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1 Preliminaries

In the next X, Y are Banach spaces, N the naturals, R the reals. Everywhere differentiability
is understood as Fréchet differentiability. Throughout this paper, a bump function or simply
a bump in X is a non–zero real–valued function on X with bounded support. The class of
all k–times differentiable (continuously differentiable) real functions in U ⊂ X is denoted by
F k(U) (Ck(U)).

Let us recall that an Orlicz function M is an even, continuous, nondecreasing, convex
function defined for t ≥ 0 so that M(0) = 0 and limt→∞ M(t) = ∞. A sequence ϕ = {ϕn}∞n=1

of Orlicz functions is called a Musielak–Orlicz function. Throughout the paper we shall write M
for an Orlicz function and ϕ, ψ for Musielak–Orlicz functions. The Musielak–Orlicz sequence
spaces `ϕ, generated by ϕ is the set of all real sequence x = {xn} such that

∑∞
n=1 ϕn(λxn) < ∞

for some λ > 0. The Luxemburg norm is defined by ‖x‖ϕ = inf {r > 0 :
∑∞

n=1 ϕn(xn/r) ≤ 1}.
Let 1 ≤ pn, n ∈ N be a sequence of reals. The Musielak–Orlicz sequence space `ϕ, where

ϕ = { tpn

pn
}∞n=1 is called Nakano sequence space `({pn}).

The Orlicz function M is said to have the property ∆2 at 0 if there exists a constant c
such that M(2t) ≤ cM(t) for every t ∈ [0, 1]. A Musielak–Orlicz function ϕ satisfies the δ2

condition if there are positive constants K, δ and a nonnegative sequence {cn} in `1 such that
for each n ∈ N the condition ϕ(x) ≤ δ implies ϕn(2x) ≤ Kϕn(x) + cn

We say that two Orlicz functions M and N are equivalent at 0 if c−1M(c−1t) ≤ N(t) ≤
cM(ct) for some constant c > 0 and for every t ∈ [0, 1] and write M ∼ N .

To every Orlicz function M the following number is associate (see [5], p. 143)

αM = sup{p : sup0<λ,t≤1 M(λt)/(M(λ)tq) < ∞}
βM = inf{p : inf0<λ,t<1 M(λt)/(M(λ)tq) > 0}

and to every Musielak–Orlicz function ϕ = {ϕn}∞n=1 we associate the numbers

αϕ = lim inf
n→∞ αϕn βϕ = lim sup

n→∞
βϕn
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2 Smooth renormings in Musielak–Orlicz sequence spaces

Lemma 2.1 Let ϕ = {ϕn}∞n=1 be a Musielak–Orlicz function. There exist a Musielak–Orlicz
function Ψ = {Ψn}∞n=1 and {ck}∞k=1 such that Ψn is infinitely many times differentiable for every
n ∈ N and

(i) ϕn ∼ Ψn at 0
(ii) tk|Ψ(k)

n (t)| ≤ ckΨn(ckt), t ∈ [0,∞), ck > 0, k = 1, 2, . . .

for every n.

Proof: Following [6] we define a Musielak–Orlicz functions ψ = {ψn}∞n=1, Ψ = {Ψn}∞n=1 by

ψn(t) =
∫ t

0

ϕ(u)

u
du and Ψn(t) =

∫ t

0

ψn(u)

u
exp

u

u− t
du. It is easily seen that ϕn ∼ ψn ∼ Ψn at

0. To varify (ii) it is enough to write:

Ψ(k)
n (t) =

∫ t

0

ψ(u)

u

dk

dtk
exp

u

u− t
du =

∫ t

0
ψ(u)

k−1∑

j=0

cj(k)(u− t)j−2kuk−j−1 exp
u

u− t
du,

where cj(k) ∈ N, j = 0, 1, . . . , k − 1. After a substitution u = vt in the last integral we obtain
the estimate for t ∈ [0,∞)

tk|Ψ(k)
n (t)| ≤ c(k)Ψn(t),

where the constants c(k) =
∫ 1

0

k−1∑

j=0

cj(k)(1− v)j−2kvk−j−1exp
v

v − 1
dv. ¤

We shall need a sufficient condition for isomorphism of Musielak–Orlicz sequence spaces.

Lemma 2.2 Let ϕ = {ϕn} and ψ = {ψn} be Musielak–Orlicz functions. If there exist positive
constants δ1, δ2, K1, K2, L1, L2 and sequences of nonnegative numbers {an}, {bn} from `1,
such that for every n ∈ N are fulfilled

ψn(t) ≤ K1ϕn(K2t) + an if ϕn(t) < δ1, t ≥ 0

ϕn(t) ≤ L1ψn(L2t) + bn if ϕn(t) < δ2, t ≥ 0

the spaces `ϕ and `ψ are isomorphic.

Proof: According to [7] (Theorem 8.11) follows that `ψ and `ϕ coincide as sets. So it is
sufficient to prove that there are constants a, b > 0 such that a‖x‖ϕ ≤ ‖x‖ψ ≤ b‖x‖ϕ.
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WLOG we may assume K1, L1 > 1. The inequality

∞∑

n=1

ψn




xn

K1

(
1 +

∞∑

i=1

ai

)
K2‖x‖ϕ



≤ 1

K1

(
1 +

∞∑

i=1

ai

)
∞∑

n=1

ψn

(
xn

K2‖x‖ϕ

)

≤ 1

K1

(
1 +

∞∑

i=1

ai

)K1

∞∑

n=1

(
ϕn

(
xn

‖x‖ϕ

)
+ an

)

give us ‖x‖ψ ≤ (K1+
∑∞

i=1 ai)K2‖x‖ϕ. In the same way is obtained ‖x‖ϕ ≤ (L1+
∑∞

i=1 bi)L2‖x‖ψ.
¤

For p > 0 define E(p) =





p− 1 p ∈ N,

[p] p 6∈ N.
Using Lemma 2.1 and 2.2 and following [6] one

can prove

Theorem 2.1 Let ϕ be a Musielak–Orlicz function and 1 ≤ k = E(αϕ) Then there exists an
equivalent k–times Fréchet differentiable norm in hϕ. If in addition βϕ < ∞ then there exists
an equivalent k–times uniformly Fréchet differentiable norm in `ϕ.

Corollary 2.1 Let {pn}∞n=1 be a sequence of reals such that p = lim inf
n→∞ pn ≤ lim sup

n→∞
pn = p

and 1 ≤ p ≤ p ≤ ∞. Then there exists an equivalent norm in h({pn}), which is E(p)–times
differentiable. If in addition p < ∞ then there is an equivalent norm in `({pn}), which is E(p)–
times uniformly differentiable. Especially if limn→∞ pn = ∞ then there is an infinitly many
times Fréchet diferentiable equivalent norm in h({pn}).

3 Differentiability of bumps in `({pn}).

It is well known that if in a Banach space there is an equivalent k–times differentiable norm,
then there exist a bump with the same order of differentiability. That is why the negative
results on differentiability of bumps give negative results for the differentiability in the class of
all equivalent norms.

Denote Jn = {−1, +1}n. X is said to be of cotype q ∈ [2,∞) iff there is a constant C s.t.
for all finite subsets (x1, . . . , xn) of X is fulfilled:

(
n∑

i=1

‖xi‖q

)1/q

≤ C

2n

∑

εi∈Jn

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥ .
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We say that X is saturated with subspaces with the property (*) if in every infinite dimensional
subspace Z of X there is an infinite dimensional subspace Y of Z isomorphic to a space with
the property (*).

A necessary and sufficient condition for coincidence as sets of two Nakano sequence spaces
in [2]. Lemma 2.2 and the proof of Corollary 2.5 in [2] gives us the following necessary and
sufficient condition for the isomorphism of two Nakano sequence spaces.

Lemma 3.1 Let 1 ≤ pn, n ∈ N. The Nakano sequence space `({pn}) is isomorphic to `p iff

there exists a constant 0 < C < 1 s.t.
∑

pn 6=p

C
1

|pn−p| < ∞.

Lemma 3.2 (Theorem 3.3 [2]) Let 2 ≤ q < ∞ and 1 ≤ pn < ∞, n ∈ N. Then `({pn}) has

cotype q iff there exists 0 < C < 1 such that
∑

pn>q

C
1

pn−q < ∞.

Proposition 3.1 Let 1 ≤ pn ≤ p < ∞, n ∈ N. Then the Nakano sequence space `({pn}) is
saturated with `p iff limn→∞ = p.

Proof: Let limn→∞ pn, Y be a infinite dimensional subspace of `({pn}) and {ei}∞i=1 is the unit
vector basis of `({pn}) i.e. ei = δij, j = 1, 2, . . ..

Obviously the norm one vectors ui = p
1/pi

i ei, i = 1, 2, . . . form an unconditional basis
of `({pn}). According to [9] there is a subspace Y1 of Y , which is isomorphic to a subspace
generated by a block basis {vk}∞k=1 of {uk}∞k=1. Let Y1 = span{vk}∞k=1, vk =

∑
i∈Ak

aiui, ‖vk‖ = 1,
k = 1, 2, . . ., {Ak}∞k=1 is a family of finite pairwise disjoint subsets of N.

Consider the functions bk(x) =
∑

i∈Ak

|aix|pi , x ∈ [0, 1], k = 1, 2, . . .. Obviously b
′
k(x) =

∑

i∈Ak

pi|aix|pi−1|ai| ≤
∑

i∈Ak

pi|ai|pi ≤ p, for every k = 1, 2, . . .. Thus {bk(x)} is a family of uni-

formly bounded and equicontinuous functions and, therefore, there exists a continuous function
M(x) and a subsequence {bki

} s.t. |M(x)− bki
(x)| ≤ 1/2i for all i ∈ N and every x ∈ [0, 1]. It

is easily seen that M is an Orlicz function and `M
∼= span{vkn}∞k=1 ⊂ Y1.

Let q < p < r. Then for sufficiently large n and an arbitrary u, v ∈ [0, 1] we can write

urbkn(v) ≤ umax{pi:i∈Akn}bkn(v) ≤ bkn(uv) ≤ umin{pi:i∈Akn}bkn(v) ≤ uqbkn(v).

Thus, urM(v) ≤ M(uv) ≤ uqM(v) and, therefore, αM = βM = p, because the numbers q and r
were arbitrary chosen. According to ([5], p. 143) there is an isomorphic copy of `p in `M ⊂ Y1.

Let now `({pn}) is saturated with `p. Then there is an isomorphic copy of `p in `({pn})
and by [8] follows that p is an accumulation point for {pn}. Suppose that limn→∞ pn 6= p. Then
limk→∞ pnk

= q 6= p for some subsequence {pnk
} which implies `({pn}) contains an isomorphic

copy of `q. Thus there is a subspace isomorphic to `p in `q, p 6= q which is a contradiction. ¤

4



Corollary 3.1 Let 1 ≤ pn, n ∈ N, limn→∞ pn = q, q is not an even number. Then there is no
E(q) + 1–times differentiable bump function in `({pn}).

Proof: The Nakano sequence space `({pn}) is saturated with `q, but the upper estimate for
the Fréchet differentiability of bumps in `q is E(q) if q is not an even number [1]. ¤

In particular, there is no E(p) + 1–times differentiable bump in `({pn}), lim inf
n→∞ pn = p

and according to Corollary 2.1 this estimate is exact.

Corollary 3.2 Let p is an even number, 1 < p ≤ pn, n ∈ N and limn→∞ pn = p. Then there
is p–times continuously differentiable bump function in `({pn}) iff `({pn} ∼= `p.

Proof: Suppose that there is a bump function b(x) ∈ Cp(X). The condition limn→∞ pn = p
and Lemma 3.2 gives us that `({pn}) is saturated with spaces isomorphic to `p. Thus `({pn})
is saturated with spaces with cotype p. According to [3] it follows that `({pn}) has cotype p.
Now Lemma 3.1 and Lemma 3.2 imply that `({pn}) isomorphic to `p.

If `({pn}) is isomorphic to `p it is well known that the canonical norm is infinitely many
times Fréchet differentiable. ¤

Using an idea that goes back to [1] one can easily prove the following:

Lemma 3.3 Let X be a Banach space with p–convex unconditional basis (

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

≤
n∑

i=1

‖xi‖p

for any finite system {xi}n
i=1 of disjoint vectors in X). Then lim

n→∞ ‖P‖n = 0 for each homoge-

neous polynomial P , deg P < p, where ‖P‖n = sup

{
|P (x)| : x =

∞∑

i=k

xi, k > n, ‖x‖ ≤ 1

}
.

Finally we solve the general case limn→∞ pn = 2k, k = 1, 2 by proving the following:

Proposition 3.2 Let p = 2k, k = 1, 2 and limn→∞ pn = p and pn ≤ p. Then there is a p–times
differentiable bump in `({pn}) iff `({pn}) ∼= `p.

Proof: The “if” part is trivial. Let b is p = 2k–times Fréchet differentiable bump in X = `ψ,
ψ = {tpn}∞n=1, `ψ

∼= `({pn}). WLOG we my suppose 2k− 1 < q ≤ pn, b(x) ≡ 0 for ‖x‖ ≥ 1 and

b(0) > 0. For x = {xj}∞j=1 ∈ X denote M̃(x) =
∞∑

j=1

|xj|pj . Consider δ(x) = b−2(x), b(x) 6= 0 and

ϕ(x) =





δ(x)− M̃(x) + 2, b(x) 6= 0,

+∞, b(x) = 0.
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Obviously ϕ is lsc, bounded bellow and ϕ(h) ≥ ‖h‖, h ∈ X. According to Stegall
Variational Principle (see e.g. [4]) there exist x∗ ∈ X∗ and x ∈ X, ϕ(x) < ∞, such that for
every h ∈ X

ϕ(x + h)− ϕ(x) + x∗(h) ≥ 0.

Obviously b(x) 6= 0 and we get immediately

p∑

j=1

δ(j)(x; hj)

j!
+ x∗(h) + ox(‖h‖p) ≥ M̃(x + h)− M̃(x).

Summing the last inequality with its analogue for −h we obtain for p = 2k, k ∈ N
k∑

j=1

δ(2j)(x; h2j)

(2j)!
+ ox(‖h‖p) ≥ M̃(x + h) + M̃(x− h)− 2M̃(x).(1)

Using M̃(x + h) + M̃(x− h)− 2M̃(x) ≥ C
∞∑

j=1

|hj|pj ≥ C‖h‖p, ‖h‖ ≤ 1 and (1) we get

k∑

j=1

δ(2j)(x; h2j) ≥ C1

∞∑

j=1

|hj|pj .(2)

for some C1 > 0 and all h, ‖h‖ ≤ λ, λ sufficiently small. Suppose now that X 6∼= `p. Then there
exist sequence {hj}∞j=1 such that

∑∞
j=1 |hj|pj = ∞ and

∑∞
j=1 |hj|p < ∞.

Finding increasing sequence {kn}∞n=1 of naturals, such that for

zn =
∑

j∈Dn

hjej, Dn = {kn + 1, . . . , kn+1}

we have 1 ≤ ‖zn‖ < 2, n ∈ N. Then 1 ≤ ∑

j∈Dn

|hj|pj ≤ 2p.

Let us apply (2) for h = hmem, m big enough. We get

k∑

j=1

δ(2i)(x; e2i
m)

(2i)!
h2i

m ≥ C1|hm|pm

and after summation over Dn, n big enough

k∑

i=1





∑

j∈Dn

δ(2i)(x; e2i
j )

(2i)!
h2i

j



 ≥ C1.(3)

We immediately get a contradiction for p = 2, taking into account in (3) that |δ(2)(x; e2
j)| ≤

‖δ(2)(x)‖ for each j.
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As |δ(4)(x; e4
j)| ≤ ‖δ(4)(x)‖ for each j, in order to prove the assertion for p = 4 it is enough

to prove that lim
n→∞

∑

j∈Dn

δ(2)(x; e2
j)h

2
j and to use (3) for k = 2.

It is easy to observe that

1

2|Dn|
∑

{εj=±1,j∈Dn}
δ(2)





 ∑

j∈Dn

εjhjej




2

 =

∑

j∈Dn

δ(2)(x; e2
j)h

2
j .

Then for some z =
∑

j∈Dn

εjhjej, εj = ±1 we have

∣∣∣∣∣∣
∑

j∈Dn

δ(2)(x; e2
j)h

2
j

∣∣∣∣∣∣
≤ |δ(2)(x; z2

n)| and to

finish the proof in this last case we only need to observe that `ψ satisfies upper 3–estimate and
to use Lemma 3.3 to get lim

n→∞ |δ
(2)(x; z2

n). ¤
The case pn ≤ 2k, k ∈ N, k > 2 is still open. Our conjecture is that if lim

n→∞ pn = 2k,

k ∈ N, k > 2 then `({pn}) ∼= `2k iff there is a 2k–times differentiable bump in `({pn}).
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