ d.

Then there exist x0 ∈ D(ϕ) and f ∈ X∗ with ‖f‖ < ε such that for every
x ∈ X,

ϕ(x) ≥ ϕ(x0)− f(x− x0),

i.e. ϕ + f attains its minimum at x0.
This version of Stegall variational principle is due to Fabian (see e.g. [6],

p. 88).

2 General result

Theorem 1 Let X be a Banach space with the Radon-Nikodym property and
ω : R+ → R+ be such that lim inft→0 ω(t)/t = 0. Suppose that there exists an
equivalent norm | · | on X such that for every x ∈ X there exist y ∈ X and
sequences tm → 0 and τm → 0 fulfilling

lim
m→∞ω(tm)/τm = 0 and |x± tmy| ≥ |x|+ τm.

Then there exists no bump b ∈ Gω,1(X).

Proof. Suppose b is a continuous bump, b ∈ Gω,1(X). We assume b(x) = 0
for ‖x‖ ≥ 1. Put δ(x) = b−2(x). Then for every x, y ∈ X, b(x) 6= 0 we have

lim sup
t→0

|R1
δ(x, y, t)|/ω(|t|) = c(x, y) < ∞.(1)

Let

ϕ(x) =

{
δ(x)− |x|+ 2, b(x) 6= 0

+∞, otherwise.

Obviously ϕ(x) ≥ |x| for all x ∈ X.X has the Radon–Nikodym property.
Applying Stegall variational principle for ϕ we get x0 ∈ X, b(x0) 6= 0 and
f ∈ X∗ such that for any y ∈ X the inequality holds:

ϕ(x0 + y) ≥ ϕ(x0)− f(y).(2)
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For suitable sign of tn Taylor’s formula gives:

R1
δ(x0, y, tn) = δ(x0 + tny)− δ(x0)− tnδ

′
(x0)(y)

≥ ϕ(x0 + tny)− ϕ(x0) + |x0 + tny| − |x0| − tnδ
′
(x0)(y)

≥ |x0 + tny| − |x0| − tn((δ
′
(x0) + f)(y))

≥ |x0 + tny| − |x0| ≥ τn

(3)

Obviously (3) implies

lim
n→∞

|R1
δ(x0, y, t)|
ω(|tn|) ≥ lim

n→∞
τn

ω(|tn|) = ∞,

which contradicts δ ∈ Gw,1(X). Theorem 1 is proved. ¤
In the next two sections we apply this result in Orlicz and Lorentz spaces.

3 Orlicz spaces

We recall that M is called an Orlicz function, provided M is even, convex
function with M(0) = 0, M(t) > 0 for any t 6= 0. The Orlicz sequence space
`M is the space of all sequences x = {xn}∞n=1 such that

M̃(x/λ) =
∞∑

n=1

M(xn/λ) < ∞

for some λ > 0, endowed with the norm:

‖x‖ = inf{λ > 0 : M̃(x/λ) ≤ 1}.

According to [5] the Boyd indices of `M are determined by:

αM = sup{p : sup{M(uv)/upM(v) : u, v ∈ (0, 1]} < ∞},

βM = inf{p : inf{M(uv)/upM(v) : u, v ∈ (0, 1]} > 0}.
We consider only spaces generated by Orlicz function M satisfying the ∆2-
condition at 0, i.e. βM < ∞, which implies of course

M(uv) ≥ uqM(v), u, v ∈ [0, 1](4)

for some q > βM (see [5], p.140).
Using the method from [2] we prove the following:
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Theorem 2 Let `M be an Orlicz sequence space with M satisfying the ∆2-
condition at 0. Let ω : R+ → R+ be such that

sup
u,v∈(0,1]

M(uv)

ω(u)M(v)
= ∞.

Then there exists no bump b ∈ Gω,1(`M)

Proof. Let b ∈ Gω,1(`M). Then the function β(x1, x2) = b(x1)b(x2), defined
on `M × `M is also in the class Gω,1. We show that this is not possible.

In view of Theorem 1 it suffices to find an equivalent norm | · | on `M×`M

such that for any x ∈ `M × `M there exist y ∈ `M × `M and sequences tm → 0
and τm → 0 such that

lim
m→∞ω(tm)/τm = 0 and |x± tmy| ≥ |x|+ τm.

Let x = (x1, x2) ∈ `M × `M . We denote gk = |x1(k)| + |x2(k)| and x̂ =
{gk(x)}∞k=1. Then we have x̂ ∈ `M . Indeed, M̃(x̂) ≤ M̃(2x1) + M̃(2x2) < ∞.
Set |x|`M×`M

= ‖x̂‖`M
. We shall show | · | is an equivalent norm in `M × `M .

Let us denote ‖ · ‖∞ = max{‖x1‖, ‖x2‖}. First, obviously |x| ≥ ‖x‖∞ for any
x ∈ `M × `M . On the other hand

M̃

(
x̂

2‖x‖∞

)
=

∞∑

k=1

M

( |x1(k)|
2‖x‖∞ +

|x2(k)|
2‖x‖∞

)

≤ 1

2

( ∞∑

k=1

(
M

( |x1(k)|
‖x‖∞

)
+ M

( |x2(k)|
‖x‖∞

)))

≤ 1

2

( ∞∑

k=1

M

( |x1(k)|
‖x1‖

)
+

∞∑

k=1

M

( |x2(k)|
‖x‖2

))
≤ 1,

by the convexity of M . Hence |x| ≤ 2‖x‖∞ and | · | is an equivalent norm on
`M × `M .

Let now x = (x1, x2) ∈ `M × `M . Without loss of generality we may
suppose |x| = 1. We can choose sequences tn → 0, vn → 0 such that

M(tnvn)

ω(tn)M(vn)
> 4n and M(vn) < 2−n.(5)

Set mn = [2−nM(vn)−1]+1, where [a] is the largest integer not bigger than a.
Choose a sequence (kn) ⊆ N such that kn ≥ kn−1 + mn−1 and gk(x) <
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M(tnvn)/4 for every k ≥ kn. Set

a1j = −a2j = 1, if x1(j)x2(j) ≥ 0,

a1j = a2j = 1, if x1(j)x2(j) < 0,

and yin =
∑kn+mn−1

j=kn
vnaijej, yi =

∑∞
n=1 yin, for i = 1, 2 and y = (y1, y2). By

(5) it follows easily that y ∈ `M × `M .
By the construction of ai,j and y we have that for every k ∈ N and t ∈ R

gk(x± ty) ≥ gk(x).

Hence

M̃( ̂x± tny)− M̃(x̂) ≥
kn+mn−1∑

j=kn

(M(gj(x± tny))−M(gj(x)))

≥
kn+mn−1∑

j=kn

(
M(max

i=1,2
{|xi(j) + aijtnvn|})−M(gj(x))

)

≥
kn+mn−1∑

j=kn

(M(tnvn)−M(tnvn)/2) =
mnM(tnvn)

2
.

Thus

M̃( ̂x± tny)− M̃(x̂) ≥ M(tnvn)

2n+1M(vn)
.(6)

On the other hand for sufficiently large n the inequality

0 < dn = ‖ ̂x± tny‖ − 1 ≤ 1

is fulfilled. Hence using (4) we establish

M̃( ̂x± tny)− M̃(x̂) = M̃

(
‖ ̂x± tny‖

̂x± tny

‖ ̂x± tny‖

)
− 1

≤ ‖ ̂x± tny‖q − 1 = (1 + d)q − 1 ≤ q2q−1dn,

(7)

for some q > βM .
Combining (6) and (7) we obtain

|x± tny| − 1 = ‖ ̂x± tny‖ − 1 ≥ cM(tnvn)/2n+1M(vn),(8)

where c = (q2q−1)−1.
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Now setting τn = 2nω(tn) we have ω(tn)/τn → 0 as n → ∞ and using
(5), (6) and (8) we obtain

|x± tny| − |x| ≥ c
M(tnvn)

2n+1M(vn)
≥ c

4nω(tn)

2n+1
≥ cτn,

which is exactly what we wanted. By Theorem 1 this contradicts the exis-
tence of bump b ∈ Gω,1(`M × `M). Theorem 2 is proved. ¤

Remark Theorem 2 shows that if

sup{M(uv)/u2M(v) : u, v ∈ (0, 1]} = ∞(9)

there is no bump b with ϕ(t) = b(x + ty) twice differentiable for every x, y ∈
`M .

Using for k = 2

Theorem 3 ([3] Theorem 1) Let M be an Orlicz function that satisfies:
1) 1 ≤ k ≤ αM ≤ βM < ∞
2) M(uv) ≤ c0u

kM(v), u ∈ [0, 1], v ∈ R+ for some positive c0

3) limu→0 M(u)/uk = 0.
For any measure space (S,

∑
, µ), µ a positive measure, in X = LM(S,

∑
, µ)

there is an equivalent uniformly Gâteaux smooth norm.

We see that the estimates for the order of smoothness of bump functions
in separable Orlicz sequence spaces with 1 < αM ≤ 2 found in Theorem 2
are exact.

4 Lorentz spaces

Let 1 ≤ p < ∞ and w = {wn}∞n=1 be a nonincreasing sequence of positive
scalars such that limn→∞ wn = 0 and

∑∞
n=1 wn = ∞.

We denote by d(w, p) the Lorentz space of all sequences x = {xn}∞n=1 for
which

‖x‖ = sup

{ ∞∑

n=1

wn|xπ(n)|p
}1/p

< ∞(10)

where the supremum is taken over all permutations π of the N. From (10) we
deduce that there exists a sequence rearrangement of the natural numbers
{π(n)}∞n=1 such that

‖x‖ =

{ ∞∑

n=1

wn|xπ(n)|p
}1/p

.
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The space d(w, p) is a Banach space (see [5] p. 175).

Theorem 4 Let be given a Lorentz space d(w, p) and ω : R+ → R+ with
ω(t) = µ(t)tp, where lim inft→0 µ(t) = 0. Then there exists no bump b ∈
Gω,1(d(w, p)).

Proof. Let x = (x1, x2) ∈ d(w, p) × d(w, p), gk(x) = |x1
π1(k)| + |x2

π2(k)|,
where {|xi

πi(k)|}∞k=1 is a nonincreasing rearrangement of {|xi
k|}∞k=1. Denote

x̂ = {gk(x)}∞k=1. Obviously x̂ ∈ d(w, p)× d(w, p). Define a norm in d(w, p)×
d(w, p) by:

|x|d(w,p)×d(w,p) = ‖x̂‖d(w,p)

Let assume that |x|d×d = 1
For a simplification of the notations we can assume that πi = id, i = 1, 2.
We can choose sequences {tn}∞n=1, {kn}∞n=1 with the following properties

µ(tn) ≤ 1

4n
, 2nω(tn) ↘ 0,

∞∑

kn+1

wi|gi(x)|p < 2nω(tn),

kn∑

kn−1+1

wi ≤
kn+1∑

kn+1

wi.

Put un =
(
2.2nµ(tn)/

∑kn+1

kn+1 wi

)1/p
. Obviously un > un+1. Now we choose

aij:

a1j = −a2j = 1, if x1(j)x2(j) ≥ 0,

a1j = a2j = 1, if x1(j)x2(j) < 0.

Put yin =
∑kn+1−1

j=kn
unaijej, j = 1, 2, yn = (y1n, y2n), y =

∑∞
n=1 yn. Then

|y|p = ‖ŷ‖p = 2
∞∑

n=1

up
n

kn+1−1∑

j=kn

wj ≤ 2
∞∑

n=1

1/2n ≤ 2,

which ensures that y ∈ d(w, p)× d(w, p).

7



The definition of yn gives us that gk(x± ty) ≥ gk(x) and we obtain

|x± tny|p ≥ |x± tnyn|p = ‖ ̂x± tnyn‖p

= ‖x̂‖p −
kn+1−1∑

j=kn

wj|gj(x)|p +
kn+1−1∑

j=kn

wj|gj(x± tnyn)|p

≥ 1− 2nω(tn) +
kn+1−1∑

j=kn

wj|2tnun − gj(x)|p

≥ 1− 2nω(tn)−
kn+1−1∑

j=kn

wj|gj(x)|p +
kn+1−1∑

j=kn

wj|2tnun|p

≥ 1− 2.2nω(tn) + 2.2p.2nµ(tn)tpn ≥ 1 + c.2nω(tn)

Now put τn = 2nω(tn) ↘ 0. Obviously

lim
n→∞

ω(tn)

τn

= 0

and
|x± tny|p − 1 ≥ cτn.

Using the technique from [4] it can be shown that:

|x± tny| − |x| ≥ cτn.

Now we can apply Theorem 1. ¤
Acknowledgments The authors acknowledge their gratitude to S. Troy-
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