ПЛОВДИВСКИ УНИВЕРСИТЕТ "ПАИСИЙ ХИЛЕНДАРСКИ", БЪЛГАРИЯ НАУЧНИ ТРУДОВЕ, ТОМ 36, КН. 3, 2009 – MATEMATUKA PLOVDIV UNIVERSITY "PAISSII HILENDARSKI", BULGARIA SCIENTIFIC WORKS, VOL. 36, BOOK 3, 2009 – MATHEMATICS

SOME PRESENTATIONS OF GENERALIZED POLYNOMIALS BASED ON THE THEORY OF INTERPOLATION

P. Kh. Atanasova

Abstract. In this short communication some presentations of polynomials based on algebraic, trigonometric, exponential and generalized fundamental polynomials using in the interpolation are given.

Mathematics Subject Classification 2000: 41A05, 41A10, 41A50, 42A10, 42A15

Key words: interpolation, algebraic polynomial, generalized polynomial, Chebyshev systems

${\bf 1.} \ \, {\bf Interpolation \ with \ algebraic \ polynomials}$

Let knots $x_0, x_1, \ldots, x_n \in [a; b], x_i \neq x_j, i \neq j$ and values of a function f(x) at these knots be given. It is well known fact that the problem (Lagrange interpolation formula) for finding an algebraic polynomial $A_n(x)$ (A-polynomial) on the basic functions $\{x^k\}_{k=0}^n$ for which the equalities

(1)
$$A_n(x_i) = f(x_i), \quad i = \overline{0, n}$$

are fulfilled has [1,2] an unique solution

(2)
$$A_n(x) = \sum_{k=0}^{n} f(x_k) l_k(x) ,$$

where

(3)
$$l_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{(x-x_i)}{(x_k-x_i)}$$

are so called fundamental algebraic polynomials possessing the properties

(4)
$$l_k(x_i) = \delta_{ki} = \begin{cases} 1, & k = i \\ 0, & k \neq i \end{cases}$$

Using the fundamental theorem of algebra it is easy to show that for every A-polynomial of degree n, the identity

(5)
$$A(x) \equiv \sum_{k=0}^{n} A(x_k) l_k(x)$$

holds true.

2. Interpolation with trigonometric polynomials

Let interpolating knots $x_0 < x_1 < \ldots < x_{2n} < x_0 + 2\pi$ and the values $f(x_i)$, $i = \overline{0,2n}$ of a periodic function (with period 2π) be given. Correspondingly to (1) exists [1, 2] an unique trigonometric polynomial $T_n(x)$ (T-polynomial) on the basic functions $1, \sin x, \cos x, \sin 2x, \cos 2x, \ldots, \sin nx, \cos nx$ which satisfies the following conditions

(6)
$$T_n(x_i) = f(x_i) \quad i = \overline{0, 2n}.$$

This interpolating polynomial $T_n(x)$ can be presented in the form

(7)
$$T_n(x) = \sum_{k=0}^{2n} f(x_k) \lambda_k(x),$$

where $\lambda_k(x)$ are fundamental basic *T*-polynomials having the properties (4)

One of the possible way for presentation of basic *T*-polynomials $\lambda_k(x)$, $k = \overline{0, 2n}$ is [1,2]

(8)
$$\lambda_k(x) = \prod_{\substack{i=0\\i \neq k}}^{2n} \frac{\sin \frac{x-x_i}{2}}{\sin \frac{x_k-x_i}{2}}.$$

Similarly to (5), we have a presentation

(9)
$$T(x) \equiv \sum_{k=0}^{2n} T(x_k) \lambda_k(x)$$

for every T-polynomials of order n.

In the particular case when the knots $x_k = 2k\pi/(2n+1)$, $k = \overline{0,2n}$ are equidistant in the interval $[0;2\pi]$ the fundamental trigonometric polynomials $\lambda_k(x)$ can be obtained using the core of Dirichlet

$$D_n(x) = \frac{1}{2} + \sum_{k=1}^{n} \cos kx = \frac{\sin \frac{2n+1}{2}x}{2\sin \frac{x}{2}}$$

in the form

$$\lambda_k(x) = \frac{\sin\frac{2n+1}{2}(x - x_k)}{(2n+1)\sin\frac{x - x_k}{2}}.$$

Then, for every T-polynomial of order n the identity

(10)
$$T(x) \equiv \frac{1}{2n+1} \sum_{k=0}^{2n} T(x_k) \frac{\sin \frac{2n+1}{2} (x - x_k)}{\sin \frac{x - x_k}{2}}$$

holds true.

3. Interpolation with exponential polynomials

Correspondingly to 2. we could make a presentation for every exponential polynomial (*E*-polynomial) $E_n(x)$ on the basis $(1, \operatorname{sh} x, \operatorname{ch} x, \operatorname{sh} 2x, \operatorname{ch} 2x, \ldots, \operatorname{sh} nx, \operatorname{ch} nx)$ or $(1, e^x, e^{-x}, e^{2x}, e^{-2x}, \ldots, e^{nx}, e^{-nx})$ in the form

(11)
$$E(x) \equiv \sum_{k=0}^{2n} E(x_k) h_k(x) ,$$

where the fundamental E-polynomials $h_k(x)$ can be written as follows

$$h_k(x) = \prod_{\substack{i=0\\i\neq k}}^{2n} \frac{\sinh\frac{x-x_i}{2}}{\sinh\frac{x_k-x_i}{2}}, \quad h_k(x_i) = \delta_{ki}.$$

4. The most general interpolation problem

Let X be a linear space of functions and $\varphi_0(x), \varphi_1(x), \ldots, \varphi_n(x) \in X$. Let also L_0, L_1, \ldots, L_n be linear functionals defined in X. It is well known [1,2,3] that the necessary and sufficient condition for the general interpolation problem

(12)
$$L_k(G_n) = L_k(f), \quad k = \overline{0, n},$$

it is have an unique solution as a generalized polynomial (G-polynomial) $G_n(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + \ldots + a_n \varphi_n(x)$ on the basis $\varphi_0(x), \varphi_1(x), \ldots, \varphi_n(x)$ for every $f(x) \in X$ is

(13)
$$\Delta = \det[L_k(\varphi_i)] \neq 0.$$

If we chose the functionals L_k as $L_k(g) = g(x_k)$, $k = \overline{0, n}$ when x_0, x_1, \ldots, x_n are different points in interval [a, b] then the condition (13) shows that the basic functions $\{\varphi_k(x)\}_{k=0}^n$ form a Chebishev system for [a, b]. Many special interesting cases of a choice of L_0, L_1, \ldots, L_n are considered in [3].

Lemma. If $\bar{G}(x)$ and $\bar{G}(x)$ are G-polynomials on the basis $\varphi_0(x), \varphi_1(x), \ldots, \varphi_n(x)$ and $L_k(\bar{G}) = L_k(\bar{G}), k = \overline{0}, n$ then $\bar{G}(x) \equiv \bar{G}(x)$.

Proof. Let $\bar{G}(x)$ and $\bar{\bar{G}}(x)$ have the presentations $\bar{G}(x) = \alpha_0 \varphi_0(x) + \alpha_1 \varphi_1(x) + \ldots + \alpha_n \varphi_n(x)$ and $\bar{\bar{G}}(x) = \beta_0 \varphi_0(x) + \beta_1 \varphi_1(x) + \ldots + \beta_n \varphi_n(x)$. From the conditions $L_k(\bar{G}) = L_k(\bar{\bar{G}})$, k = 0, n it follows that

$$\sum_{i=0}^{n} \alpha_i L_k(\varphi_i) = \sum_{i=0}^{n} \beta_i L_k(\varphi_i)$$

which is

(14)
$$\sum_{i=0}^{n} (\alpha_i - \beta_i) L_k(\varphi_i) = 0, k = \overline{0, n}.$$

The linear system (14) with respect to the unknowns $\alpha_i - \beta_i$, $i = \overline{0, n}$ is homogeneous. Because of the condition (13), this system has only a trivial solution $\alpha_i - \beta_i = 0$. Consequently $\bar{G}(x) \equiv \bar{G}(x)$.

The solution of the most general interpolation problem (12) can be written [1] in the form

(15)
$$G_n(x) = \sum_{k=0}^{n} L_k(f) \Phi_k(x),$$

where $\Phi_k(x)$, $k = \overline{0, n}$, are fundamental generalized G-polynomials on the basis $\varphi_0(x), \varphi_1(x), \ldots, \varphi_n(x)$, for which the equalities

$$L_i(\Phi_k) = \delta_{ik}$$

hold true. This fact follows from the presentation (15) of $G_n(x)$ in the determinant form.

$$\Phi_k(x) = \frac{1}{\det[L_k(\varphi_i)]} \begin{vmatrix} L_0(\varphi_0) & \dots & L_0(\varphi_n) \\ \dots & \dots & \dots \\ L_{k-1}(\varphi_0) & \dots & L_{k-1}(\varphi_n) \\ \varphi_0(x) & \dots & \varphi_n(x) \\ L_{k+1}(\varphi_0) & \dots & L_{k+1}(\varphi_n) \\ \dots & \dots & \dots \\ L_n(\varphi_0) & \dots & L_n(\varphi_n) \end{vmatrix}$$

The main result is:

Theorem. For every G-polynomial the identity

(16)
$$G(x) \equiv \sum_{k=0}^{n} L_k(G)\Phi_k(x)$$

holds true.

The conclusion of the theorem follows from the above lemma and (15). This result (16) generalizes the formulas (5), (9), (10), (11) for algebraic, trigonometric and exponential polynomials.

References

- [1] B. Boyanov and Khr. Semerdzhiev, Numerical methods, Plovdiv, Plovdiv University Press, 1995 (in Bulgarian)
- [2] Bl. Sendov, V. Popov, Numerical methods, "Nauka i iskustvo", Sofia, 1976 (in Bulgarian)
- [3] Bl. Sendov, Mathematics of computation old and new, "Nauka i iskustvo", Sofia, 1976 (in Bulgarian)

Faculty of Mathematics and Informatics University of Plovdiv 236 Bulgaria Blvd., 4003 Plovdiv, BULGARIA e-mail: poli@jinr.ru Received 23 June 2008

НЯКОИ ПРЕДСТАВЯНИЯ НА ОБОБЩЕНИ ПОЛИНОМИ БАЗИРАЩИ СЕ ВЪРХУ ТЕОРИЯТА НА ИНТЕРПОЛИРАНЕТО

П. Хр. Атанасова

Резюме. В съобщението са дадени някои представяния на полиноми с използване на фундаментални алгебрични, тригонометрични, експоненциални и обобщени полиноми от теорията на интерполирането.