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1. Interpolation with algebraic polynomials

Let knots x0, x1, . . . , xn ∈ [a; b], xi 6= xj , i 6= j and values of a func-
tion f(x) at these knots be given. It is well known fact that the problem
(Lagrange interpolation formula) for finding an algebraic polynomial An(x)
(A-polynomial) on the basic functions {xk}n

k=0 for which the equalities

(1) An(xi) = f(xi), i = 0, n

are fulfilled has [1,2] an unique solution

(2) An(x) =
n∑

k=0

f(xk)lk(x) ,
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where

(3) lk(x) =
n∏

i = 0
i 6= k

(x− xi)
(xk − xi)

are so called fundamental algebraic polynomials possessing the properties

(4) lk(xi) = δki =
{

1, k = i
0, k 6= i

Using the fundamental theorem of algebra it is easy to show that for every
A-polynomial of degree n, the identity

(5) A(x) ≡
n∑

k=0

A(xk)lk(x)

holds true.

2. Interpolation with trigonometric polynomials

Let interpolating knots x0 < x1 < . . . < x2n < x0 + 2π and the values
f(xi), i = 0, 2n of a periodic function (with period 2π) be given. Corre-
spondingly to (1) exists [1, 2] an unique trigonometric polynomial Tn(x) (T -
polynomial) on the basic functions 1, sin x, cosx, sin 2x, cos 2x, . . . , sin nx, cos nx
which satisfies the following conditions

(6) Tn(xi) = f(xi) i = 0, 2n .

This interpolating polynomial Tn(x) can be presented in the form

(7) Tn(x) =
2n∑

k=0

f(xk)λk(x) ,

where λk(x) are fundamental basic T -polynomials having the properties (4)
One of the possible way for presentation of basic T -polynomials λk(x),

k = 0, 2n is [1,2]

(8) λk(x) =
2n∏

i = 0
i 6= k

sin x−xi

2

sin xk−xi

2

.
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Similarly to (5), we have a presentation

(9) T (x) ≡
2n∑

k=0

T (xk)λk(x)

for every T -polynomials of order n.
In the particular case when the knots xk = 2kπ/(2n + 1), k = 0, 2n are

equidistant in the interval [0; 2π] the fundamental trigonometric polynomials
λk(x) can be obtained using the core of Dirichlet

Dn(x) =
1
2

+
n∑

k=1

cos kx =
sin 2n+1

2 x

2 sin x
2

in the form

λk(x) =
sin 2n+1

2 (x− xk)
(2n + 1) sin x−xk

2

.

Then, for every T -polynomial of order n the identity

(10) T (x) ≡ 1
2n + 1

2n∑

k=0

T (xk)
sin 2n+1

2 (x− xk)
sin x−xk

2

holds true.

3. Interpolation with exponential polynomials

Correspondingly to 2. we could make a presentation for every exponential
polynomial (E-polynomial) En(x) on the basis (1, shx, chx, sh 2x, ch 2x, . . . ,
shnx, chnx) or (1, ex, e−x, e2x, e−2x, . . . , enx, e−nx) in the form

(11) E(x) ≡
2n∑

k=0

E(xk)hk(x) ,

where the fundamental E-polynomials hk(x) can be written as follows

hk(x) =
2n∏

i = 0
i 6= k

sh x−xi

2

sh xk−xi

2

, hk(xi) = δki .
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4. The most general interpolation problem

Let X be a linear space of functions and ϕ0(x), ϕ1(x), . . . , ϕn(x) ∈ X.
Let also L0, L1, . . . , Ln be linear functionals defined in X. It is well known
[1,2,3] that the necessary and sufficient condition for the general interpolation
problem

(12) Lk(Gn) = Lk(f), k = 0, n ,

it is have an unique solution as a generalized polynomial (G-polynomial)
Gn(x) = a0ϕ0(x)+a1ϕ1(x)+. . .+anϕn(x) on the basis ϕ0(x), ϕ1(x), . . . , ϕn(x)
for every f(x) ∈ X is

(13) ∆ = det[Lk(ϕi)] 6= 0 .

If we chose the functionals Lk as Lk(g) = g(xk), k = 0, n when x0, x1, . . . , xn

are different points in interval [a, b] then the condition (13) shows that the
basic functions {ϕk(x)}n

k=0 form a Chebishev system for [a, b]. Many special
interesting cases of a choice of L0, L1, . . . , Ln are considered in [3].

Lemma. If Ḡ(x) and ¯̄G(x) are G-polynomials on the basis ϕ0(x), ϕ1(x), . . . ,
ϕn(x) and Lk(Ḡ) = Lk( ¯̄G), k = 0, n then Ḡ(x) ≡ ¯̄G(x).

Proof. Let Ḡ(x) and ¯̄G(x) have the presentations Ḡ(x) = α0ϕ0(x) +
α1ϕ1(x)+ . . .+αnϕn(x) and ¯̄G(x) = β0ϕ0(x)+β1ϕ1(x)+ . . .+βnϕn(x). From
the conditions Lk(Ḡ) = Lk( ¯̄G), k = 0, n it follows that

n∑

i=0

αiLk(ϕi) =
n∑

i=0

βiLk(ϕi)

which is

(14)
n∑

i=0

(αi − βi)Lk(ϕi) = 0 , k = 0, n .

The linear system (14) with respect to the unknowns αi − βi, i = 0, n is
homogeneous. Because of the condition (13), this system has only a trivial
solution αi − βi = 0. Consequently Ḡ(x) ≡ ¯̄G(x).

The solution of the most general interpolation problem (12) can be writ-
ten [1] in the form

(15) Gn(x) =
n∑

k=0

Lk(f)Φk(x) ,
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where Φk(x), k = 0, n, are fundamental generalized G-polynomials on the basis
ϕ0(x), ϕ1(x), . . . , ϕn(x), for which the equalities

Li(Φk) = δik

hold true. This fact follows from the presentation (15) of Gn(x) in the deter-
minant form.

Φk(x) =
1

det[Lk(ϕi)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L0(ϕ0) . . . L0(ϕn)
. . . . . . . . .

Lk−1(ϕ0) . . . Lk−1(ϕn)
ϕ0(x) . . . ϕn(x)

Lk+1(ϕ0) . . . Lk+1(ϕn)
. . . . . . . . .

Ln(ϕ0) . . . Ln(ϕn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

The main result is:

Theorem. For every G-polynomial the identity

(16) G(x) ≡
n∑

k=0

Lk(G)Φk(x)

holds true.

The conclusion of the theorem follows from the above lemma and (15).
This result (16) generalizes the formulas (5), (9), (10), (11) for algebraic,

trigonometric and exponential polynomials.
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НЯКОИ ПРЕДСТАВЯНИЯ НА
ОБОБЩЕНИ ПОЛИНОМИ БАЗИРАЩИ СЕ ВЪРХУ

ТЕОРИЯТА НА ИНТЕРПОЛИРАНЕТО

П. Хр. Атанасова

Резюме. В съобщението са дадени някои представяния на полиноми
с използване на фундаментални алгебрични, тригонометрични, експонен-
циални и обобщени полиноми от теорията на интерполирането.
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