
PLOVDIV UNIVERSITY “PAISSII HILENDARSKI”, BULGARIA
SCIENTIFIC WORKS, VOL. 36, BOOK 3, 2009 – MATHEMATICS

ПЛОВДИВСКИ УНИВЕРСИТЕТ “ПАИСИЙ ХИЛЕНДАРСКИ”, БЪЛГАРИЯ
НАУЧНИ ТРУДОВЕ, ТОМ 36, КН. 3, 2009 – МАТЕМАТИКА

ALGORITHMS TO MINIMIZE

THE NUMBER OF UNIQUE TESTS IN

REAL GROUP TESTING EXAMINATION

Angel Golev, Olga Rahneva, Asen Rahnev

Abstract. This paper describes algorithms for finding fast the mini-
mal number of unique tests in real group test examinations in Distributed
e-Testing Cluster – DeTC, depending on the neighboring seats configu-
ration. It suggests how to arrange unique tests on the testing seats, so
that neighbors have different tests.

The paper also suggests what algorithms should be applied and in
what order for different configuration of the neighboring testing seats.

Key words: DeTC, e-testing, algorithms, unique tests, neighbors

1. Introduction and Formulation of the Problem

Testing examination is one of the most popular and well-developed as-
sessment instruments in higher education [2]. Existing systems for electronic
testing offer solutions for testing one single student. The Distributed e-Testing
Cluster (DeTC) [6, 7, 8] examines the problem of testing group of students.

Proper and adequate assessment is possible only when it is guaranteed
that no cheating has taken place during the examinations. Invigilators have
the task of preventing cheating, but sometimes even they cannot cope with the
problem of having a learner copying from one’s neighbors, which are in one’s
field of vision.

One way to overcome the problem of cheating by copying is to randomize
the order of questions in tests, and the order of answers in same questions.
However, this can only reduce the chance of copying but not eliminate it.

39

Angel Golev, Olga Rahneva, Asen Rahnev

Copying from neighbors will not be possible is each learner is given a
unique test. A large number of learners, who take examinations simultaneously,
make it very difficult to provide each with a unique test. Further, to ensure
fair assessment, all tests must be of equal difficulty and size. Creating many
unique tests requires excessive efforts by authors of questions and tests.

DeTC is used to conduct real-life electronic assessment of learners. Its
Test Generating Tool (TGT) can facilitate generation of unique tests through
the use of parameterized dynamic questions [7]. However, in certain subjects,
questions cannot be parameterized and authors have to prepare a number of
unique tests to ensure minimal chance of cheating by copying.

This paper describes algorithms which find the minimum possible number
of unique tests, depending on the location of testing seats and the field of vision
of each seat. The algorithms are examined for their efficiency and relevancy
depending on the specific configuration of neighboring testing seats.

We define that two testing seats are neighbor seats, if one is within the
field of vision of the other, and therefore the learner can copy from one’s peer.

The solution of the problem can be reduced to the task of coloring a
rectangular grid of vertexes (seats) [4].

The testing seats are defined through the use of an adjacency matrix. The
output of the programs fills in the matrix with the numbers if the unique tests
for each seat.

The neighbor seats (neighbors) can be defined for all seats with the help of
a template of neighborhood. The template contains the coordinate offsets - row
and column for each seat. It is possible to define a template for a whole line of
seats in the room. The template can be created manually as a list of offsets, or
with the help of a specialized tool for creating neighborhood templates, which
allows users to select the neighbors for each set via a graphical user interface.

Example: A learner taking a test can see the seats on one’s left and right,
the seats on the left and right of the seat in front of the learner. Further, one’s
seat can be seen from the seats on the left and right of the one behind the
learner. The schema is displayed on Figure 1.

Figure 1

The template of neighborhood for this example is: -1,-1; -1,1; 0,-1; 0,1; 1,-1; 1,1.

40

Algorithms to Minimize the Number of Unique Tests in . . .

The tool for creating neighborhood templates supports creation of any
kind of neighborhood configurations.

2. Algorithms

2.1. Algorithm 1a: Greedy algorithm with traversing the neighbors
The algorithm selects a free number of a unique test for every next tra-

versed seat, from 1 to the current maximum, depending on the number of
neighbors. When there is no available unique test, the algorithm increments
the maximum number.

In the examined cases it is better to start traversing vertexes from a corner
of the matrix. If traversal starts from an inner vertex, the output is very poor.
The algorithm produces close to optimal solutions when all seats have very
similar fields of vision, i.e. neighbors, and when traversal always starts in one
and the same direction – for example, clockwise. When neighbor seats form
different configurations in several columns, the result of the algorithm depends
on the order of traversal of neighbors, and it is not clear what traversal order
will produce best results.

Algorithm 1 // Greedy
{
1. x, y, i, j: Integer;
2.
3. while find empty element(x,y) do
4. places[x,y] := first test num;
5. push queue(x,y);
6. while pop queue(x,y) do
7. foreach ngh in possible neighbours(x,y) do
8. i := x + neighbours[ngh].dx;
9. j := y + neighbours[ngh].dy;
10. if valid test num(i,j) and places[i,j] = 0 then
11. places[i,j] := get test num(i,j);
12. push queue(i,j);
13. endif
14. done
15. done
16. done
}

Figure 2. Algorithm 1a

41

Angel Golev, Olga Rahneva, Asen Rahnev

The example on Figure 3 describes neighbors for all seats: 1,1; 1,0; 1,-1;
0,-1; -1,-1; -1,0; -1,1; 0,1 and different neighbors for columns 2 and 3, as shown
on Figure 3.

Figure 3. Example neighborhood template

When traversal is done in the order of neighbors as described above, the
solution is:

1 4 1 3
3 2 2 4
1 4 1 3

If traversal is done in the order: -1,1; 0,1; 1,1; 1,0; 1,-1; 0,-1; -1,-1; -1,0,
and the upper neighbors for columns 2 and 3, the solution will be:

1 2 2 3
4 3 1 5
1 5 4 2

The greedy algorithm can be also applied when the neighbors of seats are
given in random order. The output is usually not optimal in this case, but
when the number of unique tests is greater than 9 and the neighbors are at
maximum a line and column away, the following solution with 9 unique tests
can be used:

(1)

1 2 3 1 . . .
4 5 6 4 . . .
7 8 9 7 . . .
1 2 3 1 . . .
.

2.2. Algorithm 1b: Greedy algorithm with traversing vertexes in de-
scending order by number of neighbors

This algorithm determines the number of unique test for each seat just
like Algorithm 1a. Algorithm 1b can be used, when neighbors are defined in
a random order. It gives a good results, if the probability of having neighbors

42

Algorithms to Minimize the Number of Unique Tests in . . .

for each seat is less than approximately 0.8, with having neighbors a row and
column away at maximum. When seats have more neighbors or the number of
seats is large, the algorithm is increasingly inefficient.

2.3. Algorithm 1c: Greedy algorithm with assigning non-neighbor seats
with same unique tests

The algorithm starts assigning the elements of the matrix with the number
of unique test 1. It traverses the whole array by diagonals. The algorithm
assigns 1 to each seat, which has no test assigned, and has neighbors with
number 1. The algorithm repeats the procedure with the next number for
unique test, until all seats are assigned a test.

Algorithm 1c // Greedy
{
1. new test := 1; exists empty element := true;
2. while exists empty element do
3. row := 1; col := 0;
4. exists empty element := false;
5. while find next diagonal element(row,col) do
6. if places[row,col] = 0 then
7. if test fits place(row,col,new test) then
8. places[row,col] := new test;
9. else
10. exists empty element := true;
11. endif
12. done
13. inc(new test);
14. done
}

Figure 4. Algorithm 1c

2.4. Algorithm 2: Backtracking

The algorithm performs full traversal of the first t rows with backtracking,
while simultaneously assigning values to the next t−1 rows: matrix[i+t, j] =
matrix[i, j], i=1, t−1.

Users define in advance the maximum number of unique tests they want
to have. The algorithm selects t based on the desired maximum number of
unique tests. The solution for the first t lines is replicated until the end of the
array. This algorithm is applicable when neighbors of all seats are defined by

43

Angel Golev, Olga Rahneva, Asen Rahnev

one and the same template. The solution may be not the optimal one, but the
arrangement of tests per testing seats will be the same for all groups of t−1
rows.

2.5. Algorithm 3: Traversal by diagonals with backtracking
Again, users define in advance the maximum number of unique tests they

want to have. If the algorithm cannot find an available unique test for a
seat during traversal, it tracks back. The optimal solution can be achieved
reasonably enough for the given configurations. The algorithm starts with
two unique tests, and increases their number until a solution is found, or the
maximum number of unique tests reaches 9. When there is no solution with
k unique tests, computations quit for time of approximately O(k!), which is a
reasonable value for k < 9.

Algorithm 3 (n,m,max test num) // Diagonally backtracking
{
1. row, col, current test num: Integer;
2.
3. places[1,1] = 1;
4. row = 2;
5. col = 1;
6. current test num = 0;
7. while true do
8. new test num =
9. get next possible test num(row, col, current test num);
10. if new test num <= max test num then
11. places[row,col] = new test num;
12. if row == n and col == m then exit(there is solution);
13. find next diagonal element(row,col);
14. current test num = 0;
15. else
16. places[row,col] = 0;
17. find prev diagonal element(row,col);
18. if row == 2 and col == 1 then exit(no solution);
19. current test num = places[row,col];
20. endif
21. done
}

Figure 5. Algorithm 3

44

Algorithms to Minimize the Number of Unique Tests in . . .

2.6. Algorithm 4: Traversing neighbors in width with backtracking

This algorithm selects in advance a maximum number of unique tests k.
The order of traversal is determined on the first iteration. Then the algorithm
performs traversal with backtracking in the selected order. This algorithm is
faster than Algorithm 3, when there is a solution.

Algorithm 4 (n,m,max test num) // Backtracking
{
1. row, col, current queue el,
2. new test num, current test num: Integer;
3.
4. find the order for Breadth First Search;
5.
6. set array places(n,m,0);
7. places[1,1] = 1;
8. current queue el = 2;
9.
10. while current queue el <= length(srch queue) do
11. get coord from queue(row,col,current queue el);
12. current test num = places[row,col];
13. new test num =
14. get next possible test num(row, col, current test num);
15. if curr test num <= max test num then
16. places[row,col] = new test num;
17. inc(current queue el);
18. else
19. places[row,col] = 0;
20. dec(current queue el);
21. if current queue el = 1 then exit(no solution);
22. endif
23. done
}

Figure 6. Algorithm 4

2.7. Algorithm 5: An ant algorithm

This algorithm is applied with probability node probability = 0.8, and
test num probability = 0.6, and maximum number of moves set to 100 000.
The number of ants depends on the size of the room.

45

Angel Golev, Olga Rahneva, Asen Rahnev

Algorithm 5 (max test num: Integer) // Ants algorithm
{
1. make some not good solution;
2. Count Violations;
3. foreach ant in all ants do
4. set ant coord(ant);
5. foreach 1..max ant moves do
6. foreach ant in all ants do
7. make ant move(ant);
8. choose new test num(ant);
9. if good arrangement then exit(there is solution);
10. done
11. done
12. exit(no solution);
}
make ant move(ant);
{
13. if random() <= node probability then
14. max violations = 0;
15. foreach neigh in neighbours list(ant.position) do
16. max violations = max(max violations, violations[neigh]);
17. done
18. ant.position = chose random neighbour(ant, max violations);
19. else
20. ant.position = chose random neighbour(ant);
21. endif
}
choose new test num(ant);
{
22. if random() <= test num probability then
23. new test num = find free test num(ant.neighbours);
24. if new test num == 0 then
25. new test num = random(new test num)+1;
26. else
27. new test num = random(new test num)+1;
28. endif
29. places[ant.position.x, ant.position.y] = new test num;
30. foreach neigh in neighbours list(ant.position) do
31. recount violations(neigh);
}

Figure 7. Algorithm 5

46

Algorithms to Minimize the Number of Unique Tests in . . .

3. Solution for seats with the same neighborhood template

When all seats have the same neighborhood template, Algorithms 4 or 3
are most suitable to find an optimal solution. They both determine k number
of unique tests, with 2 ≤ k < 9. These two algorithms are fast even when
there is no solution to the problem. The solution of these algorithms can be
improved further by running Algorithm 2 – it will find a solution, symmetric
by rows.

The tests are carried out with seat matrices of maximal size 200×200 seats.
The following example demonstrates that algorithm will not produce an

optimal solution regardless of the traversal order. The neighborhood template
is:

◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ × ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦

Solutions with Algorithms 1a, 3 4 for a matrix of 6×6 seats and the upper
neighborhood template:

Alg. 1a

1 2 3 1 2 6
4 5 6 4 5 7
3 7 8 9 3 8
1 2 A 1 2 6
4 5 3 4 5 7
6 7 8 6 9 1

Alg. 3

1 3 4 2 1 3
2 5 6 7 6 4
4 6 1 3 5 2
3 8 2 4 7 1
1 7 5 6 8 3
2 4 3 1 2 4

Alg. 4

1 2 3 4 5 2
4 5 6 1 7 8
3 7 8 2 3 4
2 1 4 5 6 1
5 6 3 7 8 2
4 8 2 1 4 3

4. Solution for randomly selected neighbors

Algorithms 3 and 4 are not suitable when neighbors are selected randomly.
They are not efficient, and sometimes it may be even impossible to produce
a solution with them, because the increased number of possible unique tests
causes the total number of combinations to grow drastically.

In this case Algorithms 1a, 1b and 1c should be used. When the number
of neighbors is relatively small, Algorithm 1b is better than 1a. Algorithm 1c
gives a better solution than 1a when the probability for selecting a neighbor is
greater than 0.8, or when the number of seats is greater than 100. The solution
can be enhanced with the algorithm of the ant by searching for a solution with
less than 9 unique tests, and less than the result of the greedy algorithms – 1a,
1b, and 1c.

47

Angel Golev, Olga Rahneva, Asen Rahnev

The algorithm of the ant seldom produces a solution for large number of
neighbors and 8 unique tests. The experiments demonstrate that the algorithm
of the ant gives a better solution than the greedy algorithms when the number
of neighbors is relatively small. Experiments are conducted with seat matrix
of 30× 30.

The solution with minimal number of unique tests is selected from all
solutions, and if the number is greater than 9, the standard solution (1) with
selected maximum number of neighbors is selected.

5. Acknoledgement

This research has been partially supported by the Bulgarian NSF under
Contract No VU-MI 107/2005 and by project No IS-M-4/2008 of Department
for Scientific Research, Plovdiv University “Paisii Hilendarski”.

References

[1] Brassard G., Bratley P., Algorithmics: Theory and Practice, Prentice Hall,
1988.

[2] Brusilovsky P., Miller P., Web-based Testing for Distance Education, Web-
Net 1999, pp. 149-155.

[3] Comellas F., Ozon J., An Ant Algorithm for the Graph Colouring Prob-
lem, ANTS’98 - From Ant Colonies to Artificial Ants: First International
Workshop on Ant Colony Optimization, Brussels, Belgium, 1998.

[4] Cormen T., Leiserson C., Rivest R. , Stein C., Introduction to Algorithms,
2nd edition, The MIT Press, 2001.

[5] Nakov P., Dobrikov P., Programming = ++Algorithms, TopTeam Co, Sofia,
2005 (in Bulgarian).

[6] Rahneva O., Testing and Assessment in Distributed Electronic Testing Clus-
ter – DeTC, 12th International Conference Electronics ’2003, Sozopol, 24-26
Sept. 2003, Conference Proceedings, v. 4, pp. 214-219.

[7] Rahneva O., Generating Dynamic Questions in Distributed e-Testing Clus-
ter – DeTC, ECEST’04, Bitola, 2004, v.1, pp 305-308.

48

Algorithms to Minimize the Number of Unique Tests in . . .

[8] Rahneva O., Rahnev A., Pavlov N., Functional Worklflow and Electronic
Services In a Distributed Electronic Testing Cluster – DeTC, Proceedings
2nd International Workshop on eServices and eLearning, Otto-von-Guericke
Univ. Magdeburg, 2004, pp 147-157.

Angel Golev, Asen Rahnev Received 24 January 2008
Faculty of Mathematics and Informatics
University of Plovdiv
236 Bulgaria Blvd.,
4003 Plovdiv, Bulgaria
e-mail: angelg@uni-plovdiv.bg, assen@uni-plovdiv.bg

Olga Rahneva
University of Food Technologies
Dept. of Informatics & Statistics
26 Maritsa Blvd.,
4000 Plovdiv, Bulgaria
e-mail: rahneva@hiffi-plovdiv.acad.bg

АЛГОРИТМИ ЗА НАМИРАНЕ НА
МИНИМАЛЕН БРОЙ РАЗЛИЧНИ ТЕСТОВЕ ПРИ

РЕАЛНО ГРУПОВО ТЕСТОВО ИЗПИТВАНЕ

Ангел Голев, Олга Рахнева, Асен Рахнев

Резюме. В работата се описват алгоритми за бързо намиране на ми-
нимален брой тестови варианти при провеждане на реално групово тестово
изпитване в разпределения клъстер за електронно тестване – DeTC в за-
висимост от конфигурациите на съседните места за изпитване. Предлага
се как тестовите варианти да се разположат на местата за изпитване, така
че на съседните места да има различни тестове.

За постигане на оптимално решение се предлага кои от алгоритмите
и в какъв ред да се приложат при различни конфигурации на съседните
места за изпитване.

49

