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wide class of weight sequences w = {wn}∞n=1. An example is constructed, where M has not
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1 Introduction

The weakly convergent sequence coefficient WCS(X) of a Banach space X was in-
troduced by Bynum in [4]. The connections of the coefficient WCS(X) with some
geometric parameters were investigated in [4], [28], [16], [20]. The notation of normal
structure was introduced by Brodskii and Milman in [3]. It is well known that a Banach
space with normal structure has the weak fixed point property [1], [4], [9], [20]. A re-
flexive Banach space X with WCS(X) > 1 has normal structure [4] and consequently
it has the weak fixed point property, which means that each nonexpansive mapping of
nonempty convex weakly compact set in X has fixed point [15].

Banach space with WCS(X) > 1 is said to have weak uniform normal structure
or some authors prefer to say that X is a Bynum’s space.

If X is a monotone complete Köthe sequence space and WCS(X) > 1 then X
is order continuous [7]. It is shown in [24] that Bynum’s condition implies strong
subsequential property (P) which in turn implies subsequential property (P). In the
same article it is proved that for an Asplund spaces Bynum’s condition is equivalent
to subsequential property (P).

If WCS(X) > 1 then X has weakly normal structure and thus any nonexpansive
mapping defined on convex weakly compact subsets of X has a fixed point [2].

A large class of Banach spaces verify Bynum’s condition. Let us just mention the
spaces with uniform normal structure and uniformly convex spaces. In [6] it is proved
that an Orlicz sequence spaces equipped with Luxemburg or Amemiya norm has weak
uniform normal structure iff M has ∆2–condition.

T. Kim and E. Kim have found a sufficient condition for asymptotically regular
maps T : C → C to have iterative fixed point for Banach spaces X with WCS(X) > 1,
where C is a nonempty closed convex subset of X [14].

Let us mention that the weakly convergent sequence constant WCS depends on
the norm, i.e. it can change in equivalent renormings. The exact value of WCS is found
for some Banach spaces, equipped with the usual norms. For p ≥ 1 WCS(`p) = 21/p [4]
and WCS(Lp(Ω)) = min{21/p, 21−1/p} [22]. For a Hilbert space H it is well known that
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WCS(H) = 21/2 and WCS(c0) = 1. A formula for calculating the WCS coefficient
of reflexive Orlicz and Musielak–Orlicz sequence spaces equipped with Luxemburg or
Amemiya norm is found in [6] and [27], respectively.

2 Preliminaries

We use the standard Banach space terminology from [17]. Let X be a real Banach
space, SX be the unit sphere of X. Let `0 stand for the space of all real sequences i.e.
x = {xi}∞i=1 ∈ `0, N is the set of natural numbers and R is the set of the real numbers.

For a sequence {x(n)}∞n=1 of X, we define

A({x(n)}) = lim sup
n→∞

{‖x(i) − x(j)‖ : i, j ≥ n, i 6= j}

and
A1({x(n)}) = lim inf

n→∞ {‖x(i) − x(j)‖ : i, j ≥ n, i 6= j}.
Definition 2.1 The weakly convergent sequence coefficient of X, denoted by WCS(X),
is defined as follows:

WCS(X) = sup{k : for each weakly convergent sequence {x(n)}∞n=1, there exists

some y ∈ co({x(n)}∞n=1) such that k lim sup
n→∞

‖x(n) − y‖ ≤ A({x(n)})},

where co({x(n)}∞n=1) denotes the convex hull of the elements of {x(n)}∞n=1.

It is easy to see that 1 ≤ WCS(X) ≤ 2.
Recall that a Banach space has Schur property if every weakly null sequence is

norm null. We will assume in the sequel that the Banach spaces, we investigate are not
Schur spaces. Thus there exists a weakly null sequence {x(n)}∞n=1 ∈ X, which is not

norm null. We will use the notation x(n) w−→ 0 to indicate that {x(n)}∞n=1 converges
weakly to zero.

Definition 2.2 [28] A sequence {xn}∞n=1 is said to be asymptotic equidistant sequence
if A({x(n)}) = A1({x(n)}).
The result that

WCS(X) = inf{A({x(n)}) : {x(n)}∞n=1 ⊂ SX , A({x(n)}) = A1({x(n)}), x(n) w−→ 0}
is obtained in [28].

Definition 2.3 A Banach space X is said to have weak uniform normal structure if
WCS(X) > 1 [11].

Definition 2.4 A Banach space (X, ‖ · ‖) is said to be Köthe sequence space if X is a
subspace of `0 such that

i) If x ∈ `0, y ∈ X and |xi| ≤ |yi| for all i ∈ N then x ∈ X and ‖x‖ ≤ ‖y‖;
ii) There exists an element x ∈ X such that xi > 0 for all i ∈ N.
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A sequence {vi}∞i=1 in a Banach space X is called Schauder basis of X (or basis
for short) if for each x ∈ X there exists an unique sequence {ai}∞i=1 of scalars such

that x =
∞∑

i=1

aivi. If {vi}∞i=1 is a basis in X such that the series
∞∑

i=1

aivi converges

whenever sup
n∈N

∥∥∥∥∥
n∑

i=1

aivi

∥∥∥∥∥ < ∞, then it is called a boundedly complete basis of X. A

sequence of non zero vectors {x(n)}∞n=1 of the form
pn+1∑

i=pn+1

aivi, with {ai}∞i=1 scalars and

0 = p1 < p2 < p3 . . . an increasing sequence of integers is called a block basic sequence
or block basis of {vi}∞i=1 for short. By {ei}∞i=1 we denote the unit vectors.

The main tool in this note will be the next theorem:

Theorem 1 ([6])Let X be a Köthe sequence space with {ei}∞i=1–boundedly complete
basis. Then

WCS(X) = inf



A({x(n)}) : x(n) =

pn+1∑

i=pn+1

xn(i)ei ∈ SX , xn
w−→ 0, 0 = p1 < p2 < p3 . . .



 .

Let us recall that an Orlicz function M is an even, continuous, nondecreasing
convex function such that M(0) = 0. We say that M is non–degenerate Orlicz function
if M(t) > 0 for every t > 0. A sequence Φ = {Φi}∞i=1 of Orlicz functions is called a
Musielak–Orlicz function or a MO function in short.

The MO sequence space `Φ, generated by a MO function Φ is the set of all real
sequences {xi}∞i=1 such that

∑∞
i=1 Φi(λxi) < ∞ for some λ > 0. The space `Φ is a

Banach space if endowed with the Luxemburg’s norm:

‖x‖Φ = inf

{
r > 0 :

∞∑

i=1

Φi(xi/r) ≤ 1

}

or Amemiya’s norm:

|x|Φ = inf

{
1

k

(
1 +

∞∑

i=1

Φi(kxi)

)
: k > 0

}
.

These norms are connected by the inequalities

‖ · ‖Φ ≤ | · |Φ ≤ 2‖ · ‖Φ.(1)

Throughout this note we always denote by M an Orlicz function and by Φ a
MO–function.

If the MO function Φ consists of one and the same Orlicz function M we get the
Orlicz sequence space denoted by `M .

A weight sequence w = {wi}∞i=1 is a sequence of positive reals. We will distinguish
two classes of weighted sequences Λ∞ and Λ. The weight sequence w = {wi}∞i=1 is from
the class Λ∞ if it is nondecreasing sequence with lim

i→∞
wi = ∞. Following [10] we say
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that w = {wi}∞i=1 is from the class Λ if there exists a subsequence w = {wik}∞k=1 such

that lim
k→∞

wik = 0 and
∞∑

k=1

wik = ∞.

A weighted Orlicz sequence space `M(w) generated by an Orlicz function M and
a weight sequence w is the MO sequence space `Φ, where Φi(t) = wiM(t).

Weighted Orlicz sequence spaces were investigated for example in [8], [21] and
most recently in [13]. Let us mention that if the weight sequence is from the class Λ,
then a lot of the properties of the space `M(w) depend only on the generating Orlicz
function M , which is in contrast with the results when w 6∈ Λ [10], [23], [18].

It is well known that the Orlicz and the weighted Orlicz sequence spaces equipped
with Luxemburg or Amemiya norms are Köthe sequence spaces.

For simplicity of notations we will use Φ̃(x) =
∞∑

i=1

Φi(xi) and M̃w(x) =
∞∑

i=1

wiM(xi).

An extensive study of Orlicz and MO spaces can be found in [17], [25].
We denote by hΦ the closed linear subspace of `Φ, generated by all x ∈ `Φ, such

that Φ̃(λxi) < ∞ for every λ > 0 and by hM(w) the subspace of `M(w) such that
M̃w(λx) < ∞ for every λ > 0.

The unit vectors {ei}∞i=1 is a boundedly complete basis in hΦ, equipped with the
Luxemburg or Amemiya norm.

We say that M has ∆2–condition if there exist C > 1 and t0 > 0 such that
M(2t) ≤ CM(t) for every t ∈ (0, t0].

If w ∈ Λ then the spaces `M(w) and hM(w) coincide iff M ∈ ∆2. The proof is
similar to that done in ([17] Proposition 4.a.4).

To every Orlicz function M the following number is associated (see [17], p. 143)

βM = inf{p : inf{M(uv)/upM(v) : u, v ∈ (0, 1]} > 0}.

An Orlicz function M satisfies the ∆2–condition iff βM < ∞, which implies of course
M(uv) ≥ uqM(v), u, v ∈ [0, 1] for some q ≥ βM (see [17] p.140).

Definition 2.5 We say that the MO function Φ satisfies the δ2–condition if there exist
constants K, β > 0 and a non–negative sequence {cn}∞n=1 ∈ `1 such that for every n ∈ N

Φn(2t) ≤ KΦn(t) + cn,(2)

provided t ∈ [0, Φ−1
n (β)].

The spaces `Φ and hΦ coincide iff Φ has δ2–condition.
We say that the MO function Φ satisfies the uniform δ2–condition if it satisfies (2)

for every t ∈ [0, t0] for some t0 > 0 with cn = 0 for every n ∈ N.
Recall that given MO functions Φ and Ψ the spaces `Φ and `Ψ coincide with

equivalence of norms iff Φ is equivalent to Ψ, that is there exist constants K, β > 0
and a non–negative sequence {cn}∞n=1 ∈ `1, such that for every n ∈ N the inequalities

Φn(Kt) ≤ Ψn(t) + cn and Ψn(Kt) ≤ Φn(t) + cn

hold for every t ∈ [0, min(Φ−1
n (β), Ψ−1

n (β))], [12] and [19].
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If Φi(1) = 1 for every i ∈ N then the unit vectors {ei}∞i=1 is a normalized boundedly
complete basis in hΦ. If Φi(1) 6= 1, let ai be the solution of the equation Φi(ai) = 1,
i ∈ N then `Φ, equipped with the Luxemburg or Amemiya norm, is isometric to `ϕ,

where the MO function ϕ is defined by the sequence ϕi(t) =
Φi(ait)

Φi(ai)
. Therefore the

sequence vi = aiei, i ∈ N is a normalized boundedly complete basis in hΦ. The unit
vector basis {ei}∞i=1 is a boundedly complete basis in `ϕ iff `ϕ

∼= hϕ. The weighted
Orlicz sequence space `M(w) is isometric to `ϕ, where the MO function ϕ is defined by

ϕi(t) =
M(ait)

M(ai)
, ai = M−1(1/wi).(3)

Hence `M(w) ∼= hM(w) iff `ϕ
∼= hϕ and y =

∑∞
i=1 xiei ∈ hϕ iff x =

∑∞
i=1 aixiei ∈ hM(w).

As the spaces `M(w) and `ϕ are isometric then WCS(`M(w)) = WCS(`ϕ) and if
`M(w) ∼= hM(w) according to Theorem 1 there exist weakly null sequences {x(n)}∞n=1,

{y(n)}∞n=1, x(n) =
∑pn+1

i=pn+1 aix
(n)
i ei ∈ S`M (w) and y(n) =

∑pn+1

i=pn+1 x
(n)
i ei ∈ S`ϕ , such that

WCS(`M(w))− ε ≤ A({x(n)}) = A({y(n)}) ≤ WCS(`M(w)) + ε.

Definition 2.6 ([26]) A MO function Φ is said to satisfy the uniform ∆2–condition
if there exist q ≥ 1 and i0 ∈ N, such that for all t ∈ (0, 1] and i ≥ i0 we have

tpi(t)

Φi(t)
≤ q,(4)

where pi is the right derivative of Φi.

Let `M(w) ∼= hM(w) then `ϕ
∼= hϕ, where ϕ = {ϕi}∞i=1 is defined in (3). Now

following the construction done by Woo ([26] Theorem 3.5) there exist m ∈ N and a
sequence {xi}∞i=1, such that

∑∞
i=1 ϕi(xi) < ∞ and

xp′i(x) ≤ 2mϕi(x) for every x ∈ [xi, 1],(5)

where p′i is the right derivative of ϕi. After choosing yi to be the solution of the equation
ϕi(yi) = ϕi(xi) + 2−i, i ∈ N we get that
1)

∑∞
i=1 ϕi(yi) < ∞;

2) the MO function Ψ = {Ψi}∞i=1, defined by

Ψi(t) =





ϕi(t), t ≥ yi

tϕi(yi)

yi

, t ≤ yi

(6)

has the uniform ∆2–condition with i0 = 1.
By the inequalities ϕi(t) ≤ Ψi(t) and Ψi(t) ≤ ϕi(t) + ϕi(yi) for every t ≥ 0 it

follows that Ψ is equivalent to ϕ and therefore `M(w) ∼= `Ψ.
Throughout this note we will denote by Ψ and y = {yi}∞i=1 the MO function and

the sequence defined in (6) and by ϕ = {ϕi}∞i=1 the MO function defined in (3).
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3 Main result

Theorem 2 Let M be an Orlicz function such that lim
t→0

M(t)

t
= 0 and w = {wi}∞i=1 be

a weight sequence either form the class Λ or Λ∞. Then the weighted Orlicz sequence
space `M(w) endowed with the Luxemburg or Amemiya norm has weak uniform normal
structure iff `M(w) ∼= hM(w).

4 Auxiliary results

We need the following results:

Theorem 3 [5] A sequence {x(n)}∞n=1 in `M(w) is weakly null iff

(a) lim
n→∞x

(n)
i = 0 for all i ∈ N;

(b) lim
λ→0

sup
n∈N

M̃w(λx(n))

λ
= 0;

(c) For any subsequence {x(nk)}∞k=1 of {x(n)}∞n=1 holds: lim
m→∞ θ(min

k≤m
|x(nk)|) = 0,

where θ(x) = inf
{
λ > 0 : M̃(x/λ) < ∞

}
and min

k≤m
|x(nk)| =

{
min
k≤m

|x(nk)
i |

}∞

i=1

.

Lemma 4.1 Let `M(w) be a weighted Orlicz sequence space, generated by an Orlicz

function M such that lim
t→0

M(t)

t
= 0 and a weight sequence w ∈ Λ. Then any block basic

sequence xn =
pn+1∑

i=pn+1

αei with constant coefficients, such that sup
n∈N

pn+1∑

i=pn+1

wi ≤ K < ∞
is a weakly null sequence.

Proof: We need to check the conditions in Theorem 3.
Obviously for any block basic sequence holds limn→∞ x

(n)
i = 0 for every i ∈ N and

by mink≤m |x(nk)| = 0 it follows that θ(min
k≤m

|x(nk)|) = 0 for every m ∈ N.

By lim
t→0

M(t)

t
= 0 it follows that for every ε > 0 there exists t0 > 0 such that for

every t ∈ (0, t0] holds
M(t)

t
<

ε

αK
. Then for any λ > 0 such that 0 < αλ ≤ t0 the

inequalities hold

M̃w(λx(n))

λ
=

pn+1∑

i=pn+1

wi
M(λα)

λ
=

pn+1∑

i=pn+1

wi
M(λα)

λα
α <

ε

αK

pn+1∑

i=pn+1

wiα ≤ ε.

Therefore

lim
λ→0

sup
n∈N

M̃w(λx(n))

λ
= 0.

¤

Remark: Lemma 4.1 holds true for any block basic sequence x(n) =
pn+1∑

i=pn+1

αiei

with sup
i∈N

|αi| ≤ α < ∞.
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Lemma 4.2 Let `M(w) be a weighted Orlicz sequence space, generated by an Orlicz

function M such that lim
t→0

M(t)

t
= 0 and a weight sequence w ∈ Λ∞. Then any block

basic sequence y(n) =
pn+1∑

i=pn+1

y
(n)
i ei, such that sup

n∈N

pn+1∑

i=pn+1

wiM(y
(n)
i ) ≤ C < ∞ is a weakly

null sequence.

Proof: Conditions (a) and (c) in Theorem 3 are fulfilled as like as in Lemma 4.1.

Observe that by the fact that
M(tu)

tM(u)
is an increasing function of u ∈ (0, +∞) [17]

it follows that for any ε > 0 there exists t0 > 0 so that for every t ∈ (0, t0] and u ∈ (0, 1]
holds

M(tu)

tM(u)
≤ M(t)

t
< ε/C.(7)

Consequently by (7) and the fact that |yn(i)| ≤ 1 for n ∈ N and i = pn + 1, . . . , pn+1

we get

M̃w(ty(n))

t
=

pn+1∑

i=pn+1

wi
M(ty

(n)
i )

t
=

pn+1∑

i=pn+1

wi
M(ty

(n)
i )

tM(y
(n)
i )

M(y
(n)
i )

<
ε

C

pn+1∑

i=pn+1

wiM(y
(n)
i ) ≤ ε.

¤
In the case when we want to prove WCS(`M(w)) = 1 for w ∈ Λ, WLOG we may

assume that limn→∞ wn = 0 and
∑∞

n=1 wn = ∞. If not we may consider the subspace
`M({wnk

}) ↪→ `M(w) and if we show that WCS(`M({wnk
})) = 1 by the inequality

WCS(`M({wnk
})) ≥ WCS(`M(w)) it will follow WCS(`M(w)) = 1.

Lemma 4.3 Let (`M(w), | · |) be a weighted Orlicz sequence space, generated by an
Orlicz function M 6∈ ∆2 and a weight sequence w ∈ Λ. Then for any ε > 0 there exists
a sequence {y(n)}∞n=1, |y(n)| = 1 such that

A({y(n)}) ≤ (1 + ε)(1 + 4M(2ε) + 4ε).

Proof: Let w ∈ Λ and `M(w) be equipped with the Amemiya’s norm | · |. By M 6∈ ∆2

it follows that for any ε > 0 there is u > 0 such that u < ε and εM((1 + ε)u) > M(u).

Setting v = (1 + ε)u, we get the inequality M
(

v

1 + ε

)
< εM(v).

Since v < 2ε we can find a positive integer m and δ > 0 such that

1−M(2ε) < mM(v) ≤ 1 and (m + δ)M(v) < 2.

Take c ≥ 0 satisfying mM(v) + M(c) = 1. Then M(c) < M(2ε).
Choose two sequences of naturals {pn}∞n=1 and {qn}∞n=1 such that

p1 < q1 < p2 < q2 < . . . < pn < qn < pn+1 < . . .
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and

1 ≤
qn∑

i=pn+1

wi ≤ 1 + δ m ≤
pn+1∑

i=qn+1

wi ≤ m + δ.

Put

x(n) =
qn∑

i=pn+1

cei +
pn+1∑

i=qn+1

vei.(8)

By
qn∑

i=pn+1

wiM(c) +
pn+1∑

i=qn+1

wiM(v) ≥ M(c) + mM(v) = 1

it follows that |x(n)|M ≥ 1. Put z(n) =
x(n)

|x(n)|M . By Lemma 4.1 the sequence {z(n)}∞n=1

is normalized weakly null sequence. Finally we estimate A({z(n)}):
∣∣∣∣∣
z(n) − z(k)

1 + ε

∣∣∣∣∣
M

=

∣∣∣∣∣
z(n) + z(k)

1 + ε

∣∣∣∣∣
M

=

∣∣∣∣∣
1

1 + ε

(
x(n)

|x(n)|M +
x(k)

|x(k)|M

)∣∣∣∣∣
M

≤
∣∣∣∣∣
x(n) + x(k)

1 + ε

∣∣∣∣∣
M

≤ 1 +
qn∑

i=pn+1

wiM


 x

(n)
i

1 + ε


 +

pn+1∑

i=qn+1

wiM


 x

(n)
i

1 + ε




+
qk∑

i=pk+1

wiM


 x

(k)
i

1 + ε


 +

pk+1∑

i=qk+1

wiM


 x

(k)
i

1 + ε




= 1 +




qn∑

i=pn+1

wi +
qk∑

i=pk+1

wi


 M

(
c

1 + ε

)

+




pn+1∑

i=qn+1

wi +
pk+1∑

i=qk+1

wi


 M

(
v

1 + ε

)

≤ 1 + 2(1 + δ)M(c) + 2(m + δ)εM(v) ≤ 1 + 4M(2ε) + 4ε.

Therefore A({z(n)}∞n=1) ≤ (1 + ε)(1 + 4M(2ε) + 4ε). ¤

Lemma 4.4 Let (`M(w), | · |) be a weighted Orlicz sequence space, generated by an
Orlicz function M and a weight sequence w ∈ Λ∞, such that `M(w) 6∼= hM(w). Then
for any ε > 0 there exists a sequence {z(n)}∞n=1, |z(n)| = 1 such that

A({z(n)}) ≤ (1 + ε)(1 + ε).

Proof: Let the an be the solution of the equation wnM(an) = 1, n ∈ N. By `M(w) 6∼=
hM(w) it follows that for every ε > 0 there exists x = {xi}∞i=1 such that

∞∑

i=1

wiM(aixi) = ∞ and
∞∑

i=1

wiM
(

aixi

1 + ε

)
< ∞.(9)

By (9) there is a block basic sequence y(n) =
pn+1∑

i=pn+1

aixiei, so that 1 ≤ M̃w(y(n)) < 2

and there exists n0 ∈ N, such that for every n ≥ n0 holds M̃w

(
y(n)

1 + ε

)
< ε/2.
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Put z(n) =
y(n)

|y(n)|M . By Lemma 4.2 the sequence {z(n)}∞n=1 is weakly null normalized

sequence. Then for any n, k ≥ n0, n 6= k
∣∣∣∣∣
z(n) − z(k)

1 + ε

∣∣∣∣∣
M

=

∣∣∣∣∣
1

1 + ε

(
y(n)

|y(n)|M +
y(k)

|y(k)|M

)∣∣∣∣∣
M

≤
∣∣∣∣∣
y(n) + y(k)

1 + ε

∣∣∣∣∣
M

≤ 1 +
pn+1∑

i=pn+1

wiM
(

aixi

1 + ε

)
+

pk+1∑

i=pk+1

wiM
(

aixi

1 + ε

)
≤ 1 + ε.

Therefore A({z(n)}) ≤ (1 + ε)(1 + ε). ¤

5 Proof of the main result

Sufficiency: Suppose that `M(w) 6∼= hM(w). If w ∈ Λ or w ∈ Λ∞ then by Lemma 4.3
or Lemma 4.4, respectively it follows that WCS((`M(w), | · |M)) = 1. Consequently by
(1) it follows WCS((`M(w), ‖ · ‖M)) ≤ WCS((`M(w), | · |M)) = 1.

Necessity: Let (`M(w), ‖ · ‖M) has not weak uniform normal structure i.e.
WCS((`M(w), ‖ · ‖M)) = 1.

Let first w ∈ Λ. Let suppose the contrary i.e. `M(w) ∼= hM(w). According to
Theorem 1 for any 0 < ε < 1/2 there exists a block basic sequence {x(n)}∞n=1

x(n) =
pn+1∑

i=pn+1

x
(n)
i ei ∈ S(`M (w),‖·‖M )(10)

such that 1 ≤ A({x(n)}) ≤ 1 + ε/2 and x(n) w−→ 0. By the definition of A({x(n)}) it
follows that for every ε > 0 there is N1 ∈ N such that for every m, s ≥ N1, m 6= s the
inequality ‖x(m) − x(s)‖M ≤ A({x(m)}) + ε/2 ≤ 1 + ε holds.

By `M(w) ∼= hM(w) it follows that M has the ∆2–condition, therefore for some
q > βM the inequality M(uv) ≥ uqM(v) holds for every u, v ∈ [0, 1]. There exists δ > 0

such that
(

1

1 + δ

)q

≥ 1/2.

Hence for m, s ≥ N1, m 6= s and by the definition of the Luxemburg’s norm in
`M(w) we get the chain of inequalities:

M̃w

(
x(m) − x(s)

1 + δ

)
=

pm+1∑

i=pm+1

wiM


 x

(m)
i

1 + δ


 +

ps+1∑

i=ps+1

wiM


 x

(s)
i

1 + δ




≥
(

1

1 + δ

)q (
M̃w(x(m)) + M̃w(x(s))

)
≥ 1.

Thus 1 + ε ≥ ‖x(m) − x(s)‖ ≥ 1 + δ, which is a contradiction with the choice of an
arbitrary small ε > 0. Therefore `M(w) 6∼= hM(w).

Let now w ∈ Λ∞. Let suppose the contrary i.e. `M(w) ∼= hM(w). By the fact that
`M(w) is isometric to `ϕ and Theorem 1 it follows that for any 0 < ε < 1/2 there exists
a block basic sequences {x(n)}∞n=1 and {y(n)}∞n=1

y(n) =
∞∑

i=1

xiei ∈ S`ϕ x(n) =
∞∑

i=1

aixiei ∈ S`M (w),(11)
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such that 1 ≤ A({x(n)}) = A({y(n)}) ≤ 1+ε/2 and x(n), y(n) w−→ 0. By the definition of

A({x(n)}) it follows that for every ε > 0 there is N1 ∈ N such that for every m, s ≥ N1,
m 6= s the inequality ‖x(m) − x(s)‖M ≤ A({x(m)}) + ε/2 ≤ 1 + ε holds.

According to [26] `M(w) ∼= `Ψ, where Ψ is defined in (6). By the fact that Ψi

satisfies (4) for every i ∈ N it follows that for some q the inequality Ψi(uv) ≥ uqΨi(v)
holds for every u, v ∈ [0, 1] and every i ∈ N ([17] p.140). There exists δ > 0 such that(

1

1 + δ

)q

≥ 3

4
.

By the convergence of
∑∞

i=1 ϕi(yi) it follows that there is N2 ∈ N, N2 ≥ N1,

such that for every m ≥ N2 holds
∞∑

i=m

ϕi(yi) < 1/2. Observe that pm ≥ m and thus

∞∑

i=pm

ϕi(yi) ≤
∞∑

i=m

ϕi(yi) < 1/2 for every m ≥ N2.

Hence for m, s ≥ N2, m 6= s and by the definition of the Luxemburg norm in
`M(w) and the definition of the MO function Ψ in (6) we get the chain of inequalities

M̃w

(
x(m) − x(s)

1 + δ

)
=

pm+1∑

i=pm+1

wiM


x

(m)
i ai

1 + δ


 +

ps+1∑

i=ps+1

wiM


x

(s)
i ai

1 + δ




=
pm+1∑

i=pm+1

ϕi


 x

(m)
i

1 + δ


 +

ps+1∑

i=ps+1

ϕi


 x

(s)
i

1 + δ




≥
pm+1∑

i=pm+1

Ψi


 x

(m)
i

1 + δ


 +

ps+1∑

i=ps+1

Ψi


 x

(s)
i

1 + δ




−
pm+1∑

i=pm+1

ϕi(yi)−
ps+1∑

i=ps+1

ϕi(yi)

≥
(

1

1 + δ

)q



pm+1∑

i=pm+1

Ψi(x
(m)
i ) +

ps+1∑

i=ps+1

Ψi(x
(s)
i )


− 1/2

≥
(

1

1 + δ

)q



pm+1∑

i=pm+1

ϕi(x
(m)
i ) +

ps+1∑

i=ps+1

ϕi(x
(s)
i )


− 1/2

= 2
(

1

1 + δ

)q

− 1/2 ≥ 2
3

4
− 1

2
= 1.

Thus 1 + ε ≥ ‖x(n) − x(s)‖ ≥ 1 + δ, which is a contradiction with the choice of an
arbitrary small ε > 0. So `M(w) 6∼= hM(w).

If (`M(w), | · |M) has not weak uniform normal structure by the inequality
WCS((`M(w), ‖ · ‖M)) ≤ WCS((`M(w), | · |M)) = 1 it follows that (`M(w), ‖ · ‖M) has
not weak uniform normal structure and therefore `M(w) 6∼= hM(w). ¤

Remark: Following [6] a direct proof in the case of Amemiya’s norm can be done
to show that if (`M(w), | · |M) has not weak uniform normal structure then `M(w) 6∼=
hM(w).

Corollary 5.1 Let M be an Orlicz function such that lim
t→0

M(t)

t
= 0 and w = {wi}∞i=1

be a weight sequence form the class Λ. Then the weighted Orlicz sequence space `M(w)

10



endowed with the Luxemburg or Amemiya norm has weak uniform normal structure iff
M has ∆2–condition.

6 Examples of weighted Orlicz sequence spaces with weak uniform normal
structure without ∆2–condition

Let N be an Orlicz function, lim
t→0

N(t)

t
= 0, N(1) = 1 and {wk}∞k=1, w1 = 1, be a weight

sequence from the class Λ∞ such that

∞∑

k=1

wk

wk+1

< ∞.(12)

Denote ak = N−1(1/wk) and choose a sequence {bk}∞k=1 fulfilling

0 < ak+1 < bk < ak < 1(13)

∞∑

k=1

N(bk)

N(ak)
< ∞(14)

lim
k→∞

bk

ak

= 0.(15)

We define the Orlicz function M by:

M(t) =

{
N(t), t ∈ [ak+1, bk], k ∈ N
lk(t), t ∈ [bk, ak], k ∈ N,

(16)

where the line lk is defined by lk(t) =
N(ak)−N(bk)

ak − bk

(t− ak) + N(ak).

For every α > 1 there exists n = n(α) such that for every k ≥ n the inequalities

ak+1 ≤ bk <
ak

α
< ak hold.

Let notice that by (14) it follows that

lim
k→∞

M(bk)

M(ak)
= 0(17)

and by lim
t→0

N(t)

t
= 0 it follows that lim

t→0

M(t)

t
= 0. Indeed by lim

t→0

M(ak)

ak

= 0 it follows

that for every ε > 0 there exists k0 ∈ N such that for every k ≥ k0 holds
M(ak)

ak

< ε.

Thus for every 0 < t ≤ ak0 we have
M(t)

t
< ε.

Throughout this paragraph by M we denote the Orlicz function defined in (16).

Lemma 6.1 For every 0 < λ < 1 we have

lim
k→∞

M(λak)

M(ak)
= λ.(18)
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Proof: For every λ < 1 there exists i0 ∈ N such that bi < λai < ai holds for every
i ≥ i0. By the chain of equalities

lim
k→∞

M(λak)

M(ak)
= lim

k→∞
lk(λak)

N(ak)

= lim
k→∞

(
N(ak)(λak − ak)

N(ak)(ak − bk)
− N(bk)(λak − ak)

N(ak)(ak − bk)
+

N(ak)

N(ak)

)

= lim
k→∞




λ− 1

1− bk

ak

− N(bk)(λ− 1)

N(ak)(1− bk

ak

)
+ 1




= lim
k→∞




1

1− bk

ak

(
λ− 1− N(bk)

N(ak)
λ +

N(bk)

N(ak)
+ 1− bk

ak

)

 = λ

it follows (18). ¤

Proposition 6.1 The weighted Orlicz sequence space `M(w) has weak uniform normal
structure iff

∞∑

k=1

bk

ak

< ∞.(19)

Proof: In view of the Theorem 2 we need to prove only that `M(w) ∼= hM(w) iff (19)
holds.

Let holds (19). Let z =
∑∞

k=1 zkek ∈ `M(w) i.e. M̃w(z) < ∞. If M̃w(λ1z) < ∞ for
some λ1 < 1 we can consider the vector z = λ1z.

Denote λ = max

{
bk

ak

: k ∈ N
}

and let α > 1 be arbitrary.

1) Let I1 =

{
k ∈ N : zk <

bk

α

}
. Then

∑

k∈I1

wkM(αzk) ≤
∑

k∈I1

wkM(bk) ≤
∞∑

k=1

wkM(bk) =
∞∑

k=1

M(bk)

M(ak)
< ∞.

2) Let I2 =

{
k ∈ N :

bk

α
≤ zk < bk

}
. Then

∑

k∈I2

wkM(αzk) ≤
∑

k∈I2

wkM(αbk) ≤
∞∑

k=1

wkM(αbk).

By (15) it follows that for every α > 1 there exists k0 ∈ N such that for every k ≥ k0

holds αbk ≤ ak. Hence
k0−1∑

k=1

wkM(αbk) < ∞(20)
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and

∞∑

k=k0

wk M (αbk) =
∞∑

k=k0

wk

(
M(ak)−M(bk)

ak − bk

(αbk − ak) + M(ak)

)

=
∞∑

k=k0

wk
(α− 1)bkM(ak)− αbkM(bk) + akM(bk)

ak − bk

=
∞∑

k=k0

wk

(α− 1)
bk

ak

M(ak)− α
bk

ak

M(bk) + M(bk)

1− bk

ak

≤ (α− 1)
∞∑

k=k0

wk

bk

ak

M(ak)

1− bk

ak

+
∞∑

k=k0

wkM(bk)




α
bk

ak

+ 1

1− bk

ak




≤ (1− λ)−1




∞∑

k=k0

(
(α− 1)wk

bk

ak

M(ak) + wkM(bk)

(
α

bk

ak

+ 1

))


≤ (1− λ)−1


(α− 1)

∞∑

k=k0

bk

ak

+ (αλ + 1)
∞∑

k=k0

wkM(bk)


 < ∞.

(21)

By (20) and (21) it follows
∑

k∈I2 wkM(αzk) < ∞.

3) Let I3 =
{
k ∈ N : bk ≤ zk <

ak

α

}
.

Obviously for k ∈ I3

M(αzk) =
(αzk − bk)M(ak) + (ak − αzk)M(bk)

ak − bk

= α
(zk − bk)M(ak) + (ak − zk)M(bk)

ak − bk

+ (α− 1)

(
bk

ak − bk

M(ak)− ak

ak − bk

M(bk)

)

= αM(zk) + (α− 1)

(
bk

ak − bk

M(ak)− ak

ak − bk

M(bk)

)

≤ αM(zk) +
(α− 1)bk

(1− λ)ak

M(ak).

Therefore

∑

k∈I3

wkM(αzk) ≤ α
∑

k∈I3

wkM(zk) +
α− 1

1− λ

∑

k∈I3

bk

ak

< ∞.

4) Let I4 =
{
k ∈ N : ak

α
≤ zk

}
, then αzk ≥ ak for every k ∈ I4. To finish the proof

we need to show that
∑

k∈I4 wkM(αzk) < ∞.
Let us point out that in this case (k ∈ I4) we do not know the exact definition of

M(αzk). By (16) there are two possibilities:
1) If αzk ∈ [am, bm−1] for some m ∈ N, m ≤ k, then M(αzk) = N(αzk);
2) If αzk ∈ [am−1, bm−1] for some m ∈ N, m ≤ k, then M(αzk) = lm−1(αzk).
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That’s why we could not make a direct estimation of the sum
∑

k∈I4 wkM(αzk), as
like as, it was done in the first three cases (k ∈ I1, k ∈ I2, k ∈ I3). So we will prove
that the sum

∑
k∈I4 wkM(αzk) is finite by proving that the set I4 is finite.

Claim 6.1 The set I4 is finite iff the sum
∑

k∈I4 wkM(zk) is finite.

Proof of Claim 6.1: If I4 is finite it is obvious that
∑

k∈I4 wkM(zk) is finite.
For the proof of the converse let suppose the contrary i.e.

∑
k∈I4 wkM(zk) < ∞,

but |I4| = ∞. Then by Lemma 6.1 it follows that there exists k0 ∈ N so that the

inequality
M

(
ak

α

)

M(ak)
≥ 1

2α
holds for infinite number of indices, fulfilling k ∈ I4 and

k ≥ k0. Therefore

∑

k∈I4

wkM(zk) ≥
∑

k∈I4

M
(

ak

α

)

M(ak)
≥ ∑

k∈I4,k≥k0

M
(

ak

α

)

M(ak)
≥ ∑

k∈I4,k≥k0

1

2α
= ∞,

which is a contradiction and consequently |I4| < ∞. ¤
Thus

∑
k∈I4 wkM(αzk) < ∞, because by Claim 6.1 the index set I4 consists of

finite number of elements.
Consequently

∞∑

k=1

wkM(αzk) =
∑

k∈I1

wkM(αzk) +
∑

k∈I2

wkM(αzk)

+
∑

k∈I3

wkM(αzk) +
∑

k∈I4

wkM(αzk) < ∞.

Let now ∞∑

k=1

bk

ak

= ∞.(22)

Let z = {bk}∞k=1. By (14) follows that z ∈ `M(w). Let consider the sequence
2z = {2bk}∞k=1. By (17) there exist n ∈ N such that M(bk)/M(ak) < 1/4 for every
k ≥ n. Then

M̃w(2z) =
∞∑

k=1

wkM(2bk) =
∞∑

k=1

wk

(
M(ak)−M(bk)

ak − bk

(2bk − ak) + M(ak)

)

=
∞∑

k=1

wk

(
bkM(ak)− 2bkM(bk) + akM(bk)

ak − bk

)

=
∞∑

k=1

wk




M(bk) +
bk

ak

M(ak)− 2
bk

ak

M(bk)

1− bk

ak




≥
∞∑

k=n

wk

1− bk

ak

(
M(bk) +

1

2

bk

ak

M(ak)

)

≥
∞∑

k=n

wkM(bk) +
1

2

∞∑

k=n

wk
bk

ak

M(ak) =
∞∑

k=n

wkM(bk) +
1

2

∞∑

k=n

bk

ak

= ∞.
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Therefore `M(w) 6∼= hM(w). ¤

Example 1: Let N(t) = t2e−
1
2t and wk =

1

N(1/k2k)
, k ∈ N. We define the

sequences {ak}∞k=1, {bk}∞k=1 by ak =
1

k2k
, bk =

2

(k + 1)2(k+1)
. Obviously the sequences

{wk}∞k=1, {ak}∞k=1, {bk}∞k=1 fulfill conditions (12), (13), (14), (15) and
∞∑

k=1

bk

ak

< ∞ and

by Proposition 6.1 it follows that `M(w) has weak uniform normal structure.

Example 2: Let N(t) = t2e−
1
2t and wk =

1

N(1/k!)
, k ∈ N. We define the se-

quences {ak}∞k=1, {bk}∞k=1 by ak =
1

k!
, bk =

2

(k + 1)!
. Obviously the sequences {wk}∞k=1,

{ak}∞k=1, {bk}∞k=1 fulfill conditions (12), (13), (14), (15) and
∞∑

k=1

bk

ak

= ∞ and by Propo-

sition 6.1 it follows that `M(w) has not weak uniform normal structure.
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