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Abstract. In this short communication some presentations of poly-
nomials based on algebraic, trigonometric, exponential and generalized
fundamental polynomials using in the interpolation are given.
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1. Interpolation with algebraic polynomials

Let knots xq, x1, ..., n € [a;b], x; # xj,i # j and values of a func-
tion f(x) at these knots be given. It is well known fact that the problem
(Lagrange interpolation formula) for finding an algebraic polynomial A, (x)
(A-polynomial) on the basic functions {z*}7_, for which the equalities

(1) Ap(z;) = f(z;), i=0,n

are fulfilled has [1,2] an unique solution

(2) An(2)
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are so called fundamental algebraic polynomials possessing the properties
1, k=1
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Using the fundamental theorem of algebra it is easy to show that for every
A-polynomial of degree n, the identity

(5) A(z) =Y Azp)l(z)
k=0
holds true.

2. Interpolation with trigonometric polynomials

Let interpolating knots x¢p < z1 < ... < x9, < zg + 27 and the values
f(z5), i = 0,2n of a periodic function (with period 27) be given. Corre-
spondingly to (1) exists [1, 2] an unique trigonometric polynomial Ty, (x) (T-
polynomial) on the basic functions 1, sin x, cos z, sin 2z, cos 2z, . . ., sin nx, cos nx
which satisfies the following conditions

(6) To(x;) = f(x;) i=0,2n.

This interpolating polynomial T}, (z) can be presented in the form

(7) Tu@) = 3 f@)nla).
k=0

where Ag(z) are fundamental basic T-polynomials having the properties (4)
One of the possible way for presentation of basic T-polynomials \g(x),
k=0,2n is [1,2]
2 gip £
(8) M) = [ =2
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Similarly to (5), we have a presentation

2n

(9) T(z) =Y T(xr)Ar(z)

k=0

for every T-polynomials of order n.

In the particular case when the knots xp = 2kn/(2n+1), k = 0,2n are
equidistant in the interval [0;27] the fundamental trigonometric polynomials
A (z) can be obtained using the core of Dirichlet

j R sin 2ot
Dn(-r) == 5 +ZCOS]§$ = ﬁ
k=1

in the form
sin 2L (2 — 1y,)

(2n + 1) sin Z52

Ai(z) =

Then, for every T-polynomial of order n the identity

2n s 2n41
1 sin 22 (2 — )
10 T(z) = T(zp) —2——
(10) €)= gy 2T e

holds true.

3. Interpolation with exponential polynomials

Correspondingly to 2. we could make a presentation for every exponential
polynomial (E-polynomial) E,(z) on the basis (1,sha,cha,sh2z,ch2z,...,

shnx,chnr) or (1,e*,e7%,e?® e72% ... €™ e~"%) in the form
2n

(11) E(z) =Y E(zk)hi(z),
k=0

where the fundamental E-polynomials hg(z) can be written as follows

2n —x;
sh £=%
hk(l‘) = H bhzﬁ s hk(,fz) = 6ki .
i=0 2
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4. The most general interpolation problem

Let X be a linear space of functions and ¢g(z),p1(x),...,on(z) € X.
Let also Lg, L1,..., L, be linear functionals defined in X. It is well known
[1,2,3] that the necessary and sufficient condition for the general interpolation
problem

(12) Li(Gyn) = Li(f), k=0,n,

it is have an unique solution as a generalized polynomial (G-polynomial)

Gn(z) = appo(x)+ar1p1(x)+. ..+ anpn(z) on the basis po(z), ¢1(x), . .., pn(T)
for every f(z) € X is

(13) A = det[Ly ()] # 0.

If we chose the functionals Ly as Li(g) = g(xx), k = 0,n when zg,1,...,2Tn
are different points in interval [a,b] then the condition (13) shows that the
basic functions {yx(x)}}_, form a Chebishev system for [a,b]. Many special
interesting cases of a choice of Ly, L1, ..., L, are considered in [3].

Lemma. IfG(z) and G(z) are G-polynomials on the basis o (z), p1(x), ...,

¢n(z) and Li(G) = L(G), k = 0,n then G(z) = G(z).
)

Proof. Let G(z) and G
ar1p1(x)+ ...+ anpn(z) and
k

have the presentations G(z) = agpo(z) +

(v
| G(z) = Bogo(@) + Brpr(z) +. ..+ Bupn(x). From
(@), k = 0,n it follows that

the conditions Ly(G) = L

Z oLy (p;) = Z BiLk (i)
i=0 i=0

which is

(14) Z(ai — Bi)Li(pi) =0,k =0,n.

The linear system (14) with respect to the unknowns a; — 3;, i = 0,n is
homogeneous. Because of the condition (13), this system has only a trivial
solution a;; — B; = 0. Consequently G(z) = G(z).

The solution of the most general interpolation problem (12) can be writ-
ten [1] in the form

(15) Gn(z) =Y Li(f)®x(z),

k=0
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are fundamental generalized G-polynomials on the basis

where @y (z), k = 0,n,
n(2), for which the equalities

QOO('T)? 501(1‘)7 ceey
Li(®r) = bax

hold true. This fact follows from the presentation (15) of G, (x) in the deter-
minant form.

Lo(po) .- Lolen)
H@) = i) L,ffl(fﬁo) N Lﬁl(@)ﬂ)
LT; (};0) » Ln. (.Sén)

The main result is:

Theorem. For every G-polynomial the identity
(16) G(x) =) Li(G)Pk(x)
k=0

holds true.

The conclusion of the theorem follows from the above lemma and (15).
This result (16) generalizes the formulas (5), (9), (10), (11) for algebraic,
trigonometric and exponential polynomials.
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HAKOU ITPEACTABAHNA HA
OBOBIIIEHU ITOJIMHOMM BASUPAITIIN CE BbPXVY
TEOPUATA HA THTEPITIOJIMPAHETO

IT. Xp. Aranacosa
Pesrome. B cbobiieHnero ca 1ajieHn HIKOU TPEJICTABAHUS Ha, TIOJTMHOMEI

¢ m3noJi3BaHe Ha (DYHIAMEHTAJIHA aareOpUIHU, TPUTOHOMETPUIHY, eKCIIOHEH-
nraaHu 1 00O0DIIEeHN TTOJIMHOMU OT TEOPHUATA HA WHTEPIIOJIHMPAHETO.
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