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Abstract. We consider the probability that a Brownian motion
hits a two-sided exponential boundary by a certain moment. We find
formulae for the crossing probabilities when the upper and lower parts
of the boundary are parallel curves.
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1. Introduction

Let (Bs)s≥ t be a Brownian motion with unit volatility and no drift,
Bt = x. Let T be an arbitrary fixed time-horizon, T ≥ t, and g(s) < f(s) be two
smooth real functions, defined at least for s ∈ [t;T ], such that g(t) ≤ x ≤ f(t).
Consider the hitting time τ = inf{s ∈ [t; T ] | Bs = f(s) or Bs = g(s)},
where inf ∅ = T , and the random events F = {Bτ = f(τ)}, G = {Bτ = g(τ)},
H = {g(s) < Bs < f(s) for all s ∈ [t;T ]}. We are interested in the probabilities
Pt, x(F), Pt, x(G), and Pt, x(H).

In 1960 T. W. Anderson [1] discovered the crossing probabilities for rec-
tilinear boundaries with no horizon — two straight lines that are parallel or
cross on the left of the starting point. In 1964 A. V. Skorokhod [2] found the
probability of going out of the domain through a little “door” at the horizon;
his formula holds for rectilinear boundaries. In 1967 L. A. Shepp [3] found a
formula for the expectation of the first hitting time for a two-sided symmet-
ric square-root boundary with no horizon. In 1971 A. A. Novikov [4] solved
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the same problem for a one-sided square-root boundary. In 1981 he published
a formula [5] for the probability of going out of the domain through the horizon;
it holds for curvilinear boundaries that are close to each other. A little later
in the same year A. V. Mel’nikov and D. I. Hadz̆iev [6] published a solution to
a similar problem for Gaussian martingales. In 1999 A. Novikov, V. Frishling
and N. Kordzakhia [7] found approximate formulae for the crossing probabili-
ties for both a one-sided and a two-sided boundary with a horizon; they were
able to derive exact formulae for a one-sided and a two-sided symmetric square-
root boundary.

In this paper we consider parallel exponential boundaries f(s) = be as + c2 ,
g(s) = be as + c1 , c = c2 − c1 > 0, and find formulae for Pt, x|a, b, c1 , c2 , T (F),
Pt, x|a, b, c1 , c2 , T (G), and Pt, x|a, b, c1 , c2 , T (H).

2. Analysis of the problem

Obviously, the non-crossing probability can be calculated via the formula

Pt, x|a, b, c1 , c2 , T (H) = 1− Pt, x|a, b, c1 , c2 , T (F)− Pt, x|a, b, c1 , c2 , T (G)

and for reasons of symmetry

Pt, x|a, b, c1 , c2 , T (G) = Pt,− x|a,− b,− c2 ,− c1 , T (F).

Therefore, it is enough to calculate Pt, x|a, b, c1 , c2 , T (F). (By translation along
the Ox

→
axis one may also prove the equality

Pt, x|a, b, c1 , c2 , T (F) = Pt, x + c0 |a, b, c1 + c0 , c2 + c0 , T (F) for all c0 ,

but we shall not make use of this fact.)
Let v(t, x) = Pt, x|a, b, c1 , c2 , T (F), that is consider t and x as arguments and

a, b, c1, c2, T as parameters. According to [8], the function v(t, x) is a solution
to the problem

∂v

∂t
+

1
2
· ∂2v

∂x2
= 0, t < T, x ∈ (g(t); f(t))

v(T, x) = 0, x ∈ (g(T ); f(T ))
v(t, g(t)) = 0, t ≤ T
v(t, f(t)) = 1, t ≤ T .

The equation is simple enough, but the boundary is complicated. To get a
rectangular boundary and an initial condition instead of the final one, set

v(t, x) = u

(
T − t ,

x− c1 − be at

c

)
.
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Then the function u(t, x) is a solution to the problem

− ∂u

∂t
− abe aT e− at

c
· ∂u

∂x
+

1
2c2

· ∂2u

∂x2
= 0, t > 0, 0 < x < 1

u(0, x) = 0, 0 < x < 1
u(t, 0) = 0, t ≥ 0
u(t, 1) = 1, t ≥ 0.

Let κ =
1

2c2
> 0 , λ =

abe aT

c
, U(p , x) = L[u(t, x)] , where L is the Laplace

transformation. Then we get the problem

κ .
∂2U

∂x2
(p , x)− λ .

∂U

∂x
(p + a , x)− p . U (p , x) = 0, Re(p)> 0, 0<x<1

U(p , 0) = 0 , Re(p) > 0

U(p , 1) =
1
p

, Re(p) > 0.

Since U(p , x) is defined for Re(p) > 0, we have to impose on a the constraint
a ≥ 0. If a = 0 or b = 0, then the boundaries become horizontal lines. This case
is well-studied, that is why we assume that a > 0 and b 6= 0 (so λ 6= 0).

This is a functional differential equation. It is functional in p and differen-
tial in x. Such equations are hard to solve. Their solutions can hardly ever be
written in a closed form. On the other hand, the solution U(p , x) is analytical
in x, and its power series converge for all x ∈ R. Therefore we shall find the

coefficients of the power series representation U(p , x) =
∞∑

n = 0

Qn(p)xn.

The differential equation turns into the recurrent equation

Qn+2(p) =
λ

κ(n + 2)
Qn+1(p + a) +

p

κ(n + 1)(n + 2)
Qn(p), Re(p)>0, n∈N0.

To find the sequence (Qn(p))∞n = 0 , we need to know its first two terms.
From U(p , 0) = 0 it follows that Q0(p) = 0 for all p with Re(p) > 0.

Therefore, U(p , x) =
∞∑

n = 1

Qn(p)xn.

Unfortunately, we do not know Q1(p). To find it, we must use the equation

U(p , 1) =
1
p

, which is equivalent to
1
p

=
∞∑

n = 1

Qn(p).
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Let Q(p) = Q1(p). Using the recurrent equation, we find

Q2(p) =
λ

2κ
Q(p + a), Q3(p) =

λ2

6κ2
Q(p + 2a) +

p

6κ
Q(p),

Q4(p) =
λ3

24κ3
Q(p + 3a) +

λp

12κ2
Q(p + a), etc.

By induction it follows that Qn(p) =
n−1∑

m = 0

γn, m(p)Q(p + ma). Substituting this

into the recurrent equation above, we get another recurrent equation:

γn+2, m(p) =





λ
κ(n+2) γn+1, m−1(p + a) + p

κ(n+1)(n+2) γn, m(p), m = 1, n−1
λ

κ(n+2) γn+1, m−1(p + a), m = n, n+1
p

κ(n+1)(n+2) γn, m(p), m = 0.

It holds for n∈N. The important difference is that we know γn, m(p) for both

n = 1 and n = 2: from Q1(p)=Q(p) and Q2(p)=
λ

2κ
Q(p + a) it follows that

γ1; 0(p) = 1, γ2; 0(p) = 0, γ2;1(p) =
λ

2κ
·

Incrementing the index n step by step, we can calculate as many functions of
the family {γn, m(p)} ∞n = 1

n−1
m = 0 as we need. Then

U(p , x) =
∞∑

n = 1

Qn(p)xn =
∞∑

n = 1

n−1∑
m = 0

γn, m(p) xn Q(p + ma) =

∞∑
m = 0

[
Q(p + ma)

∞∑
n = m+1

γn, m(p)xn

]

if we are allowed to change the order of summation. However, since this
operation is problematic, we shall prove a similar equality through a devious
path. By definition,

(1) U(p , x) =
∞∑

n = 1

Qn(p) xn = lim
N→∞

N∑
n = 1

Qn(p)xn =

lim
N→∞

N∑
n = 1

n−1∑
m = 0

γn, m(p)xn Q(p+ma) = lim
N→∞

N−1∑
m = 0

[
Q(p+ma)

N∑
n = m +1

γn, m(p) xn

]
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(now we can change the order of summation, because the sums are finite).

Substituting x = 1 and making use of the equation U(p , 1) =
1
p

, we get the

following functional equation:

(2)
1
p

= lim
N→∞

N−1∑
m = 0

[
Q(p + ma)

N∑
n = m+1

γn, m(p)

]
, Re(p) > 0.

There is a natural procedure to approximately solve this equation for Q. This
procedure will be described immediately after Theorem 1.

3. Main result

Theorem 1. If g(t)= be at+ c1 , f(t)= be at+ c2 , ∀t ≤ T∈R, c = c2−c1 >0,

a > 0, b 6= 0, κ =
1

2c2
> 0 , λ =

abe aT

c
, then for all admissible t and x:

a) Pt, x|a, b, c1 , c2 , T (H) = 1− Pt, x|a, b, c1 , c2 , T (F)− Pt, x|a, b, c1 , c2 , T (G);

b) Pt, x|a, b, c1 , c2 , T (G) = Pt,− x|a,− b,− c2 ,− c1 , T (F);

c) v(t, x) := Pt, x|a, b, c1 , c2 , T (F) = u

(
T − t ,

x− c1 − be at

c

)
, where

u(t, x) = L−1 [U(p , x)] is the inverse Laplace transformation of

U(p , x) =
∞∑

n = 1

Qn(p)xn; here Qn(p) =
n−1∑

m = 0

γn, m(p) Q(p + ma) ∀n∈N,

the family {γn, m(p)} ∞n = 1
n−1
m = 0 is defined through the initial conditions

γ1; 0(p) = 1, γ2; 0(p) = 0, γ2;1(p) =
λ

2κ
and the recurrent equation (n∈N)

γn+2, m(p) =





λ
κ(n+2) γn+1, m−1(p+a) + p

κ(n+1)(n+2) γn, m(p), m= 1, n−1
λ

κ(n+2) γn+1, m−1(p+a), m= n, n+1
p

κ(n+1)(n+2) γn, m(p), m= 0;

and the function Q(p) is implicitly defined as a solution to the equation

1
p

= lim
N→∞

N−1∑
m = 0

[
Q(p + ma)

N∑
n = m+1

γn, m(p)

]
, Re(p) > 0.
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4. Numerical calculations

Theorem 1 offers a convenient way for calculating the crossing and non-
crossing probabilities for any set of input data. Most of its prescriptions can
be directly implemented. A few moments need explaining.

The inverse Laplace transformation w(t) = L−1 [W (p)] of a function W (p)
can be calculated by means of the well-known formula

w(t) =
1

2πi
P. V.

∫r + i∞

r− i∞

e p t W (p) dp, r > 0.

Tabulating the W function and calculating the integral is no problem.
One also has to replace the infinite sum in the expression

U(p , x) =
∞∑

n = 1

Qn(p)xn

with a finite one:

U(p , x) ≈
N∑

n = 1

Qn(p)xn

taking some great integer N .
The definition of the Q(p) function is the only implicit definition. The

equation (2) can be solved for Q replacing p with p + ka:

1
p + ka

= lim
N→∞

N−1∑
m = 0

[
Q (p + (k + m)a)

N∑
n = m+1

γn, m(p + ka)

]
, i.e.

1
p + ka

= lim
N→∞

N+ k−1∑

m = k

[
Q (p + ma)

N∑

n = m− k +1

γn, m− k(p + ka)

]
, Re(p) > 0.

Actually, this is a system with infinitely many equations (k∈N0) and infinitely
many unknowns Q(p + ma), m∈N0 . It is natural to search for its solution
replacing the limit with the N -th term of the sequence and taking finitely
many equations, i.e. k = 0, 1, 2, ... , K:

1
p + ka

≈
N+ k−1∑

m = k

[
Q (p + ma)

N∑

n = m− k +1

γn, m− k(p + ka)

]
, Re(p) > 0.
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For any fixed p, Re(p)>0, this is a (finite) linear system with K+1 equa-
tions and N+K unknowns Q(p + ma), m = 0, 1, 2, ... , N+K−1. To solve it, we
need N−1 additional equations. These could be

Q(p + ma) = 0, m = K+1, K+2, ... , N+K−1,

if K is a great integer, because lim
m→∞

Q(p +ma)=0. It follows from the equality

lim
p→∞

Q(p) = 0, which holds, because Q is an image of a function:

Q(p) = Q1(p) =
∂

∂x
U(p , x)

∣∣∣∣
x = 0

=
∂

∂x
L [u(t , x)]

∣∣∣∣
x = 0

= L

[
∂

∂x
u(t , x)

∣∣∣∣
x = 0

]

.

Now we have a linear system with N+K equations and N+K unknowns.
Solving it is straightforward. Both N and K must be great enough so that the
solution to this system could be closer to the actual value of Q(p).

The careful reader may have noticed that we can avoid calculating Qn(p)
if we use (1), i.e.

(3) U(p , x) = lim
N→∞

N−1∑
m = 0

[
Q(p + ma)

N∑
n = m +1

γn, m(p) xn

]

instead of

(4) U(p , x) =
∞∑

n = 1

Qn(p) xn = lim
N→∞

N∑
n = 1

Qn(p)xn.

However, if you are tabulating U(p , x), you can group the calculations by p :
while the value of p is fixed, x may take on different values.

If you choose to use (3), you may cache the values of {Q(p + ma)} N−1
m = 0

and {γn, m(p)} N−1
m = 0

N
n = m+1 , which will require O(N2) amount of memory.

Then each value of x will require O(N2) steps to calculate U(p , x).
If you use (4), you may cache the values of {Qn(p)} N

n = 1 , which will re-
quire O(N) amount of memory and O(N) steps for each value of x .

Obviously, the second implementation scheme is more effective.
The formulae in this paper were programmed and tabulated. The results

were compared with the values of the crossing probabilities calculated by means
of the Monte Carlo method and dynamical programming. The idea of the last
method is to calculate the crossing probabilities, beginning from the horizon
and moving to the starting moment step by step.

The three results concur, which gives a numerical support to the formulae.
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ВЕРОЯТНОСТ ЗА ИЗХОД НА БРАУНОВО ДВИЖЕНИЕ
ПРЕЗ УСПОРЕДНИ ЕКСПОНЕНЦИАЛНИ ГРАНИЦИ

Добромир Кралчев

Резюме. Разглеждаме вероятността брауново движение да достигне
двустранна експоненциална граница преди определен момент. Извеждаме
формули за вероятността за изход на процеса през горната, респективно
долната граница, в случай че те са успоредни.
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