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1. Introduction

A fundamental result in fixed point theory is the Banach Contraction Principle. One kind of

a generalization of the Banach Contraction Principle is the notion of cyclic maps [10]. Fixed

point theory is an important tool for solving equations Tx = x for mappings T defined on subsets

of metric spaces or normed spaces. Interesting application of cyclic maps to integro-differential

equations is presented in [12]. Because a non-self mapping T : A → B does not necessarily have

a fixed point, one often attempts to find an element x which is in some sense closest to Tx. Best

proximity point theorems are relevant in this perspective. The notion of best proximity point is

introduced in [7]. This definition is more general than the notion of cyclic maps [10], in sense that

if the sets intersect then every best proximity point is a fixed point. A sufficient condition for the

uniqueness of the best proximity points in uniformly convex Banach spaces is given in [7].

Ekeland formulated a variational principle in [6], which has many applications in different fields of

Mathematics. Ekeland’s variational principle has many generalizations and applications [2, 5, 11].

There is a close relationship between fixed point theorems and variational principles [6, 3, 4].

Unfortunately there are no results for best proximity points that can be proved with the help of

variational principles.

We try to state a variational principle for cyclic maps, which can be applied for proving the

existence of best proximity points for different classes of cyclic maps.

2. Preliminary results

In this section we give some basic definitions and concepts which are useful and related to the

best proximity points. Let (X, ρ) be a metric space. Define a distance between two subset A,B ⊂ X

by dist(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B}. We will use the notation d = dist(A,B).

Let A,B ∈ X be nonempty subsets of a metric space (X, ρ). The map T : A
∪

B → A
∪

B is

called a cyclic map if T (A) ⊆ B and T (B) ⊆ A. By f we will denote the function f : A ∪B → R,

which is defined with f(x) = ρ(x, Tx). A point ξ ∈ A is called a best proximity point of the cyclic

map T in A if f(ξ) = ρ(ξ, T ξ) = dist(A,B) = d.

When we investigate Banach space (X, ∥ · ∥) we will always consider the distance between the

elements to be generated by the norm ∥ · ∥ i.e. ρ(x, y) = ∥x− y∥.
1
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Definition 2.1. ([5], p. 61) The norm ∥ · ∥ on a Banach space X is said to be uniformly convex

if limn→∞ ∥xn − yn∥ = 0 whenever ∥xn∥ = ∥yn∥ = 1, n ∈ N are such that limn→∞ ∥xn + yn∥ = 2.

We will use the following two lemmas, proved in [7].

Lemma 2.2. ([7]) Let A be a nonempty closed, convex subset, and B be a nonempty, closed subset

of a uniformly convex Banach space. Let {xn}∞n=1 and {zn}∞n=1 be sequences in A and {yn}∞n=1 be

a sequence in B satisfying:

1) limn→∞ ∥zn − yn∥ = dist(A,B);

2) for every ε > 0 there exists N0 ∈ N, such that for all m > n ≥ N0, ∥xn − yn∥ ≤ dist(A,B) + ε,

then for every ε > 0, there exists N1 ∈ N, such that for all m > n > N1, holds ∥xm − zn∥ ≤ ε.

Lemma 2.3. ([7]) Let A be a nonempty closed, convex subset, and B be a nonempty, closed subset

of a uniformly convex Banach space. Let {xn}∞n=1 and {zn}∞n=1 be sequences in A and {yn}∞n=1 be

a sequence in B satisfying:

1) limn→∞ ∥xn − yn∥ = dist(A,B);

2) limn→∞ ∥zn − yn∥ = dist(A,B);

then limn→∞ ∥xn − zn∥ = 0.

Definition 2.4. ([5], p. 42) We say that the Banach space (X, ∥ · ∥) is strictly convex if x = y

whenever x, y ∈ X are such that ∥x∥ = ∥y∥ = 1 and ∥x+ y∥ = 2.

Let us mention the well known fact, that any uniformly convex Banach space is strictly convex

([5], p.61).

Lemma 2.5. ([15]) Let A, B be closed subsets of a strictly convex Banach space (X, ∥ · ∥), such
that dist(A,B) > 0 and let A be convex. If x, z ∈ A and y ∈ B be such that ∥x − y∥ = ∥z − y∥ =

dist(A,B), then x = z.

3. Main result

Theorem 3.1. Let (X, ∥ · ∥) be a uniformly convex Banach space and A,B ⊂ X be closed, convex

sets, T : A ∪ B → A ∪ B be a cyclic map, such that f(x) = ∥x − Tx∥ is lower semi continuous

function and let there exists k ∈ (0, 1), such that there holds the inequality

f(Tx)− d ≤ k(f(x)− d)

for every x ∈ A ∪B.

Then for every ε > 0 there exists v ∈ A, such that

f(v) ≤ inf{f(u) : u ∈ A}+ ε (3.1)

and for every w ∈ B there holds the inequality

f(v) ≤ f(w) + ε(∥v − w∥ − d). (3.2)
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4. Auxiliary results

Lemma 4.1. Let (X, ρ) be a metric space, A,B ⊂ X be subsets, T : A ∪ B → A ∪ B be a cyclic

map and let there exists k ∈ (0, 1), such that there holds the inequality

f(Tx)− d ≤ k(f(x)− d) (4.1)

for every x ∈ A ∪B, where f(x) = ρ(x, Tx).

Then there holds the inequality f(Tnx)− d ≤ kn(f(x)− d).

Proof. By applying n–times (4.1) we get the inequality

f(Tnx)− d ≤ k(f(Tn−1x)− d) ≤ · · · ≤ kn(f(x)− d).

�

Lemma 4.2. Let (X, ρ) be a metric space, A,B ⊂ X be subsets, T : A ∪ B → A ∪ B be a cyclic

map and let there exists k ∈ (0, 1), such that there holds the inequality

f(Tx)− d ≤ k(f(x)− d)

for every x ∈ A ∪B, where f(x) = ρ(x, Tx).

Then limn→∞ f(Tnx) = d.

Proof. By Lemma 4.1 we have the inequality

0 ≤ lim
n→∞

(f(Tnx)− d) ≤ lim
n→∞

kn(f(x)− d) = 0.

Hence we get limn→∞ f(Tnx) = d. �

Lemma 4.3. Let (X, ∥ · ∥) be a uniformly convex Banach space, A,B ⊂ X be closed, convex sets,

T : A∪B → A∪B be a cyclic map and let there exists k ∈ (0, 1), such that there holds the inequality

f(Tx)− d ≤ k(f(x)− d) for every x ∈ A ∪B, where f(x) = ∥x− Tx∥.
Then limn→∞ ∥T 2nx− T 2n+2x∥ = 0 and limn→∞ ∥T 2n+1x− T 2n+3x∥ = 0.

Proof. By Lemma 4.2 we have the equalities lim
n→∞

f(T 2nx) = lim
n→∞

∥T 2nx − T 2n+1x∥ = d and

lim
n→∞

f(T 2n+1x) = lim
n→∞

∥T 2n+2x−T 2n+1x∥ = d. According to Lemma 2.3 it follows that limn→∞ ∥T 2nx−
T 2n+2x∥ = 0.

The proof of the second equality is similar. �

Lemma 4.4. Let (X, ∥ · ∥) be a uniformly convex Banach space, A,B ⊂ X be closed, convex sets,

T : A∪B → A∪B be a cyclic map and let there exists k ∈ (0, 1), such that there holds the inequality

f(Tx)− d ≤ k(f(x)− d) for every x ∈ A ∪B, where f(x) = ∥x− Tx∥.
Then there holds the inequality∥∥x− T 2n+1x

∥∥− d ≤ 1− k2n

1− k2
∥x− T 2x∥+ k2n(f(x)− d). (4.2)

Proof. We will prove Lemma 4.4 by induction.

I) Let n = 1. Form Lemma 4.1 it follows that

∥x− T 3x∥ − d ≤ ∥x− T 2x∥+ ∥T 2x− T 3x∥ − d

= ∥x− T 2x∥+ f(T 2x)− d ≤ ∥x− T 2x∥+ k2(f(x)− d).

and therefore (4.2) holds true for n = 1.
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II) Let suppose that (4.2) holds true for n = p.

III) We will prove that (4.2) holds true for n = p+ 1. Indeed∥∥x− T 2(p+1)+1x
∥∥− d ≤

∥∥x− T 2x
∥∥+

∥∥T 2x− T 2(p+1)+1x
∥∥− d

≤ ∥x− T 2x∥+ k2(∥x− T 2p+1x∥ − d)

≤ ∥x− T 2x∥+ k2
(
1− k2p

1− k2
∥x− T 2x∥+ k2p(f(x)− d)

)
=

1− k2(p+1)

1− k2
∥x− T 2x∥+ k2(p+1)(f(x)− d).

�

Lemma 4.5. Let (X, ∥ · ∥) be a uniformly convex Banach space, A,B ⊂ X be closed, convex sets,

T : A∪B → A∪B be a cyclic map and let there exists k ∈ (0, 1), such that there holds the inequality

f(Tx)− d ≤ k(f(x)− d) for every x ∈ A ∪B, where f(x) = ∥x− Tx∥. Then

a) For every ε > 0 there exists N0 ∈ N, such that for every m ≥ n ≥ N0 there holds the inequality

∥T 2nx− T 2m+1x∥ < d+ ε.

b) For every ε > 0 there exists N0 ∈ N, such that for every m > n ≥ N0 there holds the inequality

∥T 2mx− T 2n+1x∥ < d+ ε.

Proof. a) Put v = T 2nx. Then T 2m+1x = T 2(m−n)+1v. From Lemma 4.4 we have that

∥T 2nx− T 2m+1x∥ − d = ∥v − T 2(m−n)+1v∥ − d

≤ 1− k2(m−n)

1− k2
∥v − T 2v∥+ k2(m−n)(f(v)− d)

≤ 1

1− k2
∥v − T 2v∥+ k2(m−n)(f(v)− d)

=
1

1− k2
∥T 2nx− T 2n+2x∥+ k2(m−n)(∥T 2nx− T 2n+1x∥ − d).

From Lemma 4.3 and Lemma 4.2 it follows that there exists N0 ∈ N, such that for every n ≥ N0

there hold the inequalities ∥T 2nx−T 2n+2x∥ < (1−k2)ε
2 and ∥T 2nx−T 2n+1x∥−d < ε

2 . Consequently

for every m ≥ n ≥ N0 there holds the inequality

∥T 2nx− T 2m+1x∥ − d < ε.

b) Put v = T 2n+1x. Then T 2mx = T 2(m−n)−1v. From Lemma 4.4 we have that

∥T 2n+1x− T 2mx∥ − d = ∥v − T 2(m−n)−1v∥ − d

≤ 1− k2(m−n−1)

1− k2
∥v − T 2v∥+ k2(m−n−1)(f(v)− d)

≤ 1

1− k2
∥v − T 2v∥+ k2(m−n−1)(f(v)− d)

=
1

1− k2
∥T 2n+1x− T 2n+3x∥+ k2(m−n−1)(∥T 2n+1x− T 2n+2x∥ − d).

From Lemma 4.3 and Lemma 4.2 it follows that there exists N0 ∈ N, such that for every n ≥
N0 there hold the inequalities ∥T 2n+1x − T 2n+3x∥ < (1−k2)ε

2 and ∥T 2n+1x − T 2n+2x∥ − d < ε
2 .

Consequently for every m ≥ n ≥ N0 there holds the inequality

∥T 2n+1x− T 2mx∥ − d < ε.

�
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Lemma 4.6. Let (X, ∥ · ∥) be a uniformly convex Banach space, A,B ⊂ X be closed, convex sets,

T : A∪B → A∪B be a cyclic map and let there exists k ∈ (0, 1), such that there holds the inequality

f(Tx)− d ≤ k(f(x)− d) for every x ∈ A ∪B.

Then for every x ∈ A the sequences {T 2nx}∞n=1 and {T 2n+1x}∞n=1 are Cauchy sequences.

Proof. By Lemma 4.2 we have that limn→∞ ∥T 2nx− T 2n+1x∥ = d. By Lemma 4.5 b) we have that

for every ε > 0 there exists N0 ∈ N, such that there holds the inequality

∥T 2mx− T 2n+1x∥ < d+ ε.

for every m ≥ n ≥ N0. According to Lemma 2.2 there exists N1 ∈ N, such that the inequality

∥T 2mx− T 2nx∥ < ε holds for every m > n ≥ N1.

The proof that the sequence {T 2n+1x}∞n=1 is a Cauchy sequence is similar. �

5. Proof of main result

From Lemma 4.2 it follows that inf{f(u) : u ∈ A} = d. Let ε > 0 be arbitrary. We choose

arbitrary x ∈ A. Put u0 = x and un = Tnx = Tun−1, n ∈ N. From Lemma 4.5 it follows that for

every ε > 0 there exists N0 ∈ N, such that the inequality f(u2n) = f(T 2nx) ≤ d + ε = inf{f(u) :
u ∈ A}+ ε holds for every n ≥ N0.

There are two cases:

I) There exists n0 ≥ N0, such that for every w ∈ B there holds the inequality

f(w) ≥ f(u2n0)− ε (∥u2n0 − w∥ − d) .

In this case we put v = u2n0 and the proof is finished.

II) For every n ≥ N0 there exists wn ∈ B, such that

f(wn) < f(u2n)− ε (∥u2n − w∥ − d) .

Then the sets Sn = {w ∈ B : f(w) < f(u2n) − ε(∥u2n − w∥ − d)} are not empty for n ≥ N0. By

Lemma 4.6 the sequence {u2n}∞n=1 is a Cauchy sequence and thus it is convergent to some v ∈ A.

We will show that for every w ∈ B there holds the inequality

f(v) ≤ f(w) + ε(∥v − w∥ − d).

Let us suppose the contrary, i.e there is w ∈ B, such that there holds the inequality

f(w) < f(v)− ε(∥v − w∥ − d). (5.1)

First we will show that if there is w ∈ B, that satisfies (5.1), then ∥v − w∥ > d. If not then from

the lower semi continuity of f and Lemma 4.2 we get

f(w) < f(v)− ε(∥v − w∥ − d) ≤ f(v) ≤ lim
n→∞

f(T 2nx) = d,

which is a contradiction, because f(w) = ∥w − Tw∥ ≥ d for any w ∈ B.

Thus if there exists w ∈ B, that satisfies (5.1), then ∥v − w∥ > d. By limn→∞ u2n = v and the

lower semi continuity of f we obtain the inequality

f(w) < f(v)− ε(∥v − w∥ − d) ≤ lim
n→∞

(f(u2n)− ε(∥u2n − w∥ − d)). (5.2)

We claim that there is N1 ∈ N, such that for every n ≥ N1 there holds the inequality

f(w) < f(u2n)− ε(∥u2n − w∥ − d). (5.3)
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If (5.3) does not hold, then there is a subsequence of naturals {nk}∞k=1, such that

f(w) ≥ f(u2nk
)− ε(∥u2nk

− w∥ − d)

and consequently by the lower semi continuity of f the inequality

f(w) ≥ lim
k→∞

(f(u2nk
)− ε(∥u2nk

− w∥ − d)) ≥ f(v)− ε(∥v − w∥ − d)

should hold, which is a contradiction with (5.2). Thus there is N1 ∈ N, such that (5.3) holds for

every n ≥ N1. Therefore w ∈ Sn for any n ≥ max{N0, N1}.
From Lemma 4.2, the lower semi continuity of f and the construction of the sequence {un}∞n=1

it follows that

f(v) ≤ lim
n→∞

f(u2n) = d ≤ inf
x∈Sn

f(x) ≤ f(w),

which is a contradiction with (5.1), because ∥v − w∥ > d. Consequently for every w ∈ B there

holds the inequality

f(v) ≤ f(w) + ε(∥v − w∥ − d).

6. Applications

Theorem 6.1. Let (X, ∥ · ∥) be a uniformly convex Banach space, A,B ⊂ X be closed, convex sets,

T : A ∪ B → A ∪ B be a cyclic map, f(x) = ∥x − Tx∥ be lower semi continuous function and let

there exists k ∈ (0, 1), such that there holds the inequality

∥Tx− T 2x∥ ≤ k∥x− Tx∥+ (1− k)d (6.1)

for every x ∈ A.

Then there is a best proximity point u ∈ A of T in A, such that T 2u = u.

Proof. Put F (x) = f(x)− d = ∥x− Tx∥ − d. From (6.1) it follows the inequality F (Tx) ≤ kF (x).

Let ε ∈ (0, 1− k) be arbitrary chosen. By Theorem 3.1 it follows that there exists v ∈ A, such that

the inequality f(v) ≤ f(w)+ε(∥v−w∥−d) holds for every w ∈ B and f(v) ≤ inf{f(u) : x ∈ A}+ε.

Let us choose w = Tv ∈ B. Then from the inequality

F (v) = f(v)− d ≤ f(Tv)− d+ ε(∥v − Tv∥ − d) = F (Tv) + εF (v) ≤ kF (v) + εF (v)

we get that (1− k − ε)F (v) ≤ 0. By the choice of ε ∈ (0, 1− k) it follows that F (v) = 0 and thus

v is a best proximity point of the cyclic map T in A.

We will show that T 2v = v, where v ∈ A is a best proximity point for the map T in A. By (6.1)

it follows that

∥Tv − T 2v∥ ≤ k∥v − Tv∥+ (1− k)d = d.

By the uniform convexity of (X, ∥ · ∥) and the choice of v, such that ∥Tv − v∥ = d it follows from

Lemma 2.5 that T 2v = v. �

Let us mention that in order to apply the variational principle we need to impose an additional

condition: the function f(x) = ∥x − Tx∥ to be lower semi continuous. That is why the next

Theorems are weaker variants of the original ones.
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Theorem 6.2. (Cyclic contraction [7]) Let (X, ∥·∥) be a uniformly convex Banach space, A,B ⊂ X

be closed, convex sets, T : A∪B → A∪B be a cyclic map, f(x) = ∥x−Tx∥ be lower semi continuous

function and let there exists k ∈ (0, 1), such that there holds the inequality

∥Tx− Ty∥ ≤ k∥x− y∥+ (1− k)d (6.2)

for every x ∈ A, y ∈ B.

Then there is a unique best proximity point u ∈ A of T in A, such that T 2u = u.

Proof. If we put y = Tx in (6.2) then T satisfies (6.1) and we can apply Theorem 6.1.

It remains to show that v is a unique best proximity point. Let us suppose the contrary, i.e.

there exists u ̸= v, such that ∥u − Tu∥ = d. We can prove in a similar fashion, as it is done in

Theorem 6.1, that T 2u = u. Thus we can write the chain of inequalities

∥u− Tv∥ − d = ∥T 2u− Tv∥ − d ≤ k(∥Tu− v∥ − d)

= k(∥Tu− T 2v∥ − d) ≤ k2(∥u− Tv∥ − d).
(6.3)

From (6.3) it follows that ∥u− Tv∥ = d. Using the fact that ∥v − Tv∥ = d, the uniform convexity

of X and Lemma 2.5 it follows that u = v. �

Theorem 6.3. (Reich type cyclic contraction) Let (X, ∥ · ∥) be a uniformly convex Banach space,

A,B ⊂ X be closed, convex sets, T : A ∪ B → A ∪ B be a cyclic map, f(x) = ∥x − Tx∥ be lower

semi continuous function and let there exists a, b, c ≥ 0, 0 ≤ a+ b+ c < 1, such that there holds the

inequality

∥Tx− Ty∥ ≤ a∥x− y∥+ b∥Tx− x∥+ c∥Ty − y∥+ (1− a− b− c)d (6.4)

for every x ∈ A, y ∈ B.

Then there is a unique best proximity point u ∈ A of T in A, such that T 2u = u.

Proof. If we put y = Tx in (6.4) we get

∥Tx− T 2x∥ ≤ a∥x− Tx∥+ b∥Tx− x∥+ c∥T 2x− Tx∥+ (1− a− b− c)d

≤ c∥T 2x− Tx∥+ (a+ b)∥Tx− x∥+ (1− a− b− c)d.

Thus

∥Tx− T 2x∥ ≤ a+ b

1− c
∥Tx− x∥+ 1− c− (a+ b)

1− c
d

=
a+ b

1− c
∥Tx− x∥+

(
1− a+ b

1− c

)
d.

(6.5)

From 0 ≤ a+ b+ c < 1 it follows that a+b
1−c ∈ (0, 1) and therefore T satisfies (6.1) and we can apply

Theorem 6.1.

It remains to show that v is a unique best proximity point of T in A. Let us suppose the contrary,

i.e. there exists u ̸= v, such that ∥u− Tu∥ = d. We can prove in a similar fashion, as it is done in

Theorem 6.1, that T 2u = u. Thus we can write the chain of inequalities

∥u− Tv∥ − d = ∥T 2u− Tv∥ − d

≤ a(∥Tu− v∥ − d) + b(∥T 2u− Tu∥ − d) + c(∥Tv − v∥ − d)

= a(∥Tu− v∥ − d) + b(∥u− Tu∥ − d

= a(∥Tu− v∥ − d) = a(∥Tu− T 2v∥ − d)

≤ a2(∥u− Tv∥ − d) + ab(∥Tu− u∥ − d) + ac(∥T 2v − Tv∥ − d)

= a2(∥u− Tv∥ − d) + ac(∥v − Tv∥ − d) = a2(∥u− Tv∥ − d).

(6.6)



8 M. IVANOV, B. ZLATANOV, N. ZLATEVA

From (6.6) it follows that ∥u− Tv∥ = d. Using the fact that ∥v − Tv∥ = d, the uniform convexity

of X and Lemma 2.5 it follows that u = v. �

Theorem 6.4. (Kannan type cyclic contraction [13]) Let (X, ∥ · ∥) be a uniformly convex Banach

space, A,B ⊂ X be closed, convex sets, T : A ∪ B → A ∪ B be a cyclic map, f(x) = ∥x − Tx∥ be

lower semi continuous function and let there exists k ∈ (0, 1/2), such that there holds the inequality

∥Tx− Ty∥ ≤ k(∥Tx− x∥+ ∥Ty − y∥) + (1− 2k)d (6.7)

for every x ∈ A, y ∈ B.

Then there is a unique best proximity point u ∈ A of the cyclic map T in A, such that T 2u = u.

Proof. Kannan type cyclic contraction is a particular case of Reich type cyclic contraction with

a = 0 and b = c = k. �

Various types of contractive maps can be found in [1, 14]. We have tried to extend the results

on best proximity points for some classical contractive maps.

Theorem 6.5. (Ciric type cyclic contraction) Let (X, ∥ · ∥) be a uniformly convex Banach space,

A,B ⊂ X be closed, convex sets, T : A ∪ B → A ∪ B be a cyclic map, f(x) = ∥x − Tx∥ be lower

semi continuous function and let there exists k ∈ (0, 1), such that there holds the inequality

∥Tx− Ty∥ ≤ kM(x, y) + (1− k)d (6.8)

for every x ∈ A, y ∈ B, where M(x, y) = max{∥x− y∥, ∥Tx− x∥, ∥Ty − y∥}.
Then there is a unique best proximity point u ∈ A of T in A, such that T 2u = u.

Proof. If we put y = Tx in (6.8) we get the inequality

∥Tx− T 2x∥ ≤ kM(x, Tx) + (1− k)d ≤ kmax{∥Tx− x∥, ∥T 2x− Tx∥}+ (1− k)d.

If there holds M(x, Tx) = ∥T 2x− Tx∥ we get that ∥Tx− T 2x∥ = d and thus

∥Tx− T 2x∥ = d ≤ k∥x− Tx∥+ (1− k)d. (6.9)

If there holds M(x, Tx) = ∥x− Tx∥ we get that

∥Tx− T 2x∥ ≤ k∥Tx− x∥+ (1− k)d. (6.10)

Therefore from (6.9) and (6.10) it follows that T satisfies (6.1) and we can apply Theorem 6.1.

To prove that T 2v = v, where v is a best proximity point of T in A we use the inequality

∥Tv − T 2v∥ − d ≤ k(M(v, Tv)− d)

= k(max{∥Tv − v∥, ∥T 2v − Tv∥} − d)

= k(∥T 2v − Tv∥ − d).

to obtain that ∥T 2v − Tv∥ = d. By the uniform convexity of (X, ∥ · ∥) and the choice of v, such

that ∥Tv − v∥ = d it follows from Lemma 2.5 that T 2v = v.

It remains to show that v is a unique best proximity point of T in A. Let us suppose the contrary,

i.e. there exists u ̸= v, such that ∥u− Tu∥ = d. We can prove in a similar fashion, as it is done in

Theorem 6.1, that T 2u = u. Thus we can write the inequality

∥u− Tv∥ − d = ∥T 2u− Tv∥ − d ≤ k(M(Tu, v)− d) (6.11)
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There are two cases: I) M(Tu, v) = ∥T 2u− Tu∥ = ∥u− Tu∥ = d or M(Tu, v) = ∥Tv − v∥ = d;

II) M(Tu, v) = ∥Tu− v∥.
I) If there holds M(Tu, v) = ∥T 2u − Tu∥ or M(Tu, v) = ∥Tv − v∥ then from (6.11) we get the

inequality

∥u− Tv∥ − d ≤ k(M(Tu, v)− d) = 0 (6.12)

and consequently ∥u−Tv∥ = d. Using the fact that ∥v−Tv∥ = d, the uniform convexity of X and

Lemma 2.5 it follows that u = v.

II) If there holds M(Tu, v) = ∥Tu− v∥ then from (6.11) we can write the inequality

∥u− Tv∥ − d ≤ k(∥Tu− v∥ − d) = k(∥Tu− T 2v∥ − d) ≤ k2(M(u, Tv)− d). (6.13)

There are two subcases: II.1) M(u, Tv) = ∥Tu−u∥ = d or M(u, Tv) = ∥T 2v−Tv∥ = ∥v−Tv∥ =

d; II.2) M(u, Tv) = ∥u− Tv∥.
II.1) If there holds M(u, Tv) = ∥Tu − u∥ or M(u, Tv) = ∥T 2v − Tv∥ then from (6.13) we get

the inequality

∥u− Tv∥ − d ≤ k2(M(u, Tv)− d) = 0 (6.14)

and consequently ∥u−Tv∥ = d. Using the fact that ∥v−Tv∥ = d, the uniform convexity of X and

Lemma 2.5 it follows that u = v.

II.2) If there holds M(u, Tv) = ∥u− Tv∥ then from (6.13) we get the inequality

∥u− Tv∥ − d ≤ k2(∥u− Tv∥ − d). (6.15)

From (6.15) it follows that ∥u−Tv∥ = d. Using the fact that ∥v−Tv∥ = d, the uniform convexity

of X and Lemma 2.5 it follows that u = v. �

Theorem 6.6. (Hardy and Rogers type cyclic contraction) Let (X, ∥ · ∥) be a uniformly convex

Banach space, A,B ⊂ X be closed, convex sets, T : A∪B → A∪B be a cyclic map, f(x) = ∥x−Tx∥
be lower semi continuous function and let there exists p, q ≥ 0, 0 ≤ p + 2q < 1, such that there

holds the inequality

∥Tx− Ty∥ ≤ p∥x− y∥+ q∥Tx− y∥+ q∥Ty − x∥+ (1− p− 2q)d (6.16)

for every x ∈ A, y ∈ B.

Then there is a best proximity point u ∈ A of T in A, such that T 2u = u.

Proof. If we put y = Tx in (6.16) we get the inequality

∥Tx− T 2x∥ ≤ p∥x− Tx∥+ q∥T 2x− x∥+ (1− p− 2q)d

≤ p∥Tx− x∥+ q∥T 2x− Tx∥+ q∥Tx− x∥+ (1− p− 2q)d.

Thus

∥Tx− T 2x∥ ≤ p+ q

1− q
∥Tx− x∥+ 1− p− 2q

1− q
d =

p+ q

1− q
∥Tx− x∥+

(
1− p+ q

1− q

)
d. (6.17)

From 0 ≤ p + 2q < 1 it follows that p+q
1−q ∈ (0, 1) and therefore T satisfies (6.1) and we can apply

Theorem 6.1. �
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Theorem 6.7. (Chatterjee type cyclic contraction) Let (X, ∥ · ∥) be a uniformly convex Banach

space, A,B ⊂ X be closed, convex sets, T : A ∪ B → A ∪ B be a cyclic map, f(x) = ∥x − Tx∥ be

lower semi continuous function and let there exists k ∈ (0, 1/2), such that there holds the inequality

∥Tx− Ty∥ ≤ k(∥Tx− y∥+ ∥Ty − x∥) + (1− 2k)d (6.18)

for every x ∈ A, y ∈ B.

Then there is a best proximity point u ∈ A of T in A, such that T 2u = u.

Proof. Chatterjee type cyclic contraction is a particular case of Hardy and Rogers type cyclic

contraction with p = 0 and q = k. �

Theorem 6.8. (Zamfirescu type cyclic contraction) Let (X, ∥ · ∥) be a uniformly convex Banach

space, A,B ⊂ X be closed, convex sets, T : A ∪ B → A ∪ B be a cyclic map, f(x) = ∥x − Tx∥ be

lower semi continuous function and let there exist α ∈ (0, 1) and β, γ ∈ (0, 1/2), such that for each

x ∈ A, y ∈ B, at least one of the following is true:

∥Tx− Ty∥ ≤ α∥x− y∥+ (1− α)d; (6.19)

∥Tx− Ty∥ ≤ β(∥Tx− x∥+ ∥Ty − y∥) + (1− 2β)d; (6.20)

∥Tx− Ty∥ ≤ γ(∥Tx− y∥+ ∥Ty − x∥) + (1− 2γ)d. (6.21)

Then there is a best proximity point u ∈ A of T in A, such that T 2u = u.

Proof. If (6.20) holds, then from (6.5) with a = 0 and b = c = β we get the inequality ∥Tx −
T 2x∥ − d ≤ β

1−β (∥x − Tx∥ − d). If (6.21) holds, then from (6.17) with p = 0 and q = γ we get

∥Tx− T 2x∥ − d ≤ γ
1−γ (∥x− Tx∥ − d). Therefore the following inequality

∥Tx− T 2x∥ − d ≤ λ(∥x− Tx∥ − d) (6.22)

holds true, where λ := max
{
α, β

1−β ,
γ

1−γ

}
.

From 0 ≤ λ < 1 it follows that T satisfies (6.1) and we can apply Theorem 6.1. �

We would like to pose an open question if the best proximity point for Hardy and Rogers,

Chatterjee or Zamfirescu type cyclic contraction is unique.
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