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Abstract: We show that if the dual of a Musielak–Orlicz sequence space `Φ is stabilized
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1 Introduction

The notion of asymptotic `p spaces first appeared in [14], where the collection of spaces
that are now known as stabilized asymptotic `p spaces were introduced. Later in [13]
more general collection of spaces, known as asymptotic `p spaces, were introduced.
Characterization of the stabilized asymptotic `∞ Musielak–Orlicz sequence space was
given in [4].

A Banach space X is said to have the Schur property if every weakly null sequence
is norm null. It is well known that `1 has the Schur property and it’s dual `∞ is obviously
stabilized asymptotic `∞ space with respect to the unit vector basis. A characterization
of the Musielak–Orlicz sequence spaces `Φ possessing the Schur property, as well as
sufficient conditions for `Φ and weighted Orlicz sequence spaces `M(w) to have the
Schur property were found in [8]. Using an idea from [1] we find that if the dual of a
Musielak–Orlicz sequence space is stabilized asymptotic `∞ space then it is saturated
with complemented copies of `1 and has the Schur property. While simple necessary
conditions for embedding of `p spaces into Musielak–Orlicz spaces `Φ were found in
[16], the problem of finding analogous sufficient conditions, as it is done in [11] for
Orlicz `M , appeared more difficult. We find a sufficient condition for the existence of
an `p copy in `Φ in Paragraph 4.

2 Preliminaries

We use the standard Banach space terminology from [11]. Let us recall that an Orlicz
function M is even, continuous, non-decreasing convex function such that M(0) = 0
and limt→∞ M(t) = ∞. We say that M is non–degenerate Orlicz function if M(t) > 0
for every t > 0. A sequence Φ = {Φi}∞i=1 of Orlicz functions is called a Musielak–Orlicz
function or MO function in short.

The MO sequence space `Φ, generated by a MO function Φ is the set of all real
sequences {xi}∞i=1 such that

∑∞
i=1 Φi(λxi) < ∞ for some λ > 0. The Luxemburg’s norm

is defined by

‖x‖Φ = inf

{
r > 0 :

∞∑

i=1

Φi(xi/r) ≤ 1

}
.

1Research is partially supported by National Fund for Scientific Research of the Bulgarian Ministry
of Education and Science, Contract MM-1401/04.
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We denote by hΦ the closed linear subspace of `Φ, generated by all x ∈ `Φ, such
that

∑∞
i=1 Φi(λxi) < ∞ for every λ > 0.

If the MO function Φ consists of one and the same function M one obtains the
Orlicz sequence spaces `M and hM .

Let 1 ≤ pi, i ∈ N be a sequence of reals. The MO sequence space `Φ, where
Φ = {tpi}∞i=1 is called Nakano sequence space and is denoted by `{pi}. In [3] it was
proved that two Nakano sequence spaces `{pi}, `{qi} are isomorphic iff there exists
0 < C < 1 such that ∞∑

i=1

C1/|pi−qi| < ∞ .

An extensive study of Orlicz and MO spaces can be found in [11], [15], [6] and [9].

Definition 2.1 We say that the MO function Φ satisfies the δ2 condition at zero if
there exist constants K, β > 0 and a non–negative sequence {cn}∞n=1 ∈ `1 such that for
every n ∈ N

Φn(2t) ≤ KΦn(t) + cn

provided t ∈ [0, Φ−1
n (β)].

The spaces `Φ and hΦ coincide iff Φ has δ2 condition at zero.
Recall that given MO functions Φ and Ψ the spaces `Φ and `Ψ coincide with

equivalence of norms iff Φ is equivalent to Ψ, that is there exist constants K, β > 0
and a non–negative sequence {cn}∞n=1 ∈ `1, such that for every n ∈ N the inequalities

Φn(Kt) ≤ Ψn(t) + cn and Ψn(Kt) ≤ Φn(t) + cn

hold for every t ∈ [0, min(Φ−1
n (β), Ψ−1

n (β))] .
Throughout this paper M will always denote Orlicz function while Φ - an MO

function. As the properties we are dealing with are preserved by isomorphisms without
loss of generality we may assume that Φ consists entirely of non–degenerate Orlicz
functions, such that for every i ∈ N the Orlicz function Φi is differentiable, Φ

′
i(0) = 0

and Φi(1) = 1. Indeed, we can always choose a sequence {αi}, such that αi ≤ 1/2 , i ∈
N ,

∑∞
i=1 Φi(αi) < ∞ and consider the sequence of functions ϕi(t) =

∫ t
0

ψi(s)
s

ds, where

ψi(t) =

{
Φi(αi)

α2
i

t2, 0 ≤ t ≤ αi

Φi(t), t ≥ αi .

Obviously the MO function ϕ = {ϕi}∞i=1 consists of differentiable functions and ϕ
′
i(0) =

0 for every i ∈ N.
For every t ∈ [0, αi] we have ϕi(αi) = Φi(αi)

2
and

ϕi(t) =
∫ t

0

ψi(s)

s
ds =

∫ t

0

Φi(αi)

α2
i

sds =
Φi(αi)

2α2
i

t2 .

For every t ≥ αi we have

ϕi(t) =
∫ αi

0

Φi(αi)

α2
i

sds +
∫ t

αi

Φi(s)

s
ds =

Φi(αi)

2
+

∫ t

αi

Φi(s)

s
ds .
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By the convexity of Φi follows that

ϕi(t) ≤ Φi(αi)

2
+ Φi(t)(1)

for every t ≥ 0.
In order to get the opposite inequality we consider separately three cases:

I) Let αi ≤ t
2

then

ϕi(t) =
∫ αi

0

ψi(s)

s
ds +

∫ t/2

αi

ψi(s)

s
ds +

∫ t

t/2

ψi(s)

s
ds

≥ Φi(αi)

2
+

∫ t

t/2

Φi(s)

s
ds ≥ Φi(αi)

2
+ Φi(t/2) .

II) Let t
2
≤ αi ≤ t then

ϕi(t) =
Φi(αi)

2
+

∫ t

t/2

Φi(s)

s
ds−

∫ αi

t/2

Φi(s)

s
ds

≥ Φi(αi)

2
+ Φi(t/2)− Φi(αi) = Φi(t/2)− Φi(αi)

2
.

III) Let t ≤ αi then
Φi(t)

2
≤ ϕi(t) +

Φi(αi)

2
.

Thus
Φi(t/2)

2
≤ ϕi(t) +

Φi(αi)

2
(2)

for every t ≥ 0. By (1) and (2) it follows that ϕ ∼ Φ and thus `ϕ
∼= `Φ. To complete

it is enough to normalize the functions ϕi by considering ϕ̃ = {ϕi/ϕi(1)}∞i=0.

Definition 2.2 For an Orlicz function M , such that limt→0 M(t)/t = 0 the function

N(x) = sup{t|x| −M(t) : t ≥ 0},

is called function complementary to M .

Definition 2.3 The MO function Ψ = {Ψj}∞j=1, defined by

Ψj(x) = sup{t|x| − Φj(t) : t ≥ 0} , j = 1, 2, ..., n, ...

is called complementary to Φ.

Let us note that the condition limt→0 M(t)/t = 0 secures that the complementary
function N is always non-degenerate. Observe that if N is function complementary to
M , then M is complementary to N and if the MO function Ψ is complementary to the
MO function Φ, then Φ is function complementary to Ψ. Throughout this paper the
function complementary to the MO function Φ is denoted by Ψ.
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It is well known that h∗M ∼= `N and h∗Φ ∼= `Ψ. Well known equivalent norm in

`Φ is the Orlicz norm ‖x‖O
Φ = sup

{∑∞
j=1 xjyj :

∑∞
j=1 Ψj(yj) ≤ 1

}
, which satisfies the

inequalities (see e.g.[7])
‖ · ‖Φ ≤ ‖ · ‖O

Φ ≤ 2‖ · ‖Φ .

We will use the Hölder’s inequality:
∑∞

j=1 |xjyj| ≤ ‖x‖O
Φ‖y‖Ψ, which holds for

every x = {xj}∞j=1 ∈ `Φ and y = {yj}∞j=1 ∈ `Ψ, where Φ and Ψ are complementary MO
functions.

By {ej}∞j=1 and {e∗j}∞j=1 we denote the unit vector basis in hΦ and hΨ respectively.
For a Banach space X with a basis {vi}∞i=1 and element x ∈ X, x =

∑∞
i=1 xivi we

define suppx = {i ∈ N : xi 6= 0}. We write n ≤ x if n ≤ min{suppx} and x < y if
max{suppx} < min{suppy}. We say that x is a block vector with respect to the basis
{vi}∞i=1 if x =

∑q
i=p xivi for some finite p and q and we say that x is a normalized block

vector if it is a block vector and ‖x‖ = 1.

Definition 2.4 A Banach space X is said to be stabilized asymptotic `∞ with respect
to a basis {vi}∞i=1, if there exists a constant C ≥ 1, such that for every n ∈ N there
exists N ∈ N, so that whenever N ≤ x1 < . . . < xn are successive normalized block
vectors, then {xi}n

i=1 are C–equivalent to the unit vector basis of `n
∞, i.e.

1

C
max
1≤i≤n

|ai| ≤
∥∥∥∥∥

n∑

i=1

aixi

∥∥∥∥∥ ≤ C max
1≤i≤n

|ai|.

The following characterization of the stabilized asymptotic `∞ MO sequence spaces
is due to Dew:

Proposition 2.1 (Proposition 4.5.1 [4]) Let Φ = {Φj}∞j=1 be a MO function. Then
the following are equivalent:
(i) hΦ is stabilized asymptotic `∞ (with respect to its natural basis {ej}∞j=1);
(ii) there exists λ > 1 such that for all n ∈ N, there exists N ∈ N such that whenever
N ≤ p ≤ q and

∑q
j=p Φj(aj) ≤ 1, then

q∑

j=p

Φj(aj/λ) ≤ 1

n
.

Let X be a Banach space. By Y ↪→ X we denote that Y is isomorphic to a
subspace of X .

3 MO spaces with stabilized asymptotic `∞ dual with respect to the unit
vector basis

We start with the following

Lemma 3.1 Let Φ has δ2 condition at zero and hΨ, generated by the MO function Ψ,
complementary to Φ, is stabilized asymptotic `∞ with respect to the unit vector basis
{e∗j}∞j=1. Then every normalized block basis {x(n)}∞n=1 of the unit vector basis in `Φ

contains a subsequence {x(ni)}∞i=1 such that:
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a) {x(ni)}∞i=1 is equivalent to the unit vector basis of `1;
b) The closed subspace [x(ni)]∞i=1 generated by {x(ni)}∞i=1 is complemented in `Φ by means
of a projection of norm less then or equal to 4λ, where λ is the constant from Proposition
2.1.

Proof: a) Let {x(n)}∞n=1 be a normalized block basis of `Φ, where x(n) =
∑mn+1

j=mn+1 x
(n)
j ej,

{mn} strictly increasing sequence of naturals. For every n ∈ N there exists y(n) =∑∞
j=1 y

(n)
j e∗j ∈ hΨ such that

∞∑

j=1

Ψj(y
(n)
j ) ≤ 1 and

∞∑

j=1

y
(n)
j x

(n)
j ≥ 1/2.

WLOG we may assume that supp y(n) ≡ supp x(n). We claim that

lim
n→∞

∞∑

j=1

Ψj


y

(n)
j

λ


 = lim

n→∞

mn+1∑

j=mn+1

Ψj


y

(n)
j

λ


 = 0,

where λ > 1 is the constant from Proposition 2.1.
Indeed, by assumption hΨ is stabilized asymptotic `∞ space and according to

Proposition 2.1 there exists λ > 1 such that for every m ∈ N there is N ∈ N

so, that whenever mn ≥ N the inequality holds
mn+1∑

j=mn+1

Ψj

(
y
(n)
j

λ

)
≤ 1/m. Thus

lim
n→∞

mn+1∑

j=mn+1

Ψj


y

(n)
j

λ


 = 0.

Now passing to a subsequence we get a sequence {y(nk)}k∈N , y(nk) =
∑qnk

j=pnk
y

(nk)
j e∗j

such that
∞∑

k=1

qnk∑

j=pnk

Ψj


y

(nk)
j

λ


 ≤ 1.

Denote y =
∑∞

k=1 y(nk) =
∑∞

k=1

(∑qk
j=pk

y
(nk)
j e∗j

)
. Obviously y ∈ `Ψ and ‖y‖Ψ ≤ λ. Thus

‖y‖O
Ψ ≤ 2‖y‖Ψ ≤ 2λ.
Let now a = {ak}∞k=1 ∈ `1. Then

∥∥∥∥∥
∞∑

k=1

akx
(nk)

∥∥∥∥∥
Φ

≥ 1

‖y‖O
Ψ

∞∑

k=1

qnk∑

j=pnk

∣∣∣aky
(nk)
j x

(nk)
j

∣∣∣ ≥ 1

2λ

∞∑

k=1

qnk∑

j=pnk

∣∣∣aky
(nk)
j x

(nk)
j

∣∣∣

≥ 1

2λ

∞∑

k=1

|ak|
qnk∑

j=pnk

y
(nk)
j x

(nk)
j ≥ 1

4λ

∞∑

k=1

|ak| = 1

4λ
‖a‖1.

Obviously ‖∑∞
k=1 akx

(nk)‖Φ ≤ ‖a‖1 and thus {x(nk)}∞k=1 is equivalent to the unit
vector basis of `1.

b) Define now for each k ∈ N the functional Fk : `Φ → R by

Fk(x) =
1

qnk∑

j=pnk

y
(nk)
j x

(nk)
j

qnk∑

j=pnk

y
(nk)
j xj
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and the map P : `Φ → `Φ by P (x) =
∞∑

k=1

Fk(x)x(nk). Then for every k ∈ N holds

‖Fk‖ ≤ 2‖y(nk)‖Ψ ≤ 2


1 +

qnk∑

j=pnk

Ψj

(
y

(nk)
j

)

 ≤ 4. Furthermore P is a projection of `Φ

onto [xnk
]∞k=1 with

‖P‖ = sup
‖x‖Φ≤1

∥∥∥∥∥∥∥∥∥∥∥∥

∞∑

k=1

qnk∑

j=pnk

y
(nk)
j xj

qnk∑

j=pnk

y
(nk)
j x

(nk)
j

x(nk)

∥∥∥∥∥∥∥∥∥∥∥∥

≤ 2 sup
‖x‖Φ≤1

∞∑

k=1

qnk∑

j=pnk

∣∣∣y(nk)
j xj

∣∣∣

≤ 2 sup
‖x‖Φ≤1

∞∑

j=1

|yjxj| ≤ 2 sup
‖x‖Φ≤1

‖yj‖O
Ψ ‖x‖Φ ≤ 4λ .

¤
The following two theorems are simple corollaries of Lemma 3.1.

Theorem 1 Let Φ has δ2 condition at zero and hΨ, generated by the MO function Ψ,
complementary to Φ, is stabilized asymptotic `∞ with respect to the unit vector basis
{e∗j}∞j=1. Then `Φ has the Schur property.

Proof: The proof is an easy consequence of Kaminska, Mastylo characterization of
MO spaces possessing Schur property ([8], Theorem 4.4). Consider a Φ–convex block

of Φ, i.e. a sequence of convex functions
{
Mi(t) =

∑ni+1

j=ni+1 Φj(tαj)
}∞

i=1
, where ni is

a strongly increasing sequence in N and {αj}∞j=1 is a sequence of positive numbers
such that

∑ni+1

j=ni+1 Φj(αj) = 1 for each i ∈ N. It is easy to observe that the sequence{
ui =

∑ni+1

j=ni+1 αjej

}∞
i=1

is normalized block-basis of the unit vector basis of `Φ. Lemma

3.1 now implies that the closed linear span [uik ]
∞
k=1 for appropriate subsequence {uik}∞k=1

is isomorphic to `1. On the other hand [uik ]
∞
k=1 is obviously isometrically isomorphic to

the MO space `{Mik
}, generated by the subsequence {Mik} of the given Φ–convex block.

Thus every Φ–convex block contains a subsequence equivalent to a linear function and
therefore `Φ has the Schur property. ¤

Theorem 2 Let Φ has δ2 condition at zero and hΨ, generated by the MO function Ψ,
complementary to Φ, is stabilized asymptotic `∞ with respect to the unit vector basis
{e∗j}∞j=1. Then every subspace Y of `Φ contains an isomorphic copy of `1 which is
complemented in `Φ.

Proof: According to a well known result of Bessaga and Pelczinski [2] every infinite
dimensional closed subspace Y of `Φ has a subspace Z isomorphic to a subspace of `Φ,
generated by a normalized block basis of the unit vector basis of `Φ. Now to finish the
proof it is enough to observe that by Lemma 3.1 the space Z contains a complemented
subspace of `Φ, which is isomorphic to `1. ¤
Remark: It is well known ([18]) that every subspace of MO sequence space `Φ with
Φ satisfying the δ2 condition, contains `p for some p ∈ [1,∞]. If `Φ has in addition
the Schur property, as no `p , p 6= 1 has the Schur property, it follows that `Φ is `1

saturated.
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4 `p copies in MO sequence spaces

Let Φ be a MO function consisting of differentiable Orlicz functions. Denote:

a(Φn) = sup

{
p > 0 : p ≤ xΦ

′
n(x)

Φn(x)
, x ∈ (0, 1]

}
;

b(Φn) = inf

{
q > 0 : q ≥ xΦ

′
n(x)

Φn(x)
, x ∈ (0, 1]

}
.

The following indexes, introduced by Yamamuro ([17])

a(Φ) = lim inf
n→∞ a(Φn) , b(Φ) = lim sup

n→∞
b(Φn)

appear to be useful in the study of MO sequence spaces (see for example [11], [16],
[8] and [12]). Obviously 1 ≤ a(Φ) ≤ b(Φ) ≤ ∞. By the results of Woo ([18]) and
Katirtzoglou ([9]) it follows that an MO function Φ satisfies the δ2 condition at zero iff
b(Φ) < ∞. Analogously to the case of the classical Orlicz sequence spaces if `p, , p ≥ 1
or c0 for p = ∞ is isomorphic to a subspace of hΦ, then p ∈ [a(Φ), b(Φ)] (see [16], [18]).
However, the converse fails to be true in general (see [16]) for MO sequence spaces,
which confirms their more complex structure. Sufficient conditions for the isomorphical
embedding of `p, , p ≥ 1 in hΦ are given by the following:

Theorem 3 Let Φ = {Φj}∞j=1 be a MO function and p ∈ [a(Φ), b(Φ)]. If there exist
sequences {τj}∞j=1, {yj}∞j=1, {εj}∞j=1 and constants 0 < k < 1 < K such that:
1) εj ≥ 0 , 0 < yj ≤ 1 0 < τj < 1 for every j ∈ N;
2) limj−→∞τj = 0 ;
3)

∑∞
j=1 Φj(yj) = ∞ ;

4) ktεj ≤ Φj(tyj)

tpΦj(yj)
≤ K(1/t)εj for every t ∈ [τj, 1] ;

5)
∑∞

j=1 C1/εj < ∞ for some 0 < C < 1 ,
then `p ↪→ hΦ.

Proof: The condition 5) obviously implies limj−→∞εj = 0.
We may assume that τj < 1/2 for every j. Indeed, by 2) we easily get τj <

1/2 , j < j0 for some j0 and can consider the MO sequence space h{Φj}∞j=j0

∼= hΦ.

Consider first the case: ]{j ∈ N : Φ(yj) ≥ 1/2} < ∞. For the same reason as
above we may assume that Φ(yj) ≤ 1/2 for every j ∈ N.

Find sequence of naturals {kn}∞n=1 , k1 = 0, such that for every n ∈ N:

1

2
≤

kn+1−1∑

j=kn+1

Φj(yj) < 1 , Φkn+1(ykn+1) ≥ 1−
kn+1−1∑

j=kn+1

Φj(yj) .

Put

ϕn(t) =
kn+1−1∑

j=kn+1

Φj(yjt) + Φkn+1(ykn+1
t) ,
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where
kn+1−1∑

j=kn+1

Φj(yj) + Φkn+1(ykn+1
) = 1 .(3)

Obviously
kn+1∑

j=kn+1

Φ(yj) <
3

2
(4)

and 0 < ykn+1
≤ ykn+1 . Let us note that un =

∑kn+1−1
j=kn+1 yjej + ykn+1

ekn+1 , n = 1, 2, ...
represents a normalized block basis of the unit vector basis of hΦ. Obviously the
MO sequence space hΦ, generated by the sequence {ϕn} is isometrically isomorphic to
[un]∞n=1, which in turn is isomorphic to a subspace of hΦ. Further we find a sequence of
{nm}∞m=1, such that τj ≤ 1

m2 for j > knm . Following [11] and [10] we easily check that
the functions ϕnm , m = 1, 2, ... are equi–continuous in [0, 1/2]. Indeed, from

Φj(t) =
∫ t

0
Φ′

j(t)dt ≥
∫ t

t/2
Φ′

j(t)dt ≥ 1

2
tΦj(t/2)

it follows immediately

∣∣∣∣∣
Φj(µt1)

Φj(µ)
− Φj(µt2)

Φj(µ)

∣∣∣∣∣ ≤ |t1 − t2|
µΦ′

j(µ/2)

Φj(µ)
≤ 2|t1 − t2|

for every 0 ≤ t1, t2 ≤ 1/2 and any µ > 0. Now it is enough to apply the last inequality
to the functions ϕnm , taking into account (3). The functions ϕnm , m = 1, 2, ... are
also uniformly bounded in [0, 1/2]. Using the Arzela-Ascoli theorem by passing to a
subsequence if necessary, which in order to simplify the notations we denote {ϕnm}∞m=1

too, we have that {ϕnm}∞m=1 converges uniformly to a function ϕ on [0, 1/2], satisfying
the inequalities ‖ϕnm − ϕ‖∞ ≤ 1

2m for every m ∈ N. Obviously ϕ is an Orlicz function
on [0,1/2] as uniform limit of Orlicz functions and the MO sequence space h{ϕnm} is
isomorphic to the Orlicz space hϕ, when ϕ is non-degenerated. If we take into account
that h{ϕnm} is isometrically isomorphic to [unm ]∞m=1 to finish the proof it is enough to
show that hϕ and `p consist of the same sequences. Before starting the last part of the
proof we mention that according to the result from [3], mentioned in the preliminaries,
the condition 5) implies that the Nakano spaces `{p+νjεj}∞j=1

are isomorphic to `p for

every choice of the sequence of signs {νj = ±1}∞j=1.
Define the sets:

Am =
{
j ∈ N : knm + 1 ≤ j ≤ knm+1 , τj ≥ αm

}

and
Bm =

{
j ∈ N : knm + 1 ≤ j ≤ knm+1 , τj < αm

}
.

It is obvious that Am ∩ Bm = ∅ and Am ∪ Bm = {knm + 1, . . . , knm+1}. Let δm =
max{εj : knm + 1 ≤ j ≤ knm+1}. Then {δm}∞m=1 is a subsequence of {εj}∞j=1 and thus

by 5) we obtain
∑∞

m=1 C1/δm < ∞. So the Nakano spaces `{p+νmδm} consist of the same
sequences as `p for every choice of the signs {νm = ±1}.

8



Let now {αj}∞j=1 ∈ `p i.e.
∑∞

j=1 αp
j < ∞. We may assume that αj ≤ 1/2 for every

j ∈ N. Now we can write the chain of inequalities:

∞∑

m=1

ϕnm(αm) =
∞∑

m=1




knm+1−1∑

j=knm+1

Φj(αmyj) + Φknm+1
(αmyknm+1

)




≤
∞∑

m=1

knm+1∑

j=knm+1

Φj(αmyj) ≤
∞∑

m=1

∑

j∈Am

Φj(αmyj) +
∞∑

m=1

∑

j∈Bm

Φj(αmyj)

≤
∞∑

m=1

∑

j∈Am

Φj (τmyj) +
∞∑

m=1

∑

j∈Bm

Kαp−δm
m Φj(yj)

≤
∞∑

m=1

knm+1−1∑

j=knm+1

τjΦj(yj) + K
∞∑

m=1

αp−δm
m

knm+1−1∑

j=knm+1

Φj(yj)

≤ 3K

2

{ ∞∑

m=1

1

m2
+

∞∑

m=1

αp−δm
m

}
< ∞ ,

where we used that 0 < ykn+1
≤ ykn+1 for the second and (4) for the last inequality.

Let now α = {αm}∞m=1 ∈ `{ϕnm} , i.e.

∞∑

m=1

ϕnm(αm) =
∞∑

m=1




knm+1−1∑

j=knm+1

Φj(αmyj) + Φknm+1
(αmyknm+1

)


 < ∞ .

It is not difficult to check that for every m ∈ N the estimate holds:

|αm|p+δmΦknm+1
(yknm+1

) ≤ 1

m2
Φknm+1

(yknm+1
) + Φknm+1

(αmyknm+1
) .(5)

Denote A′
m = Am \ {nm+1} and B′

m = Bm \ {nm+1} Now taking into account (3), (4)
and (5) we can write the chain of inequalities:

∞∑

m=1

|αm|p+δm =
∞∑

m=1

|αm|p+δm




knm+1−1∑

j=knm+1

Φj(yj) + Φnm+1(yknm+1
)




≤
∞∑

m=1


|αm|p+δm


 ∑

j∈A′m

Φj(yj) +
∑

j∈B′m

Φj(yj)




+
1

m2
Φknm+1

(yknm+1
) + Φnm+1(αmyknm+1

)
)

≤
∞∑

m=1


 ∑

j∈A′m

(τj)
p+δm Φj(yj) +

∑

j∈B′m

|αm|p+δmΦj(yj)

+
1

m2
Φknm+1

(yknm+1
) + Φknm+1

(αmyknm+1
)
)

≤
∞∑

m=1

1

m2


 ∑

j∈A′m

Φj(yj) + Φknm+1
(yknm+1

)




+
1

k

∞∑

m=1


 ∑

j∈B′m

Φj(αmyj) + Φknm+1
(αmyknm+1

)




≤ 1

k

( ∞∑

m=1

1

m2
+

∞∑

m=1

ϕnm(αm)

)
< ∞ ,
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which concludes the proof.
Let now 1/2 ≤ Φ(yjk

) ≤ 1 for some increasing sequence of naturals {jk}∞k=1.
Passing to a subsequence if necessary we may assume that

∑∞
k=1 τjk

< ∞. Then

Φjk
(t) ≥ Φjk

(tyjk
) ≥ ktp+εjk Φjk

(yjk
) ≥ k

2
tp+εjk

for every t ∈ [τjk
, 1]. Consequently

up+εjk ≤ 2

k
Φjk

(u) + τjk
.(6)

holds for every u ∈ [0, 1]. Similarly

Φjk
(t/2) ≤ Φjk

(tyjk
) ≤ 2p−εjk K

(
t

2

)p−εjk

Φjk
(yjk

)

for every t ∈ [τjk
, 1]. Thus

Φjk
(u) ≤ K1u

p−εjk

holds for every u ∈ [τjk
/2, 1/2], where K1 = 2pK. So

Φjk
(u) ≤ K1u

p−εjk + τjk
(7)

holds for every u ∈ [0, 1/2]. Consequently by (6) and (7) follows that `p
∼= `{Φjk

} ↪→ `Φ.
¤

Remark: If the conditions in Theorem 3 hold for a subsequence {Φnk
}∞k=1 then

`p ↪→ `{Φnk
} ↪→ `Φ.

Corollary 4.1 Let Φ = {Φj}∞j=1 be a MO function and Φj(tyj)

Φj(yj)
converges uniformly to

tp on [0, 1] for some sequence {yj}∞j=1 such that, 0 < yj ≤ 1,
∑∞

j=1 Φj(yj) = ∞ and
p ∈ [a(Φ), b(Φ)]. Then `p ↪→ hΦ.

Proof: Pick a decreasing sequence {δk}∞k=1, such that limk→∞ δk = 0. There exists
j(k) such that for every j ≥ j(k) the inequalities hold:

tp − δk <
Φj(tyj)

Φj(yj)
< tp + δk(8)

for every t ∈ [0, 1]. Thus (8) implies

(1/2)t0 ≤ 1− δk/t
p <

Φj(tyj)

tpΦj(yj)
< 1 + δk/t

p ≤ 2(1/t)0

for every t ∈ [(2δk)
1/p, 1] and for every j ≥ j(k). We define inductively sequences

{r(k)} and {s(k)} in the following way. We put r(1) = j(1) and choose s(1) with∑r(1)+s(1)
j=r(1) Φj(yj) > 1/2. If r(k) , s(k) are already chosen we put r(k + 1) = max(r(k) +

s(k), j(k + 1)) and choose s(k + 1) such that
∑r(k+1)+s(k+1)

j=r(k+1) Φj(yj) > 1/2. Now we can

10



apply Theorem 3 for the subsequence {Φjm}∞m=1 and the sequences {εm = 0}, {τm =
(2δm)1/p}, m ∈ N, where for every m the index jm is of the form jm =

∑k−1
i=1 s(i) + p

for some k ∈ N and p with 1 ≤ p ≤ s(k), while εm = 0 , δm = δk. ¤
Remark: In particular if the sequence of Orlicz functions Φ = {Φj}∞j=1 converges

uniformly on [0, 1] to tp for some p ∈ [a(Φ), b(Φ)] then `p ↪→ hΦ.
An easy to apply form of Theorem 3 is given by the following

Corollary 4.2 Let Φ = {Φj}∞j=1 be a MO function and p ∈ [a(Φ), b(Φ)]. If there exist
sequences {xj}∞j=1, {yj}∞j=1, {εj}∞j=1 such that:
1) εj ≥ 0 , 0 < xj ≤ yj ≤ 1 for every j ∈ N;

2) limj−→∞
xj

yj

= 0 ;

3)
∑∞

j=1 Φj(yj) = ∞ ;

4) p− εj ≤
uΦ

′
j(u)

Φj(u)
≤ p + εj for every u ∈ [xj, yj] ;

5)
∑∞

j=1 C1/εj < ∞ for some 0 < C < 1 ,
then `p ↪→ hΦ.

For the prove it is enough to rewrite the inequalities from 4) in the form:

p− εj ≤
tyjΦ

′
j(tyj)

Φj(tyj)
≤ p + εj for every t ∈ [xj/yj, 1] .(9)

After integration in (9) we easily get for every n ∈ N :

tp+εjΦj(yj) ≤ Φj(tyj) ≤ tp−εjΦj(yj)(10)

for every t ∈ [xj/yj, 1] . Now we can apply Theorem 3 with τj = xj/yj. ¤
We will illustrate some applications of Theorem 3 and the necessity of some of the

conditions in it by the following four examples. By examples 1) and 2) we show that
conditions 2) and 3) in Theorem 3 could not be omitted.

The next example represents a convexfied analog to an example from [16]
Example 1: Let

fn(x) =





x if x ≥ 1/n2

n2x2 if x ∈ [0, 1/n2].

Obviously

fn(x)

x
=





1 if x ≥ 1/n2

n2x if x ∈ [0, 1/n2]

is an increasing function and therefore

Φn(x) =
∫ x

0

fn(t)

t
dt =





x− 1

2n2
if x ≥ 1/n2

n2

2
x2 if x ∈ [0, 1/n2].

11



is an Orlicz function.
It is easy to check that

Φn

(
t

n2

)

t2Φn

(
1
n2

) = 1

for every n ∈ N and every t ∈ [0, 1]. Therefore for the sequences {yn = 1/n2}∞n=1,
{εn = 0}∞n=1 and any arbitrary sequence {τn}∞n=1 such that τn ↘ 0 all the conditions of
Theorem 3 hold except for the condition 3) (

∑∞
n=1 yn =

∑∞
n=1 1/n2 < ∞). Nonetheless

`2 6↪→ `Φn because the inequalities

Φn(x) ≤ x and x ≤ Φn(x) +
1

2n2
, for every x ∈ [0, +∞).

imply `1
∼= `Φ.

Let for the next two examples kn = 2n
(
1−

√
1− 1

n

)
, bn = 1−kn, αn = 1−

√
1− 1

n
,

n ∈ N. It is easy to see that 1/2n ≤ αn ≤ 1/n.
Example 2: Consider the functions

Φn(x) =





knx + bn if x ≥ αn

nx2 if x ∈
[

αn

2
, αn

]

nαn

2
x if x ∈

[
0, αn

2

]

Obviously by the choice of the sequences kn, bn and αn follows that Φn are Orlicz
functions.

It is easily to check that
Φn(tαn)

t2Φn(αn)
= 1

for every n ∈ N and for every t ∈ [1/2, 1]. Obviously
∑∞

n=1 Φn(αn) =
∑∞

n=1 n.α2
n = ∞.

Therefore for the sequences {yn = αn}∞n=1, {εn = 0}∞n=1 and {τn = 1/2}∞n=1 all the
conditions of Theorem3 hold except for the condition 2) (limn→∞ τn = 0). Nonetheless
`2 6↪→ `Φn because `1

∼= `Φ.
Indeed consider now the Nakano sequence space `{pn}, where pn = 1 + 1

ln n2 . Ac-
cording to [3] `1

∼= `{pn}. It is easy to check that xpn ≤ Φn(x) ≤ x, for every x ∈ [0, 1],

because the solutions of the equation: nx2 = xpn are x1 = 0 and x2 =
(

1

n

) 1

2− pn and

x2 <
1

4n
<

αn

2
. Thus `1

∼= `Φ which in turn implies `2 6↪→ `Φn .

Similar calculations can be done in Examples 1) and 2) to show that conditions
2) and 3) in Corollary 4.2 do not hold.

The next example shows that the indexes

αΦ = lim inf
n→∞ αΦn , βΦ = lim sup

n→∞
βΦn ,

12



where αΦn and βΦn are the Boyd indexes of Φn (see e.g. [11] p.143) are irrelevant when
embedding of `p – spaces into `Φ are investigated. This fact is not surprising taking
into account that among the MO functions Ψ equivalent to a given MO function Φ
there exist such with αΨ = βΨ = 1 ([18]).

Example 3: Let {tn}∞n=1 be a sequence such that limn→∞ tn = 0 and tn < 1/2 for
every n ∈ N. Let define the functions

Φn(x) =





knx + bn if x ≥ αn

nx2 if x ∈
[

tn
n
, αn

]

tnx if x ∈
[
0, tn

n

]

Obviously by the choice of the sequences kn, bn and αn follows that Φn are Orlicz
functions which are differentiable for every x ∈ [0, 1] except for x = tn/n and x = αn.

It easy to see that `1
∼= `{Φ2n} ↪→ `Φ because Φ2n(x) ≤ x ≤ Φ2n(x) + α2n and∑∞

n=1 α2n < ∞.

The conditions uΦ
′
n(u)

Φn(u)
= 2 for every u ∈ [ tn

n
, αn],

∞∑

n=1

Φn(αn) = ∞ and lim
n→∞

tn
nαn

= 0

ensure that by Corollary 4.2 `2 ↪→ `Φ.
To calculate the Boyd indexes we have to observe that the functions Φn are linear

for t ∈ [0, tn/n] and thus 1 = αΦ = βΦ.

We have that uΦ
′
n(u)

Φn(u)
= 1 for every u ∈ [0, tn/n]. So we obtain that 1 = a(Φ) <

b(Φ) = 2. Thus there exists a MO sequence space `Φ such that `2 ↪→ `Φ and 2 6∈ [αΦ, βΦ].
Following [5] we will construct an example of a weighted Orlicz sequence space

which contains an isomorphic copy of `1.
Example 4: Let the sequences {dn}∞n=1 and {an}∞n=1 be such that dn ≤ dn+1,

an ≤ an+1, limn→∞
dn

dn+1

= 0, limn→∞ an = ∞, limn→∞ an
dn

dn+1
= 0 and

∑∞
n=1 Can < ∞

for some 0 < C < 1. Let define the Orlicz function

M(x) =





x2 if 0 ≤ x ≤ 1

Anx + Bn if dn ≤ x ≤ dn+1,

where An = dn+1 + dn, Bn = −dn+1dn.

Let the sequence w = {wn}∞n=1 be defined by wn =
1

Φ(dn+1)
=

1

d2
n+1

. Then

`Φ(w) ∼= `{Φn}, where Φn(x) =
Φ(dn+1x)

Φ(dn+1)
.

Thus

xΦ
′
n(x)

Φn(x)
=

xdn+1
Φ
′
n(dn+1x)

Φn(dn+1)

Φn(dn+1x)
Φn(dn+1)

=
xdn+1An

xdn+1An + Bn

for
dn

dn+1

≤ s ≤ 1.
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After easy calculations we obtain the inequalities:

1− 1

an − 1
< 1 +

dn

dn+1

≤ xΦ
′
n(x)

Φn(x)
≤ 1 +

1

an − 1

for every an
dn

dn+1
≤ x ≤ 1.

Thus
∑∞

n=1 Can−1 = 1/C
∑∞

n=1 Can < ∞ and we can apply Corollary 4.2 with

yn = 1, xn = an
dn

dn+1

, εn =
1

an − 1
to show that `1 ↪→ `Φ(w) ∼= `{Φn}.

Remark: If ∞∑

n=1

dn

dn+1

< 1/2(11)

it is proved in [5] that `1
∼= `M(w).

Remark: By choosing the sequences {dn = n!}∞n=1 and {an = log n2}∞n=1 in
Example 4 we get a weighted Orlicz sequence space `M(w) generated by an Orlicz
function M which does not verify ∆2–condition at infinity and a weight sequence

w =

{
wn =

1

((n + 1)!)2

}∞

n=1

, but containing an isomorphic copy of `1. Indeed M(2n!)
M(n!)

=

3+n and thus M does not satisfy the ∆2–condition at ∞. The sequences {dn}∞n=1 and
{an}∞n=1 verify the conditions imposed on them in Example 4 and thus `1 ↪→ `M(w).

Following [4] we define a sequence of real numbers {ψλ(j)}∞j=1 by

ψλ(j) = inf{Φj(λt)/Φj(t) : t > 0}.
Proposition 4.1 (Proposition 4.5.3 [4]) Let Φ = {Φj}∞j=1 be a MO function. Suppose
that for some λ > 1, limj→∞ ψλ(j) = ∞, then hΦ is stabilized asymptotic `∞.

Let us mention that in the proof of Proposition 4.1 it is choosen aj such that
q∑

j=p

Φ(aj) ≤ 1. Thus the function ψλ(j) = inf{Φj(λt)/Φj(t) : t > 0} can be replaced by

ψλ(j) = inf{Φj(λt)/Φj(t) : 0 < t ≤ 1}.
Corollary 4.3 Let Φ has δ2 condition at zero and hΨ, generated by the MO function
Ψ, complementary to Φ If there exist sequences: {xj}∞j=1, {yj}∞j=1 and {εj}∞j=1 fulfilling:
1’) εj > 0, 0 < xj ≤ yj ≤ 1 for every j ∈ N;
2’) limj→∞

xj

yj
= 0;

3’)
∑∞

j=1 Φj(yj) = ∞;

4’) b(Φ)− εj ≤
uΦ

′
j(u)

Φj(u)
≤ b(Φ) + εj for any u ∈ [xj, yj];

5’)
∑∞

j=1 C1/εj < ∞ for some 0 < C < 1.
and `Φ is `1 saturated, then holds:
a) a(Φ) = b(Φ) = 1;
b) hΨ is stabilized asymptotic `∞ respect to the basis {e∗j}∞j=1.

Proof: a) By [16] follows that if `1 ↪→ `Φ then 1 ∈ [a(Φ), b(Φ)] and thus a(Φ) = 1. Let
a(Φ) 6= b(Φ). By Corollary 4.2 follows that `b(Φ) ↪→ `Φ, which is a contradiction. Thus
1 = a(Φ) = b(Φ).
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b) By a) we have a(Φ) = b(Φ) = 1. So we have limj→∞ a(Φj) = limj→∞ b(Φj) = 1.
Then using the well known connections 1/a(Φj)+1/b(Ψj) = 1 and 1/a(Ψj)+1/b(Φj) =
1 (see [8]) follows that limj→∞ a(Ψj) = limj→∞ b(Ψj) = ∞. Then by the definition of
the indexes a(Ψj) and b(Ψj) there is ε > 0, such that for every pj, qj: 0 < a(Ψj)− ε <
pj < a(Ψj) and b(Ψj) < qj < b(Ψj) + ε holds

2a(Ψj)−ε < 2pj <
Ψj(2t)

Ψj(t)
< 2qj < 2b(Ψj)+ε.

Thus

lim
j→∞

(
inf

{
Ψj(2t)

Ψj(t)
: t > 0

})
≥ lim

j→∞
2pj = ∞

and by Propositon 4.1 follows that hΨ is stabilized asymptotic `∞ respect to the basis
{e∗j}∞j=1. ¤
Remark: Kaminska and Mastylo has given a some sufficient and some necessary
conditions for Schur property in terms of the generating MO function Φ [8]. Sometimes
we know only the complementary function Ψ. For example let the MO function Ψ =

{Ψj}∞j=1 be defined by Ψj = eαje
− αj

|x|cj , where limj→∞ αj = ∞ and 0 < cj. Then `Ψ is
stabilized asymptotic `∞ with respect to the unit vector basis {e∗j}∞j=1 because

lim
j→∞

inf

{
Ψj(2x)

Ψj(x)
: 0 ≤ x ≤ 1

}
= lim

j→∞
inf

{
e

αj
2
cj−1

2
cj |x|cj : 0 ≤ x ≤ 1

}
= lim

j→∞
e

αj
2
cj−1

2
cj = ∞.

Thus we conclude that `Φ has Schur property without considering the functions Φn,
n ∈ N.
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