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abstract Equivalent [α(Φ)]–times uniformly Gâteaux differentiable norms are constructed
for large classes of Musielak–Orlicz spaces LΦ(Ω, Σ, µ). Equivalent [p]–times uniformly Gâteaux
differentiable norms are constructed in Nakano sequence spaces `{pn}, where 1 ≤ p = lim inf

n→∞ pn ≤
lim sup

n→∞
pn < ∞ and the set A = {n ∈ N : pn < p} is finite.

1 Introduction.

The existance of smooth bump functions on a Banach spaces is important for many problems
of nonlinear analysis [3], [4]. It is well known that in a Banch space an equivalent norm of some
order of smoothness generates a bump with the same order of smoothness. Thus all positive
results on the existence of smooth equivalent norms are transferred directly for bumps.

The problem of best order of Fréchet differentiability of bump functions for Lp–spaces is
solved in [1], [12] and for Orlicz spaces in [9], [10]. An excelent overview of the depelopment of
the smoothness problems in Banach spaces may be found in [5].

Estimates for the order of Fréchet differentiability of norms in Musielak–Orlicz sequence
spaces and of bump functions in Nakano sequence spaces habe been found in [11]. Troyan-
ski [13] found equivalent p–times Gâteaux differentiable equivalent norms in Lp over σ–finite
space, p odd, thus showing that the best order of Gâteaux differentiability in the class of all
equivalent norms in this case is better that the best order of Fréchet differentiability. The same
phenomenon was established in [8] for Orlicz sequence and function spaces.

Our aim is to constract equivalent norms, that are uniformly Gâteaux differentiable in
some Musielak–Orlicz and Nakano spaces and to find cases when the order of Gâteaux differ-
entiability of the norm is higher that the best order of Fréchet smoothness of the space.

2 Preliminaries.

In what follows X and Y are Banach spaces, SX and BX the unit sphere and the unit ball of
X respectively. By N we denote the naturals and by R the reals. The space of all continuous
symmetric j–linear forms

T : X ×X × · · · ×X︸ ︷︷ ︸ → Y

j − times

1Research is partially supported by National Fund for Scientific Research of the Bulgarian Ministry of
Education and Science, Contract MM-1401/04.
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equiped with the norm

‖T‖1 = sup{‖T (x1, . . . , xj)‖ : xi ∈ BX , 1 ≤ i ≤ j}
is denoted by Bj(X, Y ). We write T ( x, . . . , x︸ ︷︷ ︸

j − times

) = T (xj).

Definition 2.1 The map f : X → Y is said to be Gâteaux differentiable at x ∈ X if for each
h ∈ X

f
′
(x; h) = lim

t→0

f(x + th)− f(x)

t

exists and is a linear continuous function in h, i.e. f
′ ∈ B(X,Y ). The higher order Gâteaux

differentiability is defined inductively. Suppose the (k − 1)–th derivative f (k−1) of f is defined
in a neighbourhood U(x) of x, f (k−1)(y) ∈ Bk−1(X, Y ) for every y ∈ U(x). Then f is called
k–times Gâteaux differentiable at x if f (k−1) : U(x) → Bk−1(X, Y ) is Gâteaux differentiable at
x, i.e. if there exists f (k)(x) ∈ Bk(X, Y ) such that for each h ∈ X

lim
t→0

f (k−1)(x + th : ·)− f (k−1)(x : ·)
t

= f (k)(x : ·h),(1)

where the limit is understood with respect to the norm in B(k−1)(X,Y ).

The class of all k–times Gâteaux differentiable maps at any x ∈ A ⊂ X is denoted by Gk(A). If
f ∈ Gk(SX) and the limit in (1) is uniform on x for every fixed h then we say that f is k–times
uniformly Gâteaux differentiable on SX and we write f ∈ UGk(SX).

We mention that if the limit s above are uniform for h ∈ SX the map is said Fréchet (k–
times Fréchet) differentiable in x. A Banach space which possesses k–times Gâteaux (Fréchet)
differentiable bump function (real valued function with bounded support) is called Gk(F k)–
smooth.

Throughout the paper (Ω, Σ, µ) is a measure space.
We recall that M is called an Orlicz function, provided M is even, convex, continuous

nondecreasing in [0,∞) function with M(0) = 0, M(t) > 0 for any t 6= 0.

Definition 2.2 A two variable real valued function Φ(u, s) : [0,∞) × Ω → [0,∞) is called a
Musielak–Orlicz function with a parameter or a Musielak–Orlicz function or MO function if
for a.a. s ∈ Ω, u → Φ(u, s) is an Orlicz function and for all u ∈ [0,∞), s → Φ(u, s) is
Σ–measurable.

Definition 2.3 The Musielak–Orlicz space LΦ(Ω, Σ, µ) is the space of all classes f of equivalent
µ–mesurable functions over the measure space (Ω, Σ, µ) such that:

Φ̃

(
f

λ

)
=

∫

Ω
Φ

(
f(s)

λ
, s

)
dµ(s) < ∞

for some λ > 0.

2



The space LΦ(Ω, Σ, µ) is a Banach space if endowed with the Luxemburg’s norm:

‖f‖Φ = inf

{
λ > 0 : Φ̃

(
f

λ

)
= 1

}
.

The most common examples of Musielak–Orlicz spaces are the sequence spaces `{Φn}, the func-
tion spaces LΦ(0, 1) and LΦ(0,∞) that correspond to the cases: Ω countable union of atoms of
equal mass, Ω = [0, 1] and Ω = (0,∞), µ the usual Lebesgue measure.

Definition 2.4 We say that the Musielak–Orlicz function Φ : R × Ω → R satisfies the ∆∗p

condition if there exist a positive constant k and a nonnegative integrable over Ω function h,
such that:

Φ(λt, s) ≥ kλp(Φ(t, s)− h(s))(2)

for any t ≥ 0 and λ ≥ 1.
If h ≡ 0 then we say that Φ satisfies the uniform ∆∗p condition.

Definition 2.5 We say that the Musielak–Orlicz function Φ : R × Ω → R satisfies the ∆q

condition if there exist a positive constant K and a nonnegative integrable over Ω function h,
such that:

Φ(λt, s) ≤ Kλq(Φ(t, s) + H(s))(3)

for any t ≥ 0 and λ ≥ 1.
If H ≡ 0 then we say that Φ satisfies the uniform ∆q condition.

Definition 2.6 Given a Musielak–Orlicz function Φ, lower and upper indices α(Φ), β(Φ) re-
spectively are defined as follows:

α(Φ) = sup{p : Φ ∈ ∆∗p}, β(Φ) = inf{q : Φ ∈ ∆q}.

Definition 2.7 Let {pn}∞n=1, pn ≥ 1. The space of all sequences {xn} such that

Ñ(x/λ) =
∞∑

n=1

∣∣∣∣
xn

λ

∣∣∣∣
pn

< ∞

for some λ > 0 is called a Nakano sequence space and denoted by `{pn}.

We consider the usual Luxemburg’s norm.

3



3 Main results

Theorem 1 Let Φ be a Musielak–Orlicz function with 1 ≤ α(Φ) ≤ β(Φ) < ∞ and let for some
k ∈ [1, α(Φ)]:
i) there exist non–negative integrable over Ω function h and positive constant c0 such that:

Φ(uv, s) ≤ c0u
k(Φ(v, s) + h(s))

for all u ∈ [0, 1], v ∈ R+ and a.a. s ∈ Ω;

ii) lim
u→0

Φ(u, s)

uk
= 0 for a.a. s ∈ Ω.

Then for any measure space (Ω, Σ, µ) with a positive measure there is an equivalent UGk–smooth
norm in LΦ(Ω, Σ, µ).

Theorem 2 Let {pn}∞n=1 be such that 1 ≤ p = lim inf
n→∞ pn ≤ lim sup

n→∞
pn < ∞ and the set

A = {n ∈ N : pn < p} is finite. Then there exist an equivalent UGp–smooth norm in `{pn}.

4 Auxiliary results

4.1 Uniform Gâteaux differentiability of Musielak–Orlicz spaces

Following [8] for any c ≥ 1 we denote by F (c) the class of all non–decreasing continuous
functions f : R+ → R+, f 6≡ 0, such that:
(?) f(0) = 0;

(??) f(b)− f(a) ≤ c(b− a)f(b)
b

for any 0 ≤ a ≤ b, b 6= 0.
Let f(t, s) : R+ × Ω → R+. Denote I(f) = I(f)(u, s) =

∫ t
0 f(u, s)du and inductively

In(f) = In(f)(u, s) = I(In−1(f)(u, s)).

Theorem 3 Let f(t, s) : R+ × Ω → R+ and f ∈ F (c) for a fixed c ≥ 1 and almost all s ∈ Ω.
Then for every measure space (Ω, Σ, µ) with positive measure µ the Musielak–Oricz function
space LΦ(Ω, Σ, µ), Φ = Ik(f) admits equivalent UGk–smooth norm.

We omit here the proof because it can be obtained by carefully following step by step the proof
from [8] of the analogous result for Orlicz spaces.

4.2 Musielak–Oricz functions satisfying simultaneously uniform ∆∗p and ∆q con-
ditions

Definition 4.1 We say that Φ1 is equivalent to Φ2 and we denote it by Φ1 ∼ Φ2 if there are
constants Ci, Ki, i = 1, 2 and non–negative integrable over Ω functions hi, i = 1, 2 satisfying

C1Φ1(K1u, s) ≤ Φ2(u, s) + h1(s),(4)
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C2Φ2(K2u, s) ≤ Φ1(u, s) + h2(s)(5)

for all u ≥ 0 and a.a. s ∈ Ω.

It is well known that for equivalent Musielak–Orlicz functions Φ1 and Φ2 the Musielak–Orlicz
spaces LΦ1 and LΦ2 are isomorphic (e.g. [6])

It is well known (e.g. [6],[7]) that if a Musielak–Orlicz function Φ satisfies the ∆∗p (∆q)
then there exists an eqivalent Musielak–Oricz function Ψ which satisfies the uniform ∆∗p (∆q)
condition. For the proof of the main result we will need the following stronger result which
could be of interest by itself.

Theorem 4 Let Φ satisfies the ∆∗p and ∆q conditions for some 1 ≤ p ≤ q < ∞. Then there
exists Φ ∼ Φ and positive constants k1, K1, such that

k1λ
pΦ(t, s) ≤ Φ(λt, s) ≤ K1λ

p+q+1Φ(t, s)(6)

for any λ ≥ 1, t ≥ 0, s ∈ Ω, i.e. Φ satisfies the uniform ∆∗p and ∆p+q+1 conditions simultan-
iously.

Proof: Suppose that Φ satisfies (2) and (3).
Denote b1(s) = Φ−1(2h(s)), B1(s) = Φ−1(H1(s)), b(s) = max{b1(s), B1(s)}. Obviously

b1, B1, b ∈ LΦ are non–negative functions. Following [6] one can easily prove that there exist
positive constants k2 and K2 such that

k2λ
pΦ(t, s) ≤ Φ(λt, s) ≤ K2λ

qΦ(t, s).(7)

for t ≥ b(s), λ ≥ 1.
Indeed (2) and (3) imply for t ≥ b(s) and for any λ ≥ 1:

Φ(λt, s) ≥ kλp

(
Φ(t, s)− 1

2
Φ(b1(s), s)

)
≥ k

2
λpΦ(t, s),

Φ(λt, s) ≤ Kλq(Φ(t, s) + Φ(B1(s), s)) ≤ 2KλqΦ(t, s).

(8)

Consider Φ(x, s) =
∫ x
0 ϕ(t, s)tp−1dt, where

ϕ(t, s) =





Φ(b(s), s)

bp+1(s)
t, 0 ≤ t ≤ b(s)

sup
b(s)≤y≤t

Φ(y, s)

yp(s)
, t > b(s).

(9)

We will prove that Φ satisfies (6) and is equivalent to Φ.
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For the constants in (8) do not depend on s ∈ Ω to get (6) it is enough to prove that for
any Orlicz function Ψ the inequality

k2λ
pΨ(t) ≤ Ψ(λt) ≤ K2λ

qΨ(t), for all t ≥ b, λ ≥ 1(10)

implies the existence of positive constants k1 and K2, depending only on k2, K2, p and q such
that for any λ ≥ 1, t ≥ 0 the inequality holds:

k2λ
pΨ(t) ≤ Ψ(λt) ≤ K2λ

qΨ(t),(11)

where Ψ(t) =
∫ t
0 Ψ(u)up−1du with

Ψ(t) =





Ψ(b)

bp+1
t, 0 ≤ t ≤ b

sup
b≤y≤t

Ψ(y)

yp
, t > b.

Obviously

Ψ(t) =
Ψ(b)

bp+1

tp+1

p + 1
, 0 ≤ t ≤ b;(12)

Ψ(t) =
Ψ(b)

p + 1
+

∫ t

b
sup

b≤y≤x

Ψ(y)

yp
xp−1dx, t > b.(13)

By using (10) we easily get for any λ ≥ 1 the following inequalities that we will need in the
sequel:

sup
b≤y≤λt

Ψ(y)

yp
≤ 1

k2

Ψ(λt)

(λt)p
;(14)

sup
λb≤y≤λt

Ψ(y)

yp
= sup

b≤y≤t

Ψ(λy)

(λy)p
≤ K2λ

q−p sup
b≤y≤t

Ψ(y)

yp
.(15)

Consider separately the cases:
I case: 0 ≤ t ≤ λt ≤ b Obviously (12) implies Ψ(λy) = λp+1Ψ(t), i.e. (6) with k1 = K1 = 1.
II case: 0 ≤ t ≤ b < λt. Now (12) and (13) imply:

Ψ(λt) = Ψ(b)
p+1

+
∫ λt

b
Ψ(u)up−1du ≥ Ψ(b)

p + 1
+

Ψ(b)

bp

λptp − bp

p + 1

≥ λp Ψ(b)

p + 1

(
t

b

)p+1

= λpΨ(t).
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On the other hand using (14), (10) and (12) we get

Ψ(λt) ≤ Ψ(b)

p + 1
+

1

k2

Ψ(λt)

(λt)p

∫ λt

b
up−1du ≤ Ψ(b)

p + 1
+

1

k2

Ψ(λt)

p

≤
(

1

p + 1
+

1

k2p

)
Ψ(λb) ≤ K2

(
1

p + 1
+

1

k2p

)
λqΨ(b)

≤ K3λ
p+q+1 Ψ(b)

bp+1

tp+1

p + 1
≤ K3λ

p+q+1Ψ(t),

where K3 = K2

(
1 +

p + 1

pk2

)
.

III case: 0 ≤ b < t ≤ λt. First we put Ψ(λt) =
∫ λb

0
Ψ(u)up−1du +

∫ λt

λb
Ψ(u)up−1du and

estimate the two integrals separately.

∫ λb

0
Ψ(u)up−1du =

Ψ(b)

p + 1
+

∫ λb

b
Ψ(u)up−1du ≥ Ψ(b)

p + 1
+

Ψ(b)

bp

λpbp − bp

p + 1
dt = λp

∫ b

0
Ψ(u)up−1du,

and

∫ λt

λb
Ψ(u)up−1du = λp

∫ t

b
Ψ(λu)up−1du = λp

∫ t

b
sup

b≤y≤λu

Ψ(y)

yp
up−1du ≥ λp

∫ t

b
Ψ(u)up−1du.

The last two inequalities give us:
Ψ(λt) ≥ λpΨ(t).

As above, by using (14) and (15) we obtain

Ψ(λt) = Ψ(λb) + λp
∫ t

b
Ψ(λu)up−1du

≤ K3λ
p+q+1Ψ(b) + λp

∫ t

b

(
sup

b≤y≤λb

Ψ(y)

yp
+ sup

λb≤y≤λu

Ψ(y)

yp

)
up−1du

≤ K3λ
p+q+1Ψ(b) + λp

∫ t

b

(
1

k2

Ψ(λb)

(λb)p
+ sup

λb≤y≤λu

Ψ(y)

yp

)
up−1du

≤ K3λ
p+q+1Ψ(b) + λp

(
1
k2

+ 1
)
K2λ

q−p
∫ t
b Ψ(u)up−1du

≤ K3λ
p+q+1

(
Ψ(b) +

∫ t
b Ψ(u)up−1du

)
= K3λ

p+q+1Ψ(t).

The inequality (10) is proved with k1 = 1, K1 = max
{
1, K2

(
1 + p+1

pk2

)}
. Therefore Φ satisfies

(6) with k1, K1, not depending on s ∈ Ω, λ ≥ 1 and t ≥ 0.
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Finally we show that Φ ∼ Φ.
By using (8) we have for t ≥ b(s):

Φ(t, s) = Φ(b(s), s) +
∫ t
b(s) supb(s)≤y≤u

Φ(y,s)
yp up−1du = Φ(b(s),s)

p+1
+ 1

k2

∫ t
b(s)

Φ(u,s)
u

du

≤ 1
k2

Φ(t,s)
t

(t− b(s)) + Φ(b(s),s)
p+1

≤ 1
k2

(
Φ(t, s) + k2

p+1
Φ(b(s), s)

)
.

(16)

As Φ is increasing the inequality holds true for 0 ≤ t < b(s) also.
On the other hand the ∆q condition (3) implies that

Φ(2t, s) ≤ LΦ(t, s) + G(s), for all t ≥ 0,(17)

where L is positive constant, while G is non-negative integrable over Ω function. Equivalently

Φ(t/2, s) ≥ 1

L
(Φ(t, s)−G(s)).(18)

Now we easily get for t ≥ b:

Φ(t, s) ≥ Φ(b(s),s)
p+1

+
∫ t
b(s)

Φ(u,s)
u

du = Φ(b(s),s)
p+1

+
∫ t
0

Φ(u,s)
u

du− ∫ b(s)
0

Φ(u,s)
u

du

≥ Φ(b(s),s)
p+1

+
∫ t
t/2

Φ(u,s)
u

du− Φ(b(s), s) ≥ Φ(t/2, s)− p
p+1

Φ(b(s), s)

≥ 1

L
(Φ(t, s)−G(s))− p

p + 1
Φ(b(s), s),

i.e.

Φ(t, s) ≤ LΦ(t, s) + G(s) +
Lp

p + 1
Φ(b(s), s).

Obviously Φ(t, s) ≤ Φ(b(s), s) for t ≤ b(s). Therefore

Φ(t, s) ≤ LΦ(t, s) + G1(s), for all t ≤ b(s),

where G1(s) = G(s) +
Lp

p + 1
Φ(b(s), s) is non–negative and integrable over Ω. ¤

Corollary 4.1 Let Φ be a Musielak–Orlicz function with 1 ≤ α(Φ) ≤ β(Φ) < ∞ and let for
some k ∈ [1, α(Φ)]:
i) there exist a non–negative integrable function h and a positive constant c0 such that:

Φ(uv, s) ≤ c0u
k(Φ(v, s) + h(s))

for all u ∈ [0, 1], v ∈ R+ and a.a. s ∈ Ω;

ii) lim
u→0

Φ(u, s)

uk
= 0 for a.a. s ∈ Ω.

Then there exists a Musielak–Oricz function Φ ∼ Φ satisfying i), ii) and the uniform ∆∗p

and ∆p+q+1 conditions (6).
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Proof: Without loss of generality we may assume c0 ≥ 1. Choose p with α(Φ) ∈ (p, p+1)2 and
q < β(Φ). Then Φ satisfies the ∆∗p–condition and ∆q–condition. Consider now the Musielak–
Orlicz function Φ constructed in Theorem 4. Taking into account (16) and

Φ(t, s) =
Φ(b(s), s)

p + 1

(
t

b(s)

)p+1

, 0 ≤ t ≤ b(s)(19)

we can write

Φ(t, s) ≤ 1

k2

(
Φ(t, s) +

k2

p + 1

tk

bk(s)
Φ(b(s), s)

)
.

Now for any u ∈ [0, 1] we get:

Φ(uv, s) ≤ 1

k2

Φ(uv, s) + uk Φ(b(s), s)

p + 1
, 0 ≤ v ≤ b(s);

Φ(uv, s) ≤ 1

k2

Φ(uv, s) +
c0

p + 1
uk(Φ(v, s) + h(s)), b(s) < v.

By using once more the property i) of Φ we obtain:

Φ(uv, s) ≤ Cuk(Φ(v, s) + h1(s)),

where C = c0(
1
k2

+ 1
p+1

) and h1 = h(s) + Φ(b(s), s). To show that Φ satisfies i) it is enough

simply to use the equivalence Φ ∼ Φ in the last inequality. On the other hand Φ obviously
satisfies the condition ii) according to (19). ¤

We mention that a “better” result than Theorem 4 holds true:

Theorem 5 Let Φ satisfies the ∆∗p and ∆q conditions for some 1 ≤ p ≤ q < ∞. Then there
exists Φ ∼ Φ and positive constants k

′
1, K

′
1, such that

k
′
1λ

pΦ(t, s) ≤ Φ(λt, s) ≤ K
′
1λ

qΦ(t, s)(20)

for any λ ≥ 1, t ≥ 0, s ∈ Ω, i.e. Φ satisfies the uniform ∆∗p and ∆q conditions simultaniously.

The proof is similar to that of Theorem 4, by considering Φ(x, s) =
∫ x
0 ϕ(t, s)tp−1dt, where

ϕ(t, s) =





Φ(b(s), s)

bq(s)
, 0 ≤ t ≤ b(s)

inf
b(s)≤y≤t

Φ(y, s)

yq(s)
, t > b(s).

(21)

The function Φ in this case does not inherit the properties i) and ii) in Corollary 4.1 and we
will not use it in the sequel.

2If Φ satisfies the ∆∗α(Φ)–condition we simply choose p = α(Φ)
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5 Proof of Theorem 1

Theorem 1 Let Φ be a Musielak–Orlicz function with 1 ≤ α(Φ) ≤ β(Φ) < ∞ and let for some
k ∈ [1, α(Φ)]:
i) there exist non–negative integrable function h and positive constant c0 such that:

Φ(uv, s) ≤ c0u
k(Φ(v, s) + h(s))

for all u ∈ [0, 1], v ∈ R+ and a.a. s ∈ Ω;

ii) lim
u→0

Φ(u, s)

uk
= 0 for a.a. s ∈ Ω.

Then for any measure space (Ω, Σ, µ) with a positive measure there is an equivalent UGk–smooth
norm in LΦ(Ω, Σ, µ).

Proof: Choose p with α(Φ) ∈ [p, p + 1) and q ∈ (β(Φ), +∞) and consider the function Φ ∼ Φ
constructed in Corollary 4.1, which satisfies simultaneously the uniform ∆∗p and ∆p+q+1. Put

β = p + q + 1 and Φ1(u, s) =
∫ u

0

Φ(t, s)

t
dt, u ≥ 0. Obviously

Φ(u/2, s)

2
≤ Φ1(u, s) ≤ Φ(u, s),(22)

i.e. Φ ∼ Φ1 at 0 and ∞. Denote

ρ(u, s) =





Φ1(u, s)

uk
, u > 0

0, u = 0

and fk
Φ(u, s) = max{ρ(t, s) : t ∈ [0, u]}, u ≥ 0. We will prove first that fk

Φ(u, s) ∈ F (c) for some
positive constant c. Indeed

Φ(u, s) ≤ c2βΦ(u/2, s) ≤ c2β+1Φ1(u, s).(23)

Let 0 ≤ a < b, ds = max{u ∈ [0, b] : ρ(u, s) = fk
Φ(b, s)}. Obviously fk

Φ(b, s) = fk
Φ(a, s) if ds ≤ a.

If a < ds by the convexity of Φ1 and (22), (23) we get for some θ ∈ (0, 1)

fk
Φ(b, s)− fk

Φ(a, s) ≤ Φ1(ds, s)− Φ1(a, s)

dk
s

= (ds − a)
Φ(a + θ(ds − a), s)

dk
s(a + θ(ds − a)

,

≤ (ds − a)
Φ(ds, s)

dk+1
s

≤ c2β+1(b− a)
fk

Φ(b, s)

b

and obviously u → fk
Φ(u, s) is nondecreasing, continuous for u ≥ 0 and fk

Φ(0, s) = 0 and thus
the space LN(Ω, Σ, µ) is UGk–smooth on the unit sphere, where N = Ik(fk

Φ).
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It remains to show that Φ is equivalent to N .

N(u, s) ≤ |u|kfk
Φ(|u|, s) ≤ N(2ku, s)

Φ(u/2, s)

2
≤ Φ1(u, s) ≤ |u|kfk

Φ(|u|, s)

≤ max





( |u|
t

)k

Φ1(t, s) : t ∈ [0, |u|]




≤ max





( |u|
t

)k

Φ(t, s) : t ∈ [0, |u|]




≤ c0(Φ(u, s) + h(s))

and thus
1

2
Φ

(
u

2k+1
, s

)
≤ N(u, s) ≤ c0(Φ(u, s) + h(s)).

¤

6 Nakano spaces

The function Φ(u, s) = up(s), p : Ω → [1,∞) is a special case of Musielak–Orlicz function called
Nakano function with a parameter. The space Lp(s)(Ω, Σ, µ) = LΦ(Ω, Σ, µ) is called Nakano
function space. We will apply Theorem 1 in order to prove the following:

Theorem 6 Let p : Ω → R+ and 1 ≤ p = essinfs∈Ω{p(s)} ≤ p = esssups∈Ω{p(s)} < ∞.
If 1 ≤ k ≤ p then for any σ–finite measure µ on Ω the Nakano function space Lp(s)(Ω, Σ, µ)
admits equivalent UGk–smooth norm.

Proof: As for a σ–finite measure µ on Ω the space Lp(s)(Ω, Σ, µ) is isometric to Lp(s)(Ω, Σ, µ)
for a suitable probability measure ν, we may without loss of generality consider only the case
µ(Ω) < ∞, Ω free of atoms.

Put N(t, s) =
∫ t

0

N1(u, s)

u
du, where

N1(u, s) =





up(s)+1, u ∈ [0, 1]

up(s), u ≥ 1.

It is not hard to check that Lp(s)(Ω, Σ, µ) ∼= LN(Ω, Σ, µ). On the oder hand p = α(N) ≤
β(N) < ∞. To finish the proof it is enough to observe that N satisfies the conditions:

11



i) N(uv) ≤ ukN(v) for u ∈ [0, 1], v ∈ R and a.a. s ∈ Ω;

ii) lim
u→0

N(u)

uk
= 0 for a.a. s ∈ Ω. ¤

If Ω is a countable union of atoms of equal mass then we get the Nakano sequence space
`{pn}. An equivalent definition for `{pn} is Definition 2.7

Lemma 6.1 Every Nakano sequence space `{pn} is embedded isometrically in some Nakano
function space Lp(s)(0, 1) for a sutable function p(s) : Ω → [1,∞) with p = inf

s∈Ω
p(s) = inf

n∈N pn.

Proof: Let {pn}∞n=1, pn ≥ 1, 0 = a0 < a1 < . . . < an < an+1 < . . . < 1, lim
n→∞ an = 1. Let

hn = |an+1 − an|−
1

pn , p(s) = pn for s ∈ [an, an+1] and

xn(s) =

{
hn, t ∈ [an, an+1]
0, t 6∈ [an, an+1].

Then `{pn} is isometric to the subspace of Lp(s)(0, 1) generated by {xn(s)}∞n=1. Indeed, if {cn} ∈
`{pn}, i.e.

∑ |cn|pn < ∞ holds:

∫ 1

0

∣∣∣∣∣∣∣∣∣∣

∞∑

n=1

cnxn(s)

‖x‖`{pn}

∣∣∣∣∣∣∣∣∣∣

p(s)

ds =
∞∑

n=1

∫ an+1

an

∣∣∣∣∣
cnhn

‖x‖`{pn}

∣∣∣∣∣
pn

ds

=
∞∑

n=1

∣∣∣∣∣
cnhn

‖x‖`{pn}

∣∣∣∣∣
pn

|an+1 − an| =
∞∑

n=1

∣∣∣∣∣
cn

‖x‖`{pn}

∣∣∣∣∣
pn

= 1.

¤
Now we are ready to prove
Theorem 2 Let {pn}∞n=1 be such that 1 ≤ p = lim inf

n→∞ pn ≤ lim sup
n→∞

pn < ∞ and the set

A = {n ∈ N : pn < p} is finite. Then there exist an equivalent UGp–smooth norm in `{pn}.
Proof: First let us note that `{qn} ∼= `{pn} for

qn =

{
pn, pn ≥ p
p, pn < p.

By the previous lemma `{qn} ↪→ Lq(s)[0, 1] and 1 ≤ p = essinfs∈[0,1]q(s) ≤ esssups∈[0,1]q(s) < ∞.
The result now follows directly from Theorem 6 ¤

Remark 6.1 Theorem 2 holds true and if the set A = {n ∈ N : pn < p} is not finite but
∑

n∈A C
1

p−pn < ∞ for some constant 0 < C < 1. It follows from [2]. Moreover `{qn} ∼= `{pn},
where

qn =

{
pn if n 6∈ A
p if n ∈ A.

Now from Theorem 2 we get that `{pn} admits equivalent UGp norm.
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Remark 6.2 If pn ≥ p, p odd integer and limn→∞ pn = p by [11] the space `{pn} is UF p−1–
smooth and there is no p–times Fréchet differentiable bump in `{pn}. On the other hand Theorem
2 implies the existence of equivalent UGp–smooth norm. The same remains true for p even if
`{pn} is not isomorphic to `p, which is F∞–smooth.
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