
PLOVDIV UNIVERSITY “PAISSII HILENDARSKI”, BULGARIA
SCIENTIFIC WORKS, VOL. 36, BOOK 3, 2009 – MATHEMATICS

ПЛОВДИВСКИ УНИВЕРСИТЕТ “ПАИСИЙ ХИЛЕНДАРСКИ”, БЪЛГАРИЯ
НАУЧНИ ТРУДОВЕ, ТОМ 36, КН. 3, 2009 – МАТЕМАТИКА

A REFLEXIVE ALGORITHM
FOR EXISTENCE OF NULL-SUBMATRICES

Dobromir P. Kralchev, Dimcho S. Dimov, Alexander P. Penev

Abstract. We propose a heuristic algorithm for existence of null-
submatrices in big sparse matrices. The algorithm is reflexive: it exami-
nes its own memory consumption, which is in correlation with its output.

Mathematics Subject Classification 2000: Primary 68T20, Secondary
60G35, 68R05

Key words: binary matrices, matchings, heuristics, random processes,
reflexive (self-monitoring) algorithms

1. Introduction

Given an M x N binary matrix and a positive integer G ≥ 2, can you find
a P x Q null-submatrix such that P + Q = G?

This problem is connected with many other combinatorial problems. For
instance, searching an unoriented graph for cliques is equivalent to searching
A = (aij) for a (symmetrically positioned) null-submatrix, where aij = 0 if and
only if the vertices i and j are connected or i = j.

Consider also the matching problem. You have a bipartite unoriented
graph with M + N vertices. Given a positive integer K, can you choose K arcs
such that no two of their vertices coincide? A matching is any set of arcs that
has this property. In the special case M = N = K the matching is perfect.
An algorithm for finding perfect matchings is given in [1]. Many real-world
problems can be reduced to this one: assigning jobs to workers or classrooms
to teachers, etc. A theorem belonging to F. Hall (cf. [2]) can be used to prove
the following proposition:

59



Dobromir P. Kralchev, Dimcho S. Dimov, Alexander P. Penev

There is a perfect matching in an N + N bipartite graph iff its adjacency
matrix does not contain a P xQ null-submatrix such that P + Q = N .

Our problem has three parts:
a) Does at least one null-submatrix exist?
b) How many null-submatrices exist?
c) Find at least one null-submatrix, if any.
At first sight, the third part seems most interesting. On the contrary,

we shall pay attention to the first one, which is especially important for this
reason: many problems are OR-compositions of null-matrix subproblems and
can be solved following the next schemes:

— examine the subproblems one by one trying to find a null-submatrix
until you find one or there are no subproblems left;

— examine the subproblems one by one: if a null-submatrix exists, then
find it and stop searching, else go to the next subproblem.

If negative answers are more probable, the second scheme is faster. That is
why, it is important to have a quick algorithm for existence of null-submatrices.

Moreover, in many problems the search can be implemented through back-
tracking; then the existence algorithm ensures a correct decision at each step,
which accelerates the search.

2. Construction of the algorithm

2.1. Analysis of old algorithms

We shall accelerate the algorithm from [3]. (In fact, [3] does not contain
an explicit formulation of the algorithm, but the theorems managing different
cases are arranged in the same way as the steps of the algorithm. An explicit
formulation of the algorithm is given in [4] and [5].)

Strictly speaking, the algorithm from [3] is not an existence algorithm:
it searches for a null-submatrix. However, the heuristic we use makes it an
existence algorithm.

Searching for a null-submatrix, the algorithm checks each zero for a pos-
sible participation in such a submatrix. To do so, the algorithm explores some
submatrices (according to the position of the zero being checked) and makes
recursive calls when necessary.

The details of the algorithm are unimportant for the current study. You
can find them in [3], [4] and [5].

The average running-time of the algorithm is about half a second even for
1000 x 1000 matrices. However, for a special case of sparse matrices

60



A Reflexive Algorithm for Existence of Null-Submatrices

(N x N binary matrices, 110 ≤ N ≤ 140, density: 10%) and for special posi-
tions of the submatrix the running-time is unacceptable — more than 30 min.
The density is the percentage of the units of the matrix. (The tests were run
on Pentium III, 450 MHz, 128 MB RAM.)

A powerful idea applicable in difficult combinatorial problems is to exa-
mine the actions of the implementation of the algorithm itself. It is often the
case that some easily recognizable feature (such as running-time or memory
consumption) is in correlation with the output. Such a feature can be used
to predict the answer long before the algorithm terminates normally. If the
correlation is strong enough, the execution of the algorithm can be interrupted
thus saving running-time.

In our problem it is suitable to examine the memory consumption of the
algorithm. Consider the memory consumption as a random process (Mt)t≥ 0 .
The memory consumption can be measured in bytes but we shall use the
recursion depth as a measurement unit (it is a non-negative integer propor-
tional to the actual consumption measured in bytes).

Sparse binary matrices (density: 10%) of both kinds (containing a null-
submatrix or not) were generated at random, then passed to the program
with M = N = G. The average recursion depth D for each test was calculated
according to the formula

(1) D =
1

T − k + 1

T∑

t = k

Mt .

Here T is the moment when the program was interrupted, i.e. we have the ran-
dom process (Mt)

T
t = 0 instead of (Mt)t≥ 0 . The integer k stands for the starting

moment of calculation. It is greater than zero because Mt increases in the be-
ginning, then starts fluctuating (the value k is intended for filtering out the
initial increment).

Typical values of the average recursion depth are shown below.

Size 110 120 130 140 x s
‘Yes’ 7.9 7.8 7.5 7.7 7.7 0.2
‘No’ 8.6 8.2 9.7 8.9 8.9 0.6

Table 1. Average recursion depth

The size is the common value of M , N and G. ‘Yes’ means there is a
null-submatrix, ‘No’ means there is not.

Obviously, the average depth is smaller for matrices containing a null-
submatrix. This hypothesis has been confirmed with a p-value about 0.005.

61



Dobromir P. Kralchev, Dimcho S. Dimov, Alexander P. Penev

The column marked with x contains the average recursion depth for all
sizes. The column marked with s contains the standard deviation. To choose
some boundary, divide the interval between 7.7 and 8.9 in a ratio 0.2 : 0.6 and
you will get the value 8.0. This number means that with a great certainty the
average recursion depth will be smaller than 8.0 if there is a null-submatrix;
otherwise, it will be greater.

The algorithm can be made faster through implementing a new level
examining the memory consumption of the algorithm. A new algorithm is
thus obtained consisting of two levels: the lower level is the old algorithm, the
higher level is a monitor that can stop the low-level algorithm whenever the
average recursion depth becomes much smaller or much greater than 8.0. The
levels are united by a common goal, so they form a single self-monitoring algo-
rithm, hence the name ‘reflexive’.

2.2. A reflexive algorithm for null-submatrices

Input:

A: an M x N binary matrix;

G: an integer greater than 1.

Question: Is there a P x Q null-submatrix B of A with P + Q = G?

Output: ‘Yes’ or ‘No’ — the answer to the question.

Const V: the ‘yes-no’ boundary.

Actions (of the higher level):

1. Run the low-level algorithm that searches A for B.

2. Wait until the recursion depth stops increasing monotonously.

3. Wait until the sample path becomes long enough.

4. Start monitoring the average recursion depth D:

each time the recursion depth changes,

calculate D according to formula (1).

5. Wait until the lower level has finished or D << V, or D >> V.

6. If the lower level has finished, return its answer.

7. If D << V, return ‘Yes’.

8. If D >> V, return ‘No’.

The details of the algorithm need some explanation.
The constant V has the value 8.0 calculated above (in fact, the value 7.975

was used but this is just a matter of precision).

62



A Reflexive Algorithm for Existence of Null-Submatrices

Step 1 makes some initializations (T = 0, M0 = 0) and starts monitoring
the memory consumption. Each time the recursion depth changes, T takes on
the next value (1, 2, 3, . . . ), then a new element MT is appended to the array Mt .

Step 2 waits for T > 0 such that MT < MT−1 , and sets k = T .
Step 3 waits until T becomes much greater than k. To be more precise,

our implementation of the algorithm waits until T = k + 99, i.e. the sample
path (the array Mt) has got at least 100 elements with indices ≥ k.

Step 4 applies formula (1) to the array Mt each time T has increased, i.e.
a new element MT has been appended to the array.

Step 6 could return B instead of ‘Yes’, thus avoiding a subsequent search.
The inequalities D << V and D >> V in steps 5, 7 and 8 can be made

more precise by specifying a critical point. In our implementation the inequa-
lity D >> V is replaced with D > V + Zγ · s√

n

(
and D << V is replaced with

D < V − Zγ · s√
n

)
, where Zγ is a quantile of the standard normal distribu-

tion. The confidence level γ must be chosen close to 1. However, there is no
point in setting it to a value greater than 0.995 because of the p-value. It is
natural to choose for s the greatest of the values 0.2 and 0.6 (see Table 1).

Then Zγ . s = 0.6 Z0.995 = 1.5. Now we have D > V +
1.5√

n
instead of D >> V ,

and D < V − 1.5√
n

instead of D << V . Here n is the length of the sample path,

i.e. n = T − k + 1.
Note: Implementation details could be different from this description. For

example, the array Mt is not necessary: step 2 needs only MT and MT−1;
step 4 needs only MT and the old value of D to calculate the new value of D.

3. Experimental results

The implementation of the reflexive algorithm was tested for reliability.
Sparse matrices (density: 10%) were again generated at random, then passed
to the program with 110 ≤ M = N = G ≤ 140. These are some conditional
probabilities calculated from the test results:

P (the output is ‘Yes’ | the correct answer is ‘Yes’) = 95.0%;

P (the output is ‘No’ | the correct answer is ‘No’) = 62.5%;

P (the correct answer is ‘Yes’ | the output is ‘Yes’) = 71.7%;

P (the correct answer is ‘No’ | the output is ‘No’) = 92.6%.

63



Dobromir P. Kralchev, Dimcho S. Dimov, Alexander P. Penev

The reliability of the algorithm was estimated as follows:

P (the output is correct) = 78.75%.

The average running-time of the reflexive algorithm is 20-30 sec., which
is incomparably better than the running-time of the lower level without the
higher one.

4. Possible improvements

A disadvantage of the reflexive algorithm described above is the fact that
all the parameters necessary for its work are predetermined. Consequently, one
must repeat the whole statistical analysis whenever the density or the size of
the matrices goes out of the range investigated. To avoid this, a third level
could be embedded that will analyse the running-time and reliability of the
algorithm and will automatically configure its parameters.

The algorithm can be made even faster (and less reliable) if it does not wait
for D to become much smaller or much greater than V but rather calculates the
probabilities of these events. If one of these probabilities becomes close to 1, the
monitoring level can stop the lower level and return the corresponding answer
as if the event has happened. However, to implement this, one must know the
distribution of the random process (Mt)t≥ 0 .

5. Conclusion

Reflexive algorithms are suitable when the output is in correlation with
some easily recognizable feature of the algorithm. Memory consumption can be
used in this part, but it is not the only feature of this kind. Other
characteristics, such as running-time, may also be useful.

6. Acknoledgement

This research has been partially supported by the Bulgarian NSF under
Contract No VU-MI 107/2005 and by project No IS-M-4/2008 of Department
for Scientific Research, Plovdiv University “Paisii Hilendarski”.

64



A Reflexive Algorithm for Existence of Null-Submatrices

References

[1] Preslav Nakov, Fundamentals of computer algorithms, TopTeamCo, Sofia,
2001, ISBN: 954-8905-04-3, pp. 175–179 (in Bulgarian).

[2] V. Lipskii, Combinatorics for programmers, Moscow, “Mir”, 1988 (in Rus-
sian).

[3] Dimcho Dimov, Dobromir Kralchev, Alexander Penev, Stanimir Stanchev,
Existence of solutions to the assignment problem, International Con-
ference on Automatics and Informatics, Sofia, May 30 – June 2, 2001,
pp. I-81 – I-83.

[4] Dobromir Kralchev, Investigation of the rook problem, BSc diploma work,
Plovdiv University “Paissii Hilendarski”, Department of Mathematics and
Informatics, Plovdiv, Bulgaria, 2001 (in Bulgarian).

[5] Dobromir Kralchev, Existence, generation and count of the assignments in
the rook problem, MSc diploma work, Plovdiv University “Paissii Hilen-
darski”, Dept. of Mathematics and Informatics, Plovdiv, Bulgaria, 2003
(in Bulgarian).

Dobromir P. Kralchev Received 06 January 2008
University of Food Technologies
Dept. of Informatics & Statistics
26 Maritsa Str.
4000 Plovdiv, Bulgaria
dobromir_kralchev@abv.bg

Dimcho S. Dimov, Alexander P. Penev
Plovdiv University “Paissii Hilendarski”
Dept. of Mathematics and Informatics
236 Bulgaria Blvd.
4000 Plovdiv, Bulgaria
apenev@uni-plovdiv.bg

65



Dobromir P. Kralchev, Dimcho S. Dimov, Alexander P. Penev

РЕФЛЕКСИВЕН АЛГОРИТЪМ
ЗА СЪЩЕСТВУВАНЕ НА НУЛЕВИ ПОДМАТРИЦИ

Добромир Кралчев, Димчо Димов, Александър Пенев

Резюме. Предлагаме евристичен алгоритъм за съществуване на нуле-
ви подматрици в големи разредени матрици. Алгоритъмът е рефлексивен:
изследва количеството памет, използвано от самия него, а то се намира
във взаимна връзка с изхода.

66


