Upper and lower estimates in weighted Orlicz sequence spaces and Lorentz—Orlicz
sequence spaces '

B. Zlatanov

ABSTRACT: We study the existence of lower and upper p—estimates in weighted Orlicz sequence
spaces and Lorentz—Orlicz sequence spaces. We also find upper estimates for the unit vector
basis in these spaces. We give some applications to weak sequential continuity of polynomials.

1 Introduction

The existence of /,~estimates in the sequences in a Banach space is of great interest in the
study of the structure of space. It is also relevant in some questions of non linear analysis such
as the behaviour of polynomials [1], [7], [10], [20], [24]. The upper and lower ¢,-estimates in
sequences are of great interest when studding reflexivity of the space of polynomials [2], [6], [1§]
and the problems of smoothness in Banach spaces [10], [11], [17], [18] in the sense of existence
of real bump functions with higher order of differentiability [10], [4]. The existence of these
estimates and the behavior of polynomials has been studied in [10], [9].

We use the standard Banach space terminology from [16].

We will begin with the following well known definition:

Definition 1.1 Let X be a Banach space and 1 < p,q < oo. A sequence {xy}32, of elements
of X is said to have upper p—estimate (respectively a lower q—estimate) if there exists a constant
C > 0 such that for all scalars ay,as,...,a, and alln € N we have
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Definition 1.2 A Banach space X is said to have property S, if every weakly null normalized
sequence {xy}32, has a subsequence {xy, }5°, with an upper p—estimate [15].

A Banach space X is said to have property T, if every weakly null normalized sequence
{zk}32, has a subsequence {xy,}5°, with an lower q—estimate [10].

Definition 1.3 A Banach space X has US,-property [15] (respectively UT,-property [10]) if
there is an Constant C' > 0 such that every weakly null normalized sequence {x}32, has a
subsequence {xy, }32, with an upper p—estimate (respectively lower q—estimate) with a constant
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It is proved in [15] that the properties S, and US, coincide. The properties T}, and UT,
are not equivalent, even in reflexive Banach spaces [8].
The following notion was introduced in [12].

Definition 1.4 Let 1 < p < oo. A Banach space has Banach-Saks type p (for short BS,-
property ) if every weakly null normalized sequence {xy}32, has a subsequence {xy, }3°, so that
for some constant 0 < C' < oo holds:

n

kai

i=1

< Cnt/P

for every n € N. Here n*/> = 1.

Let us recall that an Orlicz function M is even, continuous, non-decreasing convex function
such that M(0) = 0 and lim; o, M (t) = co. We say that M is non—degenerate Orlicz function
if M(t) > 0 for every t > 0. We say that M has the Ay—condition at zero, if for some constant
K >0 and ¢y > 0 it holds M (2t) < KM(t) for every 0 < t < t,.

Throughout this paper M will always denote Orlicz function.

For a positive measure space (€2, X, i) the Orlicz space Ly (p) is defined as the set of all
equivalence classes of p—measurable scalar functions x on €2 such that for some A > 0

M(z/)) = /Q M (”’ﬁ”) du(t) < 0o

Usually the Orlicz space Ly (p) is equipped with the so called Luxemburg norm:
2]l 00y () = Inf{A > 0 M(z/)) < 1},

An extensive study of Orlicz spaces can be found in [16].

For = N and w = {w;}32, = {u(j)}52, we get the weighted Orlicz sequence space
(ar(w). In this case we have © € {y(w) iff M(x/\) = X2, w;M(z;/\) < oo for some A > 0
and [|2]|¢,,w) = inf{A > 0: 352, w; M (z; /) < 1}

It is well know that the space {);(w) endowed with the Luxemburg norm || - [|¢,, () is a
Banach space. The unit vectors {e;}22, form an unconditional basis in £y, (w).

We denote by hps(w) the subspace of ¢);(w) consisting of those sequences {x;}:2,, such
that >2°, w; M (Az;) < oo for every A > 0.

By w € A, we mean that there exists a subsequence {wj, }32, of w such that

’}LIgowjk =0 and ijk = 0.
k=1
When w; =1 for each j € N, we obtain the usual Orlicz sequence space denoted by £y;.

Some results concerning S, and T}, properties in Orlicz sequence spaces hy; are obtained
in [14] and [§].



Theorem 1 ([1]]) Let 1 < p < 0o, M is an Orlicz function, Let hy; be an Orlicz sequence
space not containing ¢1. Then the following are equivalent:

(a) har has property BS,;

(b) the Orlicz function M satisfies:

M (st)
su
0<5,LP§1 M(S)tp

< oQ;

(¢) har has property S,.

Theorem 2 [8] Let 1 < q < oo, M is an Orlicz function. Let hyy be an Orlicz sequence space
not containing ¢1. Then the following are equivalent:

(a) hy has property UT,;

(b) the Orlicz function M satisfies:

of M (st)

0<ls,t§1 M (s)tp > 0.

Let w = {w;}3°, be a a positive decreasing sequence such that wy = 1, lim; .o w; = 0
and lim,,_,., W(n) = oo, where W(n) = >, w; for every n € N. The Lorentz—Orlicz sequence
space d(w, M) consists of all bounded real sequences x = {x,}>2, such that for some A > 0
holds I(Az) < oo, where

I(z) =) w;M(z;) = sup {Z w; M () : ™ is an injection N — N} ,
i=1 i=1

and z* = {z7}2, is the decreasing rearrangement of |x| = {|z,|}22,. The space d(w, M)
equipped with the Luxemburg norm

(1) e lauary = inf{A > 0: I(z/A) < 1}

is a Banach space.

Notice that the assumption lim,,_,., W(n) = oo yields that d(w, M) < c.

We denote by dy(w, M) the closure of finitely supported sequences in d(w, M).

The next proposition from [13] shows that the space d(w, M) has much in common with
Cor.

Proposition 1.1 ([13/) I) The subspace do(w, M) coincides with the set of all sequences © =
{zn}5°, such that for every A > 0 holds I(Ax) < co. Moreover, the sequence of the unit vectors
{e;}32, is a symmetric basis in do(w, M).

II) The following assertions are equivalent:

i) The Orlicz function M satisfies the Ay—condition;

ii) the unit vectors {e;}52, form a boundedly complete basis in do(w, M);

ii1) do(w, M) = d(w, M);

i) do(w, M) does not contain a closed subspace isomorphic to co.
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If M(t) =t, 1 <p < oo, then d(w, M) = d(w, p) is the Lorentz sequence space. If w; = 1
for every i € N, then d(w, M) = {5, is the Orlicz sequence space and hy = do(w, M).

The unit vectors {e;}2, form a symmetric basis in dy(w, M).

The symbol e,, will stand for the unit vectors in hy(w) and do(w, M).

A sufficient condition for existence of property S, in Lorentz sequence spaces d(w,p) is
obtained in [3].

Theorem 3 [3] The Lorenz sequence space d(w,p) has property S, if 1 < p < oo.

The following fact is well known, (see [14]) but for the sake of completeness we will prove
it.

Proposition 1.2 If a Banach space X has property S, then X has property BS,.

Proof: Let {z4}72, be a weakly null normalized sequence in X. By the fact that X has
property S, follows that there is a subsequence {zy, }5°, such that

n 1/p
co(g)
i=1

n
Z @i Tk;
i=1

for all n € N and all sequences {a;}!" ;.
e 1/p P = i —_
Let a; = 1/n'/P. Then ) |a;[" = (nl/l’ > YR

i=1 i=1 i=1
I8y 2k || < Cnt/P. O

It follows from Elton’s ¢y—theorem [5] that BS.,—property implies So.—property. Moreover
both properties are equivalent to the hereditary Danford—Pettis property. For 1 < p < oo,
however, both properties are not equivalent: the Lorentz sequence space d(w, 1), where W(n) =
n!/? for all n € N, has property BS,, while failing property S,. It is proved in [21] that property
BS, implies S,_. for any ¢ > 0.

If ¢4 < hyy, then ap = 1. It shown [22] that in this case either hjy; has BS.,—property
and thus S, or hy fails BS,-property and thus S, for all p > 1. Consequently, property BS,
and S, are equivalent for all Orlicz sequence spaces.

We do not know of an example of a Banach space, not containing ¢, which has property
BS, and fails property S,.

n

p
) — 1. Thus < C or equivalently

Definition 1.5 Let {x,}22, be a basic sequence in a Banach space X. A sequence of non—zero
Pj+1
vectors {u;}32, in X of the form uj = " apty, with {a,};2, scalars and py < p,... <p; <
n=p;+1
. an increasing sequence of integers, is called a block basic sequence of {x,}> .

Definition 1.6 Two bases, {x,}>2, of X and {y,}32, of Y, are called equivalent provided a

n=1
oS 'S

Se’ries Z AnTy CONVETGES Zﬁ Z anYn CONVETYES.
n=1 n=1



The next Proposition is in fact an easy consequence results in ([16], p.7). As it is not
stated there in terms of normalized weakly null sequences and normalized block basic sequences
and just for the sake of completeness we will prove it.

Proposition 1.3 Let {z;}°, be a basis of a Banach space X with a basis constant K. Let

y* = ol 1afk)x“ k € N be a weakly null normalized sequence in X. Then there exist a
subsequence {y*n)1o0  of {y®)}  which is equivalent to a normalized block basic sequence of

Proof: We will construct the block basic sequence of {z;}3°, inductively.

1
1) Let take y*1) = 4@ Find p; € N such that HZZ Y 51) ;|| < Ak Put u; = >0, a(l)xZ
and v; = uy/||ug||. Obviously [lv1]| =1 and
o0 o 1
1> flull =[S oz - Y alV >1—
=1 i=p1+1 i=p1+1 2.4.
(k) 1 - o (k)
2) Let take y#2) such that z;&i Yl < YW e Find p, € N such that | ZH a; Vx| <
1= 1=p2
1 )
VN a Put uy = 212, 14 al*)z; and vy = ug/||uz||. Obviously |lve|| =1 and
s P1 1 1 1
1> = k) e — S a*) g )il > 1 — - -1
2 e ;“’ ! ; SR E 12K 12K 242 K
1= 1= i=pa2+1
3) Let take y) such that |72, a{" L Find ps € N such th a"z;|| <
) Let take y'"8) such that H i1 QL] < IWEN & ind p3 € N such that HZZ o1 @i Ti|| S
YWEN R Put us = 312, 14 a( Y, and v = us/||usl|. Obviously ||vs]| = 1 and
© 1 1 1
= [Jus] Z Z“ Z a TUB K 4ABK 2.43 K
i=1 i=p3+1
If we have chosen p,_1, u,_1 we proceed
4) Let take y*n) such that HZP" ! k")x,- S IrK Find p,, € N such that HZZ S o1 a(k")x <
VN d Put u, =02, . agk")azi and v, = uy,/||u,||. Obviously |lv,| =1 and
Pn—1 fe'e) 1 1 1
2 fuall =12 @™ ; @t i:%;l G =T K T 1A K 2.4n K




Thus by

[ee] [ee] o0 un
Sy =l = 3 ) = - i | EPEAR IO B
n=1 n=1 Un n=1 n
[ee} Pn—1
< Z Z al(kn)xz (kn)ms + ”UnH |
a1\l i—pnt1 | nH
> 1 1 1 > 1
< _ -
o nzz:l (4.4”.K - 44" K * 2.4”.K) nz::l 4 K 3.K
follows that {y*7)}2  is equivalent to {v, }> ;. 0

2 S, and U7, properties in weighted Orlicz sequence spaces

In this section we will investigate the S, and UT,—properties in weighted Orlicz sequence spaces.

It is found in [23] that all weighted Orlicz sequence spaces £ (w) are mutually isomorphic
provided that w € A. A sharp estimate the cotype of a weighted Orlicz sequence spaces £y (w)
are found in [19], depending only on the Orlicz function M, provided that w € A.

Naturally, the problem arises to find conditions for a weighted Orlicz sequence spaces
(pr(w) to have property S, or UT,, dependent only on the Orlicz function M, provided that
w € A.

There is no chance of mixing the Luxemburg norm in ¢,;(w) and in d(w, M), that is why
in this section we will use || - || instead of || - ||z, (w)

An equivalent definition of the S,-property is the following:

Definition 2.1 A X be a Banach space and 1 < p < oo. It is said that X has S,-property
if every weakly null normalized sequence {x}72, has a subsequence {xy,}32, so that for some
constant 0 < C' < oo holds:

n 1/p

for every n € N and for all scalars {a;}}, with <Z|ai|p> < 1. Here (3 |ag|®)V/> =
i=1

maXgen |ak’-

Indeed if the conditions in Definition 1.2 hold and {z;}32, is a weakly null normalized

n n 1/p

i=1 i=1

sequence, and {a;}32, be such that (X7, |a;|?)/? < 1, then

for some subsequence {zy, }3°, and some constant C' > 0.
Let now hold the conditions in Definition 2.1 and {x}72, be a weakly null normalized

sequence, and {a;}°, be arbitrary sequence of scalars. Let define ay = Then

(S lasl)



n n P
Sl =" il = 1. Thus ||X7"; a;xy, || < C for some subsequence {xy, }22, and some
k=1

n
k=1 2wi=1 |a;|P
n
Zai:vki < (C. Thus we obtain
i=1

constant C' > 0 or equivalently

= [2)!/7

1 |ai

< C(Ty ).

szzl AT,

Theorem 4 Let 1 < p < 0o, M is an Orlicz function, w = {w;}3°, € A. Let hy(w) be a
weighted Orlicz sequence space not containing {1. Then the following are equivalent:

(a) hp(w) has property BS,;

(b) the Orlicz function M satisfies:

(¢) ha(w) has property S,.

Proof: (c¢)=(a) follows by Proposition 1.2.
(a)=-(b) WLOG we may assume that

o
lim w; =0 and Y w; = oco.
Jj—00 =1

If not we can consider the subspace hy ({w;, }72;) — ha(w).
For any k € N there are sequences {p®}2°_ and {¢*1>_, such that

k k k k
L<p” < <pi? < <o <p <l <
and
*)
1 qm
()
J=pm
Let the sequence {ay}72, be the solution of the equation kM (ay) = 1. Obviously ay \ 0.

(k)
dm
Let b*) = Z agej. The sequence {bM}>_ is a weakly null sequence for every k € N

)
J=pm
and [[b®)|| < 1.
pk)
Let define now y*) = ||b7(z)|| Obviously |[y®™|| = 1. Thus there exists an increasing

sequence of naturals {m}2°,; such that:

n

2 TG ‘: D Y| < Cin'/?
s=1 s=1 ms s=1
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holds for some constant C'; < co and for every n € N.
By the inequalities:

<k) (k)
n Qqm oy 1 Q qm n ok (692
Z _X;k) ! (k) mZ::12 (k) _z;m ’ 77;2 %)
=pm 20> o) SO =l > obhY
s=1 s=1 s=1
nk Qg Qy
= M| | <nlk - 1Y/2DM |
n qg,{fs)
= S | S e S e | | <
m=1 (k s=1 j_p(k) Zb(k)
’ s=1 e

< Cn"/?, where C = 2C}.

> o) <2y
m=1 s=1
The last inequality is equivalent to

® D> Z M (o) 20 (v=3) M (s

WLOG we may assume that s < oy and t < 1/C. Let s,t € (0, 1], there exists k € N such that

follows that <2

1 1
apr1 < 8 < ag and there exists n € N such that W <t< Cnllo So
P
M (st) < Cnl/p < (k+1)(n+1)C < 80"

1 Iz
M (ags1) <C’(n+1)1/p>

(b)= ( ) Let {y®}2°, be a sequence defined by y*) = Yok, yiej, where 1 <py <1 <
P2<q < ...<pr < qx < -and X%, w;M(y;) < 1. By (b) there is a constant 0 < C' < oo
such that

P

< M (st) <
u
0Ssier M(s)tr =

Let {Bx}2, be such that Y32, |Gk|” < 1. We will show that Hz;’; ﬁky(k)H < C. Indeed:

5 3% unr () < 55 55wl < AP S it < 3 b <1
k=1 k=1

k=1 j=pp k=1 j=py J=Pk



Since every weakly null normalized sequence {x;}°; in hy(w) has a subsequence {x;, }72,
which is equivalent to a normalized block basic sequence {y*)}5°, the proof is finished. O

Theorem 5 Let 1 < q < oo, M is an Orlicz function, w = {w;}2, € A. Let hy(w) be a
weighted Orlicz sequence space not containing 1. Then the following are equivalent:

(a) hp(w) has property UT,;

(b) the Orlicz function M satisfies:

M
inf (st)

0<s,t<1 M (s)tP > 0.

Proof: (a)=(b) Consider C; > 0 such that every weakly null normalized sequence admits a
subsequence which has a lower g—estimate with a constant C;. As mentioned in the proof of
Theorem 4 WLOG we may assume that

lim w; =0 and Zw] = 00.

For any k € N there are sequences {p®}2°_ and {¢*)1%_, such that

k k k
1<p <l <pf? < i <. <p® < ¢® <

and
(*)
1 qm
k=g < > w; < k.
Jj= Py;)
Let the sequence {ay}72, be the solution of the equation kM (ay) = 1. Obviously ax \, 0.

(k)
dm
Let b*) = > agej. The sequence {pF1ee_ is a weakly null sequence for every k € N

i=pin)

and obviously [|b%®|| < 1. By the inequalities:

g apm’

1
S wM2a) > 2M(ag) 3wy > 2 <k _ 2) M(ag) > kM(ay) = 1
Jj= pgf) Jj= pgrlf)
(k k by : k
follows that ||b{¥)|| > 1/2. Let define now y¥) = TG Obviously ||y®¥|| = 1. Thus there

exists an increasing sequence of naturals {m,}°2, such that:

n 1/q
= Cl (Z 1q> = C’lnl/q
s=1

n

213"k

n
N sl”b ‘H



holds for some constant C'; < co and for every n € N. Then

>

s=1

> C’znl/q

for every n € N with Cy = C/2.
By the inequalities:

ain)

ZZ ijnzak>22Mfk Y w

m=1j—plk) Z bgfz m=1 Z bs,]fz j=p
s=1 s=1
n 1 o 1 O
> 2k g) M| | =2 (b ) M|
ERR | o1 M)t
s=1 ’ s=1 :
n n qﬁfg
> ok | i =SSR [ 2 S S |
bglf) m=1 p(k) s=1j_p() (k)
SZZ:I s Sgl ms
(k) 1/ &
follows that Z b, Z b > Cn''?, where C' = 5
m=1

The last inequality is equwalent to

(3) I < i qi w; M (C 1/q ) s niM (Cnl/‘I)

WLOG we may assume that s < oy and t < 1/C Now for every s,t € (0, 1]. There exists k € N

1 1
such that a1 < s < oy and there exists n € N such that W <t< Cnila’ So

M(st) _ M((O(1+n)1/q)q> mCt

Lo
M(s)te — M(ak)< 1 )q “(k+1)(n+1) — 4

Cnl/q
(b)=-(a) Let hold (b) and let y™ = "% a,e; be a sequence with 1 < p; < ¢ < ps <
QG < ... <pr < q <pk+1§.... Let
M (st)

> Ch

0<lsI,1tf§1 M(S)tq
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oS a; ly™| n ( ) ly® @
HW’II (e 5]l ) T iAA ly®1) S5y ly@ e
= O S w,M ( ) .
ST Z Pl
Thus we have the inequality C; ( ' ly® ) sz Ly® H

Since every weakly null normalized sequence {az:l}zf1 in hjpr(w) has a subsequence {z;, }72,
which is equivalent to a normalized block basic sequence {y*)}¢, we get for any sequence
{ag}2, of scalars

n n 1/q n 1/q
> ¢S o] 2 G (S laul) = a6 (el
k=1 k=1 =
and thus {z;, }7°, has a lower ¢-estimate with a constant C' = C,C5. O

Related to these properties are the following indexes defined in [10]:
((X)=sup{p>1:X has S, — property}

w(X)=inf{g>1:X has T, — property}.

Obviously ¢(¢,) = u(¢,) = p. It is found in [8] that ¢(hy) = an, u(hy) = B and
U(do(w, p)) = p, where apy; and ), are the Boyd indexes associated to M

- M (uv) _
a = su su o0
MEEIAP = S w M (v)

_ , M (uv)
Gy = inf {q >1: 0<1uI,1£§1 WM () > 0} )

Corollary 2.1 Let hy(w) be a weighted Orlicz sequence space generated by an Orlicz function
M and a weight sequence w = {w;}3°, € A. Then l(hy(w)) = apr and u(hy(w)) = B

Proof: From Theorem 4 and Theorem 5 and since hj/(w) contains an isomorphic copy of 4,,,
and ¢3,,, the result follows. 0

The exact upper and lower estimates are found for the unit vector basis {e;}2; in hy
in terms of the generating function M. When dealing with a weight sequence the problem is
much more complicated. Some upper estimates are done for the unit vector basis in Lorentz
sequence space do(w,p) in terms of the weight sequence w = {w;}52;.

Next by using the ideas from [8] we will find some upper estimates of the unit vector basis
{€;}3°, in hy in terms of the generating Orlicz function M and the sequence w = {w;}$2;.
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Let start with the following notation:

1 1
For 1 < r < oo the number 7* is the solution of the equation — + — = 1. We will use the
ror

standard notation ||z||, = (352, |2;?)"/? for the norm in l,.
Proposition 2.1 Let hy(w) be a weighted Orlicz sequence space generated by an Orlicz func-
tion M and a weight sequence w = {w;}°, € A. Then holds:
M(t
(a) If sup t?(’) < 00 and w € (s~ for some s > p then the unit vector basis {e,}72, has
0<t<1

an upper s—estimate;

t
(b) [f01rtl£1 0 0 and the unit vector basis {e,}32 | has an upper s—estimate then for some

5> q then w € {(s/q)~.

Proof: Let w € {(y/,)~ for some s > p.

There exist a constant C' > 0 such that

M(t
() < C for every t € (0,1].
Consider the sequence a = {a;}2, € such that ||a||s < 1. Then for each n € N we have

(4) 1_sz( >§ngi| ai?

H Z’L ].alelHZM(w) ’L lajlelufju

and thus follows

iCi

N\ ®/9) (p/s)
<CZwl\al|p<C<Zw§S/p) ) (Z]az ) .

Lar(w) =1 =1

1
Hence ||Z;L:1 aiengM < C“w” s/}Jp

(b) If the unit Vector ba51s {en}j’le has an upper s-estimate then |37, aseill,,, )

L(>x, |a;|*)"* holds for some constant L and for any ay,as, ..., an, n € N.

M(t)
ta

Let b = {b;}2, € {;,,. By the inequalities

SUVY (R LR S TR
e S wl)) T S

i=1 die 1w1|b|

There exist a constant ¢ > 0 such that

> ¢ for every t € (0,1].

and the definition of the Luxemburg norm in hy,(w) follows that

n 1/q oo 1/s
1/q (Z wi\b¢|> < ;| 9e; <L (Z |bi]S/q> < LHb”i?g
i=1 Lar(w) =1
L4
Hence Y22, |bi|w; < ||b||s/q for any b € /,/, and therefore w € £(;/q)~. O
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M(t)

Remark: Let us mention that if sup —— < oo then the unit vector basis {e,}22, has
0<t<1

an upper p—estimate. Indeed w € ¢, and thus s should be equal to p. The proof follows right
away taking into account in (4) that sup,.yw; < 0o. As stated in the theorem there are cases
when the unit vector basis in hy,(w) may have a better upper s—estimate for s > p, depending
on the weight sequence w = {w;}2,.

If M(t) = t?, the result is obtained in [§].

3 S, property in Lorenz—Orlicz sequence spaces

Recently a deep result on embedding of ¢, spaces in Lorentz-Orlicz sequence spaces have been
found in [13]. It is shown there that ¢, — do(w, M) iff ¢, — hy iff p € [ap, Bry]. This
result naturally arises the question for finding of upper and lower p—estimates in Lorentz—Orlicz
sequence spaces.

There is no chance of mixing the Luxemburg norm in d(w, M) and in ¢;;(w), that is why
in this section we will use || - || instead of || - || 4(uw,rr)-

Theorem 6 Let do(w, M) be a Lorentz—Orlicz sequence space generated by an Orlicz function
M and a weight sequence w = {w;}32, satisfying w; \, 0 and Y3, w; = 00, not having an
isomorphic copy of £1. Then:

M(st
(a) If sup (st) < oo for some 1 < p < oo then dy(w, M) has property Sy;
o<s,t<1 M(s)tP

o M(st)
(b) If do(w, M) has property UT, for some 1 < q < oo then 0<1£th1 M(s)t

>0

Proof: (a) Let {x;}:2, be a weakly null normalized sequence in dy(w, M). It has a subsequence

{x;,}%2, which is equivalent to a normalized block basic sequence y* = e 1Y€, L.
Pr+1
> wiM(y;) =1.
J=pr+1
There is a constant 0 < C' < oo such that

M (st
sup (S) <

P
o<st<1 M(s)tP —

Let {8}, be such that Y32, [Gk[P < 1. We will show that HZ;’; ﬁky(k)H < C. Indeed:

00  Pk+1 ) 00 Pk+1—Pk .
> 5 war (M) < SUST w (Ms)
C k=1 j=1 C

k=1j=pr+1

o0 Pk+1—Pk

< 2 2 wilBl M (yp+s)

k=1 j=1
o0 Pk4+1—Pk

< DB D0 wiM(ypay) <1
k=1 Jj=1

13



(b) Consider C; > 0 such that every weakly null normalized sequence admits a subse-
quence which has a lower ¢—estimate with a constant C}.
For any k € N there exist p; such that

1 Pk

j=1
Let the sequence {ay}72, be the solution of the equation kM (ay) = 1. Obviously ax \, 0.
mpy,
Let 0% = > age; for m € N. The sequence {b®}>°_, is a weakly null sequence
J=14(m—1)py

for every k € N and ||6*)|] < 1. By the inequalities:

1

] 1
pk)
follows that ||b{®)|| > 1/2. Let define now y® = ||b7(7;)|| Obviously ||y®|| = 1. Thus there

exists an increasing sequence of naturals {m,}22, such that:

s=1 H
> o)
s=1 ’

n

213 60| >

b(k)
b

holds for every n € N. Then
> Cnt/a

for every n € N with C' = (/2.

n

>

m=1

n

>0

s=1

By the symmetry of the unit vector basis follows that > Cnl/a,

The last inequality is equivalent to

mpg

B 1= Y w () < S () <k ().

m=1 j=1+4(m—1)pg m=1 j=1

WLOG we may assume that s < a; and t < 1/C. Now for every s,t € (0, 1], there exists k € N

1 1
such that ap1 < s < oy and there exists n € N such that W <t < Cni/a’ So

M (st) - M ((C(l —i—J?rz)l/q)q) - knC1 S

Lo
M(s)ta — M<ak)( 1 )" “(k+1)(n+1) = 4

Cnl/q
Remark: If M (t) = t? the result is obtained in [3].
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Corollary 3.1 Let do(w, M) be a Lorentz—Orlicz sequence space generated by an Orlicz func-
tion M and a weight sequence w = {w;}2, satisfying w; \, 0 and Y72, w; = oo. Then
(do(w, M)) = ayy.

Proof: From Theorem 6 and since dy(w, M) contains an isomorphic copy of 4,,,, the result
follows. 0

Proposition 3.1 Let do(w, M) be a Lorentz—Orlicz sequence space generated by an Orlicz func-
tion M and a weight sequence w = {w;}2, satisfying w; \, 0 and Y2, w; = co. Then

M(t)

(a) If sup — - <™ and w € Ls/p)+ for some s > p then the unit vector basis {e,}o>, has
0<t<1
an upper s—estimate;
M(t)
(b) If Oglil o > 0 and the unit vector basis {e, }5°, has an upper s—estimate then for some

5> q then w € Lg/q).

Proof: Let w € {(4/p)~ for some s > p.
M (t)
Consider the sequence a = {a;}2, € such that ||a||s < 1. Then for each n € N we have

|a7|”

There exist a constant C' > 0 such that

< C for every t € (0, 1].

*

1=sz’M< — % ><C’sz
i—1 (D

Dy aieino(w,M)

i=1 @i €z||d0(w,M)
and thus follows

n p
> aie;
=1 do(w,M) =1

1/p

" N (v/9)
<C’sz|a |p<C<Zw£8/p) ) <Z|af|5> .
i=1

i=1

Hence [y aicill gy uny < Cllwll s+ llalls-

(b) If the unit vector basis {e, }°°, has an upper s—estimate then |7, a;e;|| < L (2% |aq|*)Y*

holds for some constant L and for any ay,as,...,a,, n € N.

M(t)
ta

Let b = {b;}2, € {;,,. By the inequalities

. (5:) sy
> u ( ) 2 D =

i=1 (3w > iy wib;
and the definition of the Luxemburg norm in dy(w, M) follows that

n 1/q n 1/q n 00 1/s
/4 (Z wi|bi|> < (Ve (Z wib;‘> < IS |bi] e, <L (Z |bz-|s/q> < L|[b||,/e.
=1 i=1 do(w,M)

i=1 i=1
I
Hence Y322, |b;|w; < —|bl|s/q for any b € £,/, and therefore w € £(5/4)-. O
¢
Remark: If M (t) = t? the result is obtained in [§].

There exist a constant ¢ > 0 such that

> ¢ for every t € (0,1].
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4 Some applications to polynomials

As mentioned in the introduction upper and lower p—estimates give us much information about
weak continuity of polynomials and this is of great interest in some problems of smoothness
[10], [4], [11], [18]. A connection between upper and lower estimates in a Banach space and
weak continuity of polynomials is obtained in [8]:

Proposition 4.1 [8] Let X be a Banach space.

(i) If a sequence {x,}>°; in X has an upper p—estimate, then for every N—-homogeneous poly-
nomial P on X, with N < p, the sequence {P(x,)}5%, is convergent to zero.

(i) If X has a basis {e,}>2, which satisfies a lower q-estimate, then there exists an N-—
homogeneous polynomial on X, with N > q, such that P(e,) > 1 for all n € N.

By Proposition 4.1 and the results of the previous sections follows:

Corollary 4.1 Let hy(w) be a weighted Orlicz sequence space generated by an Orlicz function
M and a weight sequence w = {w; }°, € A and not containing an isomorphic copy of ¢1. Then
any N -homogeneous polynomial such that N < ayy is weakly sequentially continuous. Moreover

M(t
if N < s, where s > p, sup tl()) < 0o and w € L)+ then for every N-homogeneous
0<t<1

polynomial P the sequence {P(e,)}>2, converges to zero.

Corollary 4.2 Let dy(w, M) be a Lorentz—Orlicz sequence space generated by an Orlicz func-
tion M and a weight sequence w = {w;}3°, satisfying w; \, 0 and Y32, w; = oo and not
containing an isomorphic copy of £1. Then any N—-homogeneous polynomial such that N < ayy

18 weakly sequentially continuous. Then for every N-homogeneous polynomial P the sequence
M(t
{P(en)}2, converges to zero, provided N < s, where s > p, sup 7( <00 and w € L p)-.
0<t<1
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