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Abstract. Let G be an abelian p-group and let K be a field of the
first kind with respect to p of characteristic not equal to p such that the
spectrum sp(K) of the field K with respect to p contains N. Denote by
KG the group algebra of G over K and by S(KG) the p-component of
the group of the normalized units in KG. We compute exp(S(KG)/G)
and prove that if G is a separable group, then S(KG)/G is separable,
i.e. G is a nice subgroup of S(KG).

Suppose G is a finite abelian group, Gp is the p-component of G
and R is a finite commutative ring with identity of prime characteristic p
without nilpotent elements. We compute the Ulm-Kaplansky invariants
of the group S(RG)/Gp.

The indicated results correct some essential inaccuracies and incom-
pleteness in the formulations and in the proofs of results in this direction
of P. V. Danchev (2005 (Zbl. 1107.16030), 2003 (Zbl. 1035.16025) and
2004 (Zbl.1067.16054)). We note also that because of gaps some results of
the same author (2003 (Zbl. 1035.16025), 2004 (Zbl. 1080.16022), 2005
(Zbl. 1107.16030 and Zbl. 1097.16007) and 2008 (Zbl. pre 05375552))
remain unproved.
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1. Introduction

Let RG be the group algebra of an abelian group G over a commutative
ring R with identity. Denote by tG the torsion subgroup of G, by Gp be the
p-component of G, by U(RG) the multiplicative group of RG and by S(RG)
the Sylow p-subgroup of the group V (RG) of normalized units of RG, i.e. the
p-component of V (RG). The investigations of this group begin with the fun-
damental papers of Berman, S. D. [B and B1]) in which a complete description
of S(RG) (up to isomorphism) is given, when G is a countable abelian p-group
and R is a countable field of positive characteristic p such that if G is not a
restricted direct product of cyclic groups, then the field R is perfect. Further
Mollov T. Zh. [M1 and M2] calculates the Ulm-Kaplansky invariants fα(S)
of the group S(RG) when G is an arbitrary abelian group and R is a field of
positive characteristic p. When R is a commutative ring with identity of prime
characteristic p without nilpotent elements A. Bovdi and Z. Pataj [BP] calcu-
late the Ulm-Kaplansky invariants of S(RG) under the following restriction: if
the maximal divisible subgroup of Gp is not identity, then R is a p-divisible ring,
i.e. Rp = R. Nachev, N. A and Mollov, T. Zh. [NM] calculate the invariants
fα(S) with the only restriction on G to be an abelian p-group. Nachev, N. A.
[N3] calculates the invariants fα(S) without restrictions on G and R. Moreover,
in all indicated cases the authors give a full description, up to isomorphism, of
the maximal divisible subgroup of S(RG).

Let G be an abelian p-group and let K be a field of characteristic p.
W. May [M] proves that S(KG) is simply presented if and only if G is a sim-
ply presented abelian p-group provided the field R is perfect. Therefore, if
K is a perfect field of characteristic p and G is a simply presented abelian
p-group, then the Ulm-Kaplansky invariants fα(S) of the group S(KG) to-
gether with the description of the maximal divisible subgroup of S(RG) give a
full description, up to isomorphism, of the group S(KG).

Let G be an abelian p-group and let K be a field whose characteristic
is different from p. S. D. Berman and A. R. Rossa [BR, BR1] have given a
description of the torsion subgroup tV (KG) of V (KG) when G is a countable
abelian p-group and K is a field. Let R be a commutative ring with identity,
such that the characteristic of R does not divide the orders of the elements of
G. N. Nachev [N1, N2] has given a description of the torsion subgroup tV (RG)
of V (RG) when G is an abelian p-group and R contains the pnth roots of
unity, n ∈ N. G. Karpilovsky [K, 5.2.5 Theorem, p.126] has determined the
isomorphism class of U(QG) when G is a finitely generated abelian group.
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We define

Gpn

= {gpn |g ∈ G}, n ∈ N, G1 =
∞⋂

n=1

Gpn

.

Denote by |M | the cardinality of a set M . Let
∐
α

G denote the coproduct

of α copies of G, where α is a cardinal number. T. Mollov [M5] gives a full
description of the group S(KG) when G is an arbitrary abelian p-group and
the field K is of the second kind with respect to p. When the field K is of the
first kind with respect to p then in the same paper the following decomposition

S(KG) ∼= S1(KG)× S(K(G/G1)),

is obtained where
S1(KG) ∼=

∐

|G|
Z(p∞),

when G1 6= 1 and S1(KG) = 1 when G1 = 1. (Here we note that in this
paper there is a technical mistake since the first isomorphism is written as an
equality. Obviously, we can write

S(KG) = S1(KG)× T, T ∼= S(K(G/G1)).)

Therefore, the description of S(KG) is reduced to a description when G is a
separable group. In this case in [M7] the Ulm-Kaplansky invariant of S(KG)
are calculated. In this way T. Mollov [M1-M3, M5-M7] has described the
torsion subgroup tV (RG) of V (RG) when G is an abelian group and R is a
field. T. Mollov [M4] has also described V (RG), up to isomorphism, when
either (a) G is an infinite direct sum of cyclic p-groups and R = Q or (b) G
is an abelian p-group and R = R. Z. Chatzidakis and P. Pappas [ChP] have
determined the isomorphic class of U(RG) when the torsion abelian group G
is a direct sum of countable groups and R is a field. N. Nachev and T. Mollov
[NM1 and NM2] describe U(RG), up to isomorphism, when G is an abelian
p-group and at least one of the following conditions (a) or (b) is fulfilled:

(a) the first Ulm factor G/G1 of G is a direct sum of cyclic groups and R
is a field of the first kind with respect to p;

(b) R is a field of the second kind with respect to p.
If R is a direct product of m indecomposable rings Ri, m ∈ N, T. Mollov

and N. Nachev [MN] give a description of the unit group U(RG) of RG in the
following cases:
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(a) when Ri is a ring of prime characteristic pi, tG/Gpi
is finite and the

exponent of tG/Gpi
belongs to R∗i ;

(b) when Ri is of characteristic zero, Ri has no nilpotents, tG is finite of
exponent n and n ∈ R∗i .

When G is an abelian p-group and K is a field of the first kind with respect
to p such that sp(K) ⊇ N, then P. Danchev makes an attempt:

(i) to calculate exp(S(KG)/G) [D4, Proposition 2];
(ii) to calculate the Ulm-Kaplansky invariants of S(KG)/G [D4, Theo-

rem 1];
(iii) to prove that S(KG)/G is a direct sum of cyclic groups, provided

G is a direct sum of cyclic groups [D1, Theorem 7 (Direct Factor) and D2,
Proposition (Structure) (◦◦)];

(iv) to prove that if G is a separable group, then S(KG)/G is separable, i.e.
G is a nice subgroup of S(KG) ([D1], Proposition 16 (a)] or [D4], Lemma 3);

(v) to prove that S(KG) is torsion complete if and only if G is bounded
[D2, Theorem 1].

Besides, P. Danchev wants
(vi) to calculate the α-th Ulm-Kaplansky invariant of the group S(RG)/Gp

(α is an arbitrary ordinal), when G is an abelian group and R is a commutative
perfect ring with identity of characteristic p without nilpotent elements such
that Gpα

and R are finite [D3, Theorem 6 (i)];
(vii) to give a criterion, i.e. a necessary and sufficient conditions for

V (FG) = G when the group G is finite and F is a field [D5] and
(viii) to give a criterion for V (RG) = G when either supp (G)∩inv (R) 6= Ø

or RG is a modular group algebra where R is a commutative ring with identity,
supp (G) = {p|Gp 6= 1} (p is a prime number) and inv (R) = {p|p.1R ∈ R∗}
(1R is the identity of R and R∗ is the multiplicative group of R) [D6].

We note that in the proofs and in the formulations of many assertions
of [D1]-[D6] which are connected with (i)-(viii) there are essential gaps and
mistakes. In Sections 2 we correct the proofs and the formulations of some
assertions and we prove correctly the results (i) and (iv). Besides, in Section 3
we correct case (vi), since, in this case, the indicated invariant is given in [D3]
incompletely and ambiguously. However, the results (ii), (iii), (v), (vii) and
(viii) of Danchev remain unproved.

We note additionally that in the paper of W. May, T. Mollov and N. Nachev
[MMN] are commented the gaps and the mistakes made in 6 papers [Da-Df] of
Danchev but now we will not consider these articles.

The abelian group terminology is in agreement with [F].
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2. On the unit groups of semisimple group algebras

Our basic aim in this section is to prove correctly the results (i) and (iv)
which were noted in Section 1, to correct some preliminary assertions in the
papers [D1]-[D4] and to motivate that the above results (ii), (iii), (v), (vii) and
(viii) remain unproved.

We will multiplicatively write the abelian groups. We recall some well
known definitions. We say that an abelian group G has a finite exponent n and
we write exp(G) = n if Gn = 1 and n is the least natural with this property.
Otherwise we say that the exponent of G is infinity and we write exp(G) = ∞.

For the presentation of the main results we use the following notation. If
A is a subgroup of the group G, then we will write A ≤ G. We denote the
order of a ∈ G by O(a) and by b/c the number bc−1, when b and c are real
numbers, c 6= 0.

Let µp be the group of the pn-th roots of unity with n ranging over N. The
field K of characteristic not equal to p is called of the first kind with respect
to p if (K(µp) : K) is infinite; otherwise it is ofthe second kind with respect to
p. All direct products of groups are assumed to be restricted direct products,
i.e. they are direct sums and the concept direct product will mean a restricted
direct product. Let Kp be the p-component of the multiplitive group of a field
K.

Let K be a field of the first kind with respect to p and let εi, i ∈ N, be
a primitive pi-th root of unity. Then the group K(εi)p, where i = 1 if p 6= 2
and i = 2 if p = 2, is cyclic. Hence for this i there exists a positive integer θ
such that |K(εi)p| = pθ. We call the number θ the constant of the field K with
respect to p. The set

sp(K) = {i ∈ N0|K(εi) 6= K(εi+1)}
is said to be a spectrum of the field K with respect to p [M6].

We will use the following lemma, which is proved in the book of G.
Karpilovsky [K1, Lemma 12.34, p. 247]. We note that in this section the
prime p is fixed.

Lemma 2.1. Let K be a field of characteristic different from the prime
p. Suppose q = 1, if p 6= 2 and q = 2, if p = 2. Then

(i) if K is a field of the second kind with respect to p, then K(εm) = K(εq)
for all m ≥ q and

(ii) if K is a field of the first kind with respect to p and f is the constant
of K with respect to p, then

K(εq) = K(εq+1) = ... = K(εf ) ⊂ K(εf+1) ⊂ ...
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The following lemma is a result of S. D. Berman [B1, Corollary of Lemma 2.5].

Lemma 2.2. If K is a field of the first kind with respect to p, then
(K(εi) : K(εf )) = pi−f for every i ≥ f , where f is a constant of K with respect
to p.

Proposition 2 of (P.Danchev, [D4]) has the following formulation.

”For an abelian p-group G and sp(K) ⊇ N, we have

exp(S(KG)/G) = i ∈ N⇔ exp(G) = i ∈ N.”

We can give immediately the following counterexample to Proposition 2.
Namely, let G = 〈a〉 be a cyclic of order 3, i.e. p = 3 and let K = Z2

be the field of two elements. It is not hard to see that s3(Z2) = N0, where
N0 = N ∪ 0. Really, let εi be a primitive 3i-th root of unity over Z2, i ∈ N0.
Since ε1 ∈ (Z2(ε1))∗ and |Z2(ε1)∗)| = 2k−1, where k is the minimal integer
with the property 3/(2k−1), then k = 2, i.e. (Z(ε2):Z2) = 2. Analogously,
for ε2 we obtain 9/(2k−1) hence k = 6, i.e. (Z(ε2):Z) = 6. In this way
(Z2(ε2) : Z2(ε1)) = 3. Then Lemma 2.1 implies Z2(εi) 6= Z2(εi+1), i = 1, 2, ....
Therefore, s3(Z2) = N0 ⊇ N. Besides the group algebra Z2G contains 8 ele-
ments. Since 1 + a + a2 is an idempotent of Z2G and 0, 1 + a, 1 + a2, a + a2

does not belong to V (KG), then V (KG) = S(KG) = G. Consequently,
exp(S(KG)/G) = exp{1} = 0 6= 1 = exp{(G)}. Therefore, Proposition 2
of [D4] is not true.

In order to calculate exp(S(KG)/G) we will give some definitions and will
prove some preliminary assertions.

Let G be a finite abelian p-group of exponent n, sp(K) ⊇ N and K∗ is
the unit group of the field K. Character χ of the group G is a homomorphism
χ : G → (K(εn))∗. Let e be an idempotent of KG which corresponds to χ and
Ker e = {g ∈ G | ge = e}. It is obviously that Ker e = Ker χ. Besides G/Ker e
is a cyclic group. Really, χ : G → (K(εi))∗ = 〈εi〉 is a homomorphism of G
onto (K(ε1))∗. Therefore, G/Ker e ∼= 〈εi〉, i.e. G/Ker e is a cyclic group. If
χ(g) = 1 for every g ∈ G, then we will call χ an identity character.

Further, if the contrary is not assumed, we will denote by G an abelian
p-group, by K a field of the first kind with respect to p and by e0 the idempo-
tent, which corresponds to the identity character.

Lemma 2.3. Let G be a finite abelian p-group, let K be a field of the first
kind with respect to p and let sp(K) ⊇ N. Suppose e is a minimal idempotent of
KG different from e0. Then the p-component (KGe)p of the ideal KGe, which
is regarded as a field of identity e, consists of the elements ge, where g runs G.
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Proof. It is well known that KGe ∼= K(εi). Since sp(K) ⊇ N and e 6= e0,
then i = 0 is impossible because i = 0 holds if and only if G = Ker e which is
equivalent to e = e0. Therefore, i 6= 0, i ∈ sp(K) and (K(εi))p is a cyclic group
of order pi. Let a be an element of G such that G/Ker e = 〈aKer e〉. Then the
image of ae by the isomorphism ϕ : KGe → K(εi) is εi. Consequently ae is
a generating element of (KGe)p, i.e. every element of (KGe)p has a form ge,
g ∈ G. ¤

The element x = α1g1 + ... + αngn, αi ∈ K, gi ∈ G, is called normalized
element if α1 + ... + αn = 1.

Lemma 2.4. If G is a finite abelian p-group, N ⊆ sp(K) and x ∈ KG,
then x ∈ S(KG) if and only if

(2.1.) x = e0 + g1e1 + ... + gnen, gi ∈ G,

where e0, e1, ..., en form a full system of minimal orthogonal idempotents of
KG. Therefore, exp(S(KG)) ≤ exp(G).

Proof. Let x ∈ S(KG). It is well known that

KG = KGe0 ⊕KGe1 ⊕ ...⊕KGen.

Therefore, x = λ0e0 + λ1e1 + ... + λnen, λi ∈ KG, i = 0, 1, ..., n. Since x is
a normalized element and Ker e0 = G, then λ0 = 1. Besides λiei ∈ (KGei)p,
(i = 1, 2, ..., n), and by Lemma 2.3, λiei = giei, gi ∈ G, i = 1, 2, ..., n.

Conversely, if (2.1) holds, then obviously x ∈ S(KG). ¤

Lemma 2.5. Let G be a finite abelian p-group and N ⊆ sp(K). Suppose
x = 1 − e + ge, where g ∈ G and e is a minimal idempotent of KG. Then
x ∈ G if and only if gKer e ∩Ker (1− e) 6= Ø.

Proof. Let x ∈ G. Then x = 1−e+ge implies xe = ge and x(1−e) = 1−e.
We obtain, from the second equality, that g−1x ∈ Ker e, i.e. x ∈ gKer e. The
equality x(1− e) = 1− e implies x ∈ Ker e(1− e). In this way
x ∈ gKer e ∩Ker (1− e), i.e. the last cross-section is not empty.

Conversely, let h ∈ gKer e ∩ Ker (1 − e). Therefore, hg−1 ∈ Ker e, i.e.
hg−1e = e, which is eguivalent to ge = he. Besides h(1 − e) = 1 − e. Then
x = 1− e + ge = h(1− e) + he = h ∈ G. The proof is completed. ¤

We denote G[pn] = {g ∈ G|gpn

= 1}, n ∈ N.

The following lemma is a light modification of Lemma 1.1 of the paper
[M6] of T. Mollov.
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Lemma 2.6. If G is a finite abelian p-group and K is a field of the first
kind with respect to p, then for every i ∈ sp(K) the number of the idempotents
e of KG such that KGe ∼= K(εi) is

δi =

{
(
∣∣G[pi]

∣∣−
∣∣∣G[pi′ ]

∣∣∣)/(K(εi) : K), if i 6= io and∣∣G[pio ]| , if i = io,

where io is the minimal number of sp(K) and i′ is the maximal number of
sp(K) such that i

′
< i.

The proof of the following lemma is obtained directly by Lemma 2.6.

Lemma 2.7. Let abelian p-group G be a cyclic group of order pn, K be a
field of the first kind with respect to p and sp(K) ⊇ N. Then the number δi of
the minimal idempotents e of KG such that KGe ∼= K(εi), i = 0, 1, 2, ..., n, is
the following:

(i) if K(ε1) 6= K, then δo = 1 and δi = (p − 1)/d, d = (K(ε1) : K),
i=1,2,...,n and

(ii) if K(ε1) = K, then δo = δ1 = p and if n > 1, then δi = p − 1 for
i = 2, ..., n.

Lemma 2.8. If G is a cyclic group of order p, K is a field of the first
kind with respect to p, (K(ε1) : K) = p−1 and sp(K) ⊇ N, then S(KG) = G.

Proof. Lemma 2.7 implies that there are exactly two minimal idempotents
e0 and e1 of KG such that KGeo

∼= K and KGe1
∼= K(ε1). Therefore, Ker e0 =

G and Ker e1 = 1. Any element x ∈ S(KG), by Lemma 2.4, has the form
x = eo +ge1, g ∈ G. Since Ker eo = G, then x = ge0 +ge1 = g ∈ G. Therefore,
S(KG) = G. ¤

Theorem 2.9. Let G be an abelian p-group, let K be a field of the first
kind with respect to p and let N ⊆ sp(K). Then

(i) exp(S(KG)/G) = exp(G) − 1, if (K(ε1) : K)=p − 1 and the group G
is a cyclic and

(ii) exp(S(KG)/G) = exp(G) otherwise.

Proof. (a) Let G be a cyclic p-group and (K(ε1):K) = p−1. Suppose G =
〈a〉 is a cyclic group of order pn. If n = 1, then, by Lemma 2.8, S(KG) = G,
exp(S(KG)/G) = 0 = exp(G)− 1 and the assertion is true.

Let n ≥ 2. There exists exactly one minimal idempotent ei of KG, such
that KGei

∼= K(εi). Let xG be an arbitrary coset of the group S(KG)/G.
Then the element x has a representation (2.1). Since Ker ei is a cyclic group
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of order pn−i, i = 0, 1, ..., n, then (giei)pn−i

= ei for every i = 0, 1, ..., n − 1.
Therefore,

xpn−1
= e0 + e1 + ... + en−1 + akpn−1

en =

akpn−1
e0 + akpn−1

e1 + ... + akpn−1
en−1 + akpn−1

en = akpn−1 ∈ G.

Consequently, (xG)pn−1
= G, i.e. exp(S(KG)/G) ≤ n− 1 = exp(G)− 1.

Let now y = 1− e+ ae, where e is a minimal idempotent of KG such that
KGe ∼= K(εn). It is obviously, that y ∈ S(KG). Then ypn−1

= 1− e + apn−1
e.

For the idempotents e and 1− e we have Ker e = 1 and Ker (1− e) =
〈
apn−1

〉
.

Therefore, apn−2
Ker e ∩ Ker (1 − e) = Ø, since otherwise we obtain apn−2 ∈

Ker (1− e) =
〈
apn−1

〉
which is a contradiction. Consequently, by Lemma 2.5,

ypn−2
/∈ G and (yG)pn−2 6= G, i.e. exp(S(KG)/G) ≥ n − 1. We finally obtain

that exp(S(KG)/G) = exp(G)− 1, i.e. it holds case (i).
We will prove in all other cases that exp(S(KG)/G) = exp(G).
(b) Let the group G is not cyclic and G has a finite exponent n. Then G

can be represented in the form G = 〈a〉×H, where O(a) = pn and exp(H) ≤ n.
Since G is not cyclic, then H 6= 1. Therefore, H = 〈b〉 × F where the order
of the cyclic group 〈b〉 is at most pn. Let e be a minimal idempotent of K 〈b〉
with Ker e = 1. We set x = 1− e + ae. Then xpn

= 1,

(2.2) xpn−1
= 1− e + apn−1

e

and xpn−1
/∈ G. Consequently, exp(S(KG)/G) ≥ n = exp(G). Since exp(G) =

n, then Lemma 2.4 implies exp(S(KG))/G) ≤ n. Hence exp(S(KG)/G) = n =
exp(G).

(c) Let the exponent of G is infinity. Suppose n is an arbitrary natural.
Then there exists element a in G such that the order of a is pn+1. Let e
be a minimal idempotent of K 〈a〉 with Ker e = 1. We set x = 1 − e + ae.
Then the equality (2.2) holds and Lemma 2.5 implies xpn−1

/∈ G. Therefore,
O(xG) ≥ pn. In this way we obtain that in the group S(KG)/G there are
elements of arbitrary large orders. Consequently, exp(S(KG)/G) = ∞, i.e.
exp(S(KG)/G) = exp(G).

(d) Let the group G be cyclic and (K(ε1) : K) = d < p − 1. We note
that in this case p = 2 is impossible. Let the order of G = 〈a〉 be pn and let
e be a minimal idempotent of KG such that KGe ∼= K(εn). Then Ker e = 1.
The number δn of the minimal orthogonal idempotents e of KG such that
KGe ∼= K(εn) is, by Lemma 2.7,

1) δn = (p− 1)/d, if d > 1;
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2) δn = p, if d = 1 and n = 1 and
3) δn = p− 1, if d = 1 and n > 1.

Since d < p− 1 and p > 2, then δn > 1, i.e. there is still at least one minimal
idempotent of KG with a kernel 1. Therefore, Ker (1− e) = 1. Let we set now
x = 1−e+ae. Then the equality (2.2) holds and Lemma 2.5 implies xpn−1

/∈ G.
Therefore, exp(S(KG/G) ≥ n = exp(G). The inverse inequality follows from
Lemma 2.4. ¤

Remark. Theorem 2.9 is a correction of the result (i) of Section 1, i.e.
this theorem corrects the formulation and the proof of Proposition 2 of [D4]
and case (i) of this theorem gives series of counterexamples on this proposition.

We continue a commentary of the result (v) noted in Section 1 which is
a main result in [D2]. In the proofs of the preliminary results, namely of the
Lemma (Purity) [D2, p. 894] or Lemma 2 of [D4] and of Proposition (Structure)
[D2, p. 895] P. Danchev uses the following lemma of W. May [M0].

”Lemma (May, W., 1979, Lemma 2). Let R be a commutative ring with
identity and let G be an abelian group. Suppose that there exists a group B such
that G is isomorphic to a direct factor of U(RB). Then G is a direct factor of
U(RG).”

This lemma holds for U(RG). However, P. Danchev uses it for S(KG)
which is incorrectly. If we must apply this lemma for S(KG), then we must
separately prove a subsidiary result for S(KG) which is analogously to Lemma 2
of May. We could not accept this fact without a proof.

The above marked Lemma (Purity) and Proposition (Structure) of P.Dan-
chev are used in the proof of (v), i.e. in the proof of main result Theorem 1 of
[D2].

The result (v) noted in section 1, i.e. Theorem 1 of [D2], has additionally
the following lapses and mistakes (a)-(f).

(a) From the representation of the element xb [D2, p. 897, line 9 from
above] we see that KB

′
contains only two minimal orthogonal idempotents e1

and e2. This is possible only at some special conditions for the group B
′

and
the field K but such conditions are not met in the proof and in the formulation
of the theorem. This is the most essential mistake in the proof.

(b) The author states incorrectly, that the equality on page 896, line 10
from above, is equivalent to the equality on page 896, line 11 from above. We
note that the first equality is equivalent to

⋃

n∈N

⋂

m∈N
[Spm

(KG)GS(KBn)] = GS(KB).
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The author chooses an arbitrary element x from the left-hand side of the equa-
lity on p. 896, line 11 from above. However he should choose the element x
from the right-hand side of this equality and should prove that this element
belongs to GS(KB). In this way all reasonings in case 2, remain useless, i.e.
case 2 is not considered in the proof of Theorem 1.

(c) The author incorrect writes (p. 896, line 18-19 from above): “From our
initial discussion in the introduction we with no harm of generality assume that
height(g1) ≥ m, ...” and this fact remains unchecked, since it is not considered
in the introduction.

(d) In fact the author does not prove case 3 in the proof of Theorem 1 when
the group B is uncountable and he only writes “ The assertion follows by stan-
dard transfinite induction...”. But this is inadmissible at the indicated defects
of countable case 2 and since a transfinite induction with cardinal numbers can
not lead here.

(e) The decomposition of S(KF ) (p. 894, line 19 from above) is incorrect.
Namely, in this decomposition (K0)p should not be participate.

(f) The author writes that the results can be proved “ without the restric-
tion on the spectrum on the first kind field K.” (page 898, line 23 from below)
which, because of the note in (a), is untrue.

In this way Theorem 1 (i.e. assertion (v) of Section 1) and therefore
Corollaries 1-3 and the Global Theorem of [D2] remain unproved. So that
almost all of the results of the last article are incorrect.

When K is a field of the second kind with respect to p, then in [D2] the
author proves Theorem 2, but it is a trivial corollary of a result of [M5].

Lemma 2.10. If G is an abelian p-group and |G| ≥ p2, then S(KG) 6= G.
Proof. We will consider two cases (a) and (b).
(a) Let G contains a cyclic subgroup H = 〈a〉, O(a) = p2. We will prove

that S(KH) 6= H. Let e be a minimal idempotent of KH such that Ker e = 1.
Then, by Lemma 2.4, the element

(2.3) x = (1− e + ae) ∈ S(KH).

It is not hard to see, using Lemma 2.7, that the equality

(2.4) aKer e ∩Ker (1− e) = Ø

holds since Ker (1 − e) ⊆ 〈ap〉. Then Lemma 2.5 implies x /∈ H. Hence
x ∈ S(KH) \G. In this way S(KG) 6= G.

(b) Let G be an elementary abelian p-group. Suppose H is a subgroup of
G and H = 〈a〉 × 〈b〉 such that O(a) = O(b) = p. Let e be again a minimal
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idempotent of KH with Ker e = 1. Then for the element x in (2.3) the equality
(2.4) is fulfilled since KH has an idempotent which kernel is

〈
ab−1

〉
. Therefore,

by Lemma 2.5, x ∈ S(KG) \G. ¤
Lemma 2.11. If B is an infinite coproduct of cyclic p-groups and K is a

field of the first kind with respect to p, then |S(KB)/B| = |B|.
Proof. The equality |S(KB)| = |B|, by [M5, Theorem 12] holds. We

will prove |S(KB)/B| ≥ |B| which will complete the proof. We can accept,
by a suitable grouping of the factors in the direct decomposition of B in a
coproduct B =

∐
i∈I Bi of finite groups such that |Bi| ≥ p2. Then |I| = |B|.

Since |Bi| ≥ p2, then, by Lemma 2.10, S(KBi) 6= Bi. Let xi ∈ S(KBi) \ Bi

is an arbitrary element of this set, i ∈ I. Then xiB 6= xjB for every i 6= j,
i, j ∈ I (hence |S(KB)/B| ≥ |B|). Otherwise xi = xjb, b ∈ B. Obviously,
b ∈ S(K(Bi × Bj)) ∩ B = Bi × Bj . Obviosly, b = b−1

i bj , bi ∈ Bi and bj ∈ Bj .
Then xibi = xjbj implies

S(KBi) = xibiS(KBi) = xjbjS(KBi),

i.e. xjbjS(KBi) = S(KBi). Therefore, xjbj ∈ S(KBi) ∩ S(KBj) = 1. Conse-
quently, xj ∈ Bj , which is a contradiction. ¤

We will comment the results (iii) and (iv) of [D1] noted in Section 1.
The result (iii), i.e. Theorem 7 (Direct Factor) of [D1] which is identical to

Proposition (Structure) (◦◦) of [D2] remains unproved because of the following
reasons. In the end of the proof of Theorem 7 is used Lemma (Purity), which is
Proposition (Structure) (◦◦) of [D2]. These assertions remain unproved because
of an incorrect using of the mentioned Lemma 2 of May [M0].

P. Danchev tries to prove the assertion (iv) of Section 1, i.e. Proposition
16 (a) of [D1] or Lemma 3 of [D4]. The formulation of this assertion is the
following.

”Proposition 16 (a) If A is separable, the quotient group S(KA)/A is
separable or equivalently A is nice in S(KA).”

In connection with the proof of (iv) the author writes ”On the other hand
F should be a direct factor of A” [D1, p. 42, line t from above]. This fact
is untrue. Further he writes ”Therefore, consuming (2), S(KF )/F is finite
whence separable. On the other hand F should be a direct factor of A. There-
fore, as we previously have seen above, S(KF )A/A must be a direct factor
of S(KA)/A” [D1, p.42, lines 8-9 from above]. This assertion is absolutely
ungrounded. Consequently, (iv) remains unproved.

The proof of (iv), (noted in Section 1), i.e. of Proposition 16 (a) of [D1]
could be completed by the following way. Preliminary we prove the following
assertion.
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Lemma 2.12. If G is an abelian group, A and B are subgroups of G and

G = A×B,C = C1 × C2, C1 ≤ A,C2 ≤ B,

then G/C = AC/C ×BC/C.

Proof. It is sufficiently to prove that AC/C ∩ BC/C = C. Namely, let
xC belongs to the indicated cross-section. Then xC = aC = bC, a ∈ A, b ∈ B.
Hence a = bc, c = c1c2, ci ∈ Ci and ac−1

1 = bc2 = 1 because of A ∩ B = 1.
Therefore, a = c1 ∈ C and xC = aC = C. ¤

Proof of Proposition 16(a). Let xA ∈ S(KA)/A. We will prove that
the height h(xA) of xA in S(KA)/A is finite. Namely, we can suppose that
x ∈ S(KF ) where F is a finite direct factor of A. Consequently, A = F × A1,
A1 ≤ A. It is well known that

(2.5) S(KA) = S(KF )× T, T = S(KA, A1) = S(KA) ∩ [1 + I(KA,A1)],

where I(KA,A1) is the ideal of KA generated by the elements a1−1, a1 ∈ A1.
Obviously A1 ≤ T holds. Since F ≤ S(KF ) and A1 ≤ T , then (2.5) and
Lemma 2.12 imply S(KA)/A = S(KF )A/A× TA/A.

Therefore, xA belongs to the finite direct factor S(KF )A/A of S(KA)/A.
Consequently, the height h(xA) is finite, i.e. S(KA)/A is separable. ¤

Danchev [D4, Theorem 1] formulates the following result:
”Theorem 1. Let G be an abelian p-group with G/G1 infinite and let

sp(K) ⊇ N. Then, for all i ≥ 0,

fi(S(KG)/G) =
{ |B|, i < exp(G/G1);

0, i ≥ exp(G/G1).

If G/G1 is finite, then

fi(S(KG)/G) = fi(S(K(G/G1)))− fi(G/G1) = fi(S(KG))− fi(G).”

We note that this result must be formulated in the following way (here ω is the
first infinite ordinal).

Theorem 2.13. Let G be an abelian p-group and let K be a field of the
first kind with respect to p. Suppose that sp(K) ⊇ N and α is an arbitrary
ordinal. Then

(i) if α ≥ ω, then fα(S(KG)/G) = 0;
(ii) if α < ω and exp(G/G1) = ∞, then fα(S(KG)/G) = |B|, where B is

a basic subgroup of G;
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(iii) if α < ω, G/G1 is infinite and exp(G/G1) < ∞, then

fα(S(KG)/G) =
{ |B|, if α < exp(G/G1) and

0, if α ≥ exp(G/G1) ;

(iv) if α < ω and G/G1 is finite, then fα(S(KG)/G) = fα(S(KG)−fα(G).

We note also that the result (ii), noted in Section 1, i.e. the main result of
[D4], namely Theorem 1, remains in general unproved because of the following
reasons.

(a) In the proof of Theorem 1 of [D4, p.153, lines 11-13 from above] the
author writes absolutely ungrounded

”Therefore, fi(S(KB)/B)=|B| via exploiting the facts that |S(KB)/B|=
|B| and that the cyclic factors of S(KB)/B of order p are precisely |B|, which
follows analogously to [M1,Theorem 12].”, i.e. analogously to [M5,Theorem12].
We prove in Lemma 2.11, that |S(KB)/B| = |B|. However the second fact
that ”the cyclic factors of S(KB)/B of order p are precisely |B|, which follows
analogously to [M1, Theorem 12]” is not proved. More precisely the proof of
this fact is not analogously to ”[M1, Theorem 12]”. It must be additionally
proved and it is not made in the paper [D4].

(b) For the proof of Theorem 1 of [D4] P. Danchev uses Lemmas 2 and 3
of the same paper and, as we noted above, these lemmas remain unproved.

We note also that it Theorem 2.13 which is a correct formulation of Theo-
rem 1 of [D4] remains unproved because of the reasons (a), and (b).

We can make still two notes (c) and (d) of the paper [D4]. Namely,
(c) the author writes (p.151, lines 12-11 from below) ”Thus it is quite

possible that either i ∈ sp(K) but i+1 /∈ sp(K), or i /∈ sp(K) but i+1 ∈ sp(K)”.
It is easy to see that this is not true, since i ∈ sp(K) or i /∈ sp(K) can imply,
in the indicated two cases, either i + 1 ∈ sp(K) or i + 1 /∈ sp(K).

(d) The author of [D4] notes (p.154, in Remarks) that the main theorem
of Mollov [M7] is incorrect. This remark is superfluous, since T. Mollov [M8]
in 2004 year corrected a technical mistake in the formulation of this theorem.
Namely, in Theorem 6 of [M7] the word ”infinite group” is replaced with ”un-
bounded group”. Besides, T. Mollov indicates [M8, p.6, lines 3-1 from below]
that ”when the group G is bounded the calculation of Ulm-Kaplansky invari-
ants fi(S) is not necessary” since Theorem 12 of [M5] and Proposition 11 of
[M6] give the exact description of S(KG). In spite of this P. Danchev [D4,
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p.154] gives the following invariants of S(KG):

”fi(S(KG)) =





|B|, i + 1 ∈ sp(K) but
i = exp(G) /∈ sp(K) or i < exp(G) ∈ sp(K);

0, i + 1 /∈ sp(K) or i ≥ exp(G) ∈ sp(K) or
sp(K) 63 exp(G) < i = constp(K).”

Here an inaccuracy has also since in the first line of this citing, when
fi(S(KG)) = |B|, the case when exp(G) = ∞ is omitted.

The results (vii) and (viii) noted in Section 1, i.e. the main results of [D5]
and [D6] remain in general unproved because of the following reasons. For the
proof of the result (viii) the author uses the result (vii). However, the last
result remains unproved in [D5] since in its proof the case (F (ηq) : F ) 6= q − 1
is not considered (ηq is the primitive q-th root of unity) (only the case
”q− 1 = (F (ηq) : F )” is considered in p. 142, line 7 from below). For example,
the case (F (ηq) : F ) 6= q − 1 arises when F = Z19 and q = 5. Namely, it is not
hard to see that (Z19(η5) : Z19) = 2 6= 4 = q − 1.

3. On the unit groups of modular group algebras

Let G be an abelian group and let R be a commutative ring with identity
of prime characteristic p. We will use the following well known formula

Spα

(RG) = S(Rpα

Gpα

).

We recall that the ring R is called perfect if Rp = R. If G is an abelian p-group
and α is an arbitrary ordinal then we denote by fα(G) the α-th Ulm-Kaplansky
invariant of the group G.

Our main aim in this section is to correct the result (vi) of Section 1
(Theorem 6 (i) of [D3]), i.e. to compute the α-th Ulm-Kaplansky invariant
of the group S(RG)/Gp (α is an ordinal), when Gpα

and R are finite and to
indicate that this result is given in the paper [D3] incompletely and ambiguously.
For any ordinal α we define Gpα

and Rpα

inductively by the following way:

Gp0
= G, Gpα+1

= (Gpα

)p and Gpα

=
⋂

β<α

Gpβ

if α is a limit ordinal. Analogously,

Rp0
= R, Rp = {rp|r ∈ R}, Rpα+1

= (Rpα

)p and Rpα

=
⋂

β<α

Rpβ

if α is a limit ordinal.
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We note that the following lemma in [D3] is not proved (the ring R is
perfect without nilpotent elements).

”Lemma 1. The subgroup Gp is balanced in S(RG)...”
Namely the author does not prove that gj ∈ Gp [D3, p.135, line 1 from

below]. After superfluous reasonings in the end of this lemma he concludes
that x ∈ GpS(Rpδ

Gpδ

) (p. 136, line 1 from above), which is given in fact since
x is chosen in

⋂
τ<α[Spτ

(RG)Gp] (p. 135, line 3 from the proof of Lemma 1).
Therefore, there is obtained a vicious circle. There is a vicious circle in advance
since in page 135, line 3 from below, the author accepts δ = α, i.e. this which
he must prove. Here he could accept only δ < α.

We will denote the support of x ∈ V (RG) by supp (x) and by h(x) the
p-height of x in V (RG).

Let g ∈ G and hG(g) be the p-height of g in G.

Remark. If g ∈ G, then hG(g) = hV (RG)(g), since G is p-isotype subgroup
of V (RG). Therefore, without more precise definition we will write h(g).

Lemma 3.1. If G is an abelian group and R is a commutative perfect
ring with identity of prime characteristic p, then G is p-balanced in V (RG).

Proof. It is well known that G is p-isotype subgroup of V (RG). We
will prove that G is p-nice in V (RG). It is obviously that if we consider an
arbitrary coset xG of V (RG) mod G, then we can choose the element x such
that 1 ∈ supp (x). We will prove that for any element y ∈ xG the inequality
h(y) ≤ h(x) holds which will complete the proof. Indeed, y = gx, g ∈ G.

(i) If h(g) 6= h(x), then

h(y) = h(gx) = min(h(g), h(x)) ≤ h(x), i.e. h(y) ≤ h(x).

(ii) Let h(g) = h(x). Let

x = α0 +
n∑

i=1

αigi, αi ∈ R, gi ∈ G.

Then y = gx = α0g +
∑n

i=1 αiggi and

h(y) = min(h(g), h(gg1), ..., h(ggn)) ≤ h(g) = h(x), i.e.h(y) ≤ h(x).

¤
Lemma 3.2. If G is an abelian group and R is a commutative perfect

ring with identity of prime characteristic p, then the subgroup Gp is balanced
in S(RG).

82



Some Notes on the Unit Groups of Commutative Group Algebras

Proof. It is sufficiently to prove that Gp is nice in S(RG). Namely, let
x ∈ S(RG). We will prove that in supp (x) there exists at least one element of
Gp. We may write x = y + z where supp (y) ⊆ Gp and supp (z)∩Gp = Ø. For
some k we have 1 = xpk

= ypk

+ zpk

. Since supp (zpk

) ∩Gp=Ø, then zpk

= 0,
ypk

= 1 and there exists gp ∈ supp (y). Hence gp ∈ supp (x) ∩ Gp. Therefore,
1 ∈ supp (g−1

p x). Further the proof is the same as in Lemma 3.1.
Second proof (when R is without nilpotent elements.) Obviously, Lemma

4 of May’s paper [May] can be expanded for a perfect ring of characteristic p.
Then, in the notations of this lemma, we set H = Gp. Since, obviously, Gp is a
isotype subgroup of G, then, by the notations of mentioned Lemma 4, Gp is a
balanced subgroup in K(Gp) = 1 + I(RG,Gp) = S(RG), i.e. Gp is a balanced
subgroup of S(RG), where I(RG, Gp) is the relative fundamental ideal of RG
which is generated by the subgroup Gp. ¤

The proof of Lemma 3.1 and the first proof of Lemma 3.2 were sent to the
authors of the present paper from Warren U. May be e-mail, when the ring R
is a perfect field of prime characteristic p.

The proof of the last lemma is a correct and short proof of [D3, Lemma 1].
In the following proposition we will denote the group S(RG) by S.

Proposition 3.3. Let G be an abelian group and let R be a finite commu-
tative ring with identity of prime characteristic p without nilpotent elements.
If α is any ordinal and Gpα

is finite, then

(3.1) fα(S/Gp)) = fα(S)− fα(Gp),

fα(S) = (|Gpα | − 2|Gpα+1 |+ |Gpα+2 |)logp|R| .
Proof. Since R is a finite commutative ring of characteristic p without

nilpotent elements, then R is a direct sum of finite number of finite fields of
characteristic p. Therefore, the ring R is perfect. Since, by Lemma 3.2, the
subgroup Gp is balanced in S(RG), then

(S(RG)/Gp)pα

= S(RGpα

)Gp/Gp
∼= S(RGpα

)/Gp
pα

.

Hence, taking into account that fα(G) = f0(Gpα

), we obtain

(3.2) fα(S(RG)/Gp) = f0(S(RGpα

)/Gp
pα

).

Since Gp
pα

is finite and, by Lemma 3.2, a pure subgroup of S(RGpα

), then, by
[F, Theorem 27.5, p. 140], Gp

pα

is a direct factor of S(RGpα

), i.e.

S(RGpα

) = Gp
pα × T, T ∼= S(RGpα

)/Gp
pα

.
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Therefore, f0(S(RGpα

)/Gp
pα

) = f0(S(RGpα

)) − f0(Gp
pα

). Then, by a using
of (3.2) and the last equality we obtain the first equality of (3.1).

For the value fα(S) the result of N. Nachev [N3, Theorem 2.2] holds. We
will consider the cases (a) and (b).

(a) Let Gpα

p 6= 1. Then obviously Gpα 6= Gpα+1
. Therefore, case 1) of

Theorem 2.2 of [N3] holds and we obtain the second equality of (3.1).
(b) Let Gpα

p = 1. Obviously Gpα

= Gpα+1
. Consequently, case 4) of

Theorem 2.2 of [N3] holds and we obtain fα(S) = 0. Hence fα(S/Gp) = 0.
Obviously, this value of fα(S/Gp) can be obtained by a using of the second
equality of (3.1) since |Gpα | = |Gpα+1 | = |Gpα+2 |. ¤

We note that Proposition 3.3 gives a complete answer for the Ulm-Kaplan-
sky invariants fα(S/Gp) in case (i) of Theorem 6 of [D3] and, as we mentioned,
case (i) of this theorem is not completed and not ambiguous.

In order to ground our assertion we will give an original formulation of
case (i) of Theorem 6 of [D3].

”Theorem 6. Suppose 1 6= G is an abelian group and R is an unitary
perfect commutative ring without nilpotent elements in prime characteristic p.
Then

(i) if |R| < ℵ0 and |Gpσ | < ℵ0 for any ordinal σ,

fσ(S(RG)/Gp) =





(|Gpσ | − 2|Gpσ+1 |+ |Gpσ+2 |)logp|R| − fσ(Gp)
when Gpσ

p 6= 1 and |Gpσ | 6= |Gpσ

[p]| 6= 2 or |R| 6= 2;
0 when Gpσ

p = 1 or |Gpσ | = |Gpσ

[p]| = 2 and |R| = 2.”

In detail, we will make three remarks 1), 2) and 3) on [D3, Theorem 6,
case(i)].

1) Case (i) of Theorem 6 [D3] has not an ambiguous interpretation and it
is interpreted in four different ways. Indeed, let we set σ = 0. Let A be the
assertion ”Gp 6= 1”, B be the assertion ”|G| 6= |G[p]| 6= 2”, C be ”|R| 6= 2”
and let D be ”|G| = |G[p]| = 2”. Denote by A the negative of the assertion A.
Then case (i) of Theorem 6, by σ = 0, can be formulated in the following way
which is equivalent to the original.

(i) If |R| < ℵ0 and |G| < ℵ0, then (3.2) holds when
(a) A and B or C is fulfilled, i.e. A ∧B ∨ C
and fi(S/Gp) = 0 when
(b) A or D and C is fulfilled, i.e. A ∨D ∧ C.
It is obviously that we can interpret the assertion(a) of (i) in two ways:

either as (A∧B)∨C or as A∧(B∨C). We note that the author does not mention
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how the brackets must be put. Analogously, the assertion (b), i.e. A ∨D ∧ C
can be interpreted also in two ways. Consequently case (i) of Theorem 6 of
[D3] is not ambiguous and it has four interpretations.

2) Case (i) of Theorem 6 of [D3] is not complete. It is not hard to see
that in order case (i) to be completed (by σ = 0) it should be D = B fulfilled
which obviously is not realized.

3) Case (i) of Theorem 6 of [D3] is complicated. Namely, it is not necessary
to be considered two different subcases, as it is done in the paper [D3] (see, for
example, Proposition 3.3).
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НЯКОИ БЕЛЕЖКИ ВЪРХУ МУЛТИПЛИКАТИВНИТЕ
ГРУПИ НА КОМУТАТИВНИ ГРУПОВИ АЛГЕБРИ

Велика Н.Кунева, Тодор Ж.Моллов, Нако А.Начев

Резюме. Нека G е абелева p-група, K е поле от първи род спрямо p,
с характеристика различна от p, и спектърът sp(K) на полето K спрямо p
съдържа N. Означаваме с KG груповата алгебра на G над K и с S(KG)
p-компонента на групата от нормираните единици на KG. В тази статия
изчисляваме exp(S(KG)/G) и доказваме, че ако G е сепарабелна група, то
S(KG)/G е сепарабелна, т.е. G е хубава подгрупа на S(KG).

Нека G е крайна абелева група, Gp е p-компонентата на G и R е краен
комутативен пръстен с единица и проста характеристика без нилпотентни
елементи. В тази статия изчисляваме инвариантите на Улм-Каплански на
групата S(RG)/Gp.

Посочените резултати коригират съществени неточности и непълно-
ти във формулировките и доказателствата на резултати в това направ-
ление на П. В. Данчев (2005 (Zbl. 1107.16030), 2003 (Zbl. 1035.16025) и
2004 (Zbl. 1067.16054)). Ние отбелязваме също, че, поради известни про-
пуски, някои резултати на същия автор (2003 (Zbl. 1035.16025),
2004 (Zbl. 1080.16022), 2005 (Zbl. 1107.16030 и Zbl. 1097.16007) и
2008 (Zbl. pre 05375552)) остават недоказани.
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