
PLOVDIV UNIVERSITY “PAISSII HILENDARSKI”, BULGARIA
SCIENTIFIC WORKS, VOL. 36, BOOK 3, 2009 – MATHEMATICS

ПЛОВДИВСКИ УНИВЕРСИТЕТ “ПАИСИЙ ХИЛЕНДАРСКИ”, БЪЛГАРИЯ
НАУЧНИ ТРУДОВЕ, ТОМ 36, КН. 3, 2009 – МАТЕМАТИКА

DESIGN APPROACHES TO WRAPPING
NATIVE LEGACY CODES

Anna Malinova

Abstract. This paper describes some of the results of applying
different design approaches to wrapping legacy scientific codes in the
domain of plasma physics and simulation of metal vapor lasers. The
process of wrapping includes creating Java wrappers through the use of
Sun’s Java Native Interface and application of design patterns, such as
Adapter, Proxy, and Wrapper Façade. A real use case connected with
wrapping legacy plasma simulation codes is also presented.

Key words: design patterns, native code, legacy software, wrapping, JNI

1. Introduction

Existing mathematics and physics software libraries are written in diffe-
rent programming languages, which forces developers to generate glue code in
order to avoid rewriting from scratch or not using them at all. This paper
makes an attempt to connect some well known design patterns to the process
of Java wrapping of native legacy scientific codes. Native software denotes code
that is ”implemented in platform-dependent code, typically written in another
programming language such as C, C++, FORTRAN, or assembly language”,
as stated in the Java Language Specification [5]. Native applications in the do-
main of physics simulations are often considered legacy code, because they are
developed with technologies that precede in time the introduction of grid com-
puting, web services and other recent computing approaches and best practices.
Our aim is to link these legacy modules with Java-based software environment
for numerical simulations and to convert some of the wrapped codes into web
services [2, 9, 10 and 11]. Next these web services may be chained into a BPEL

89



Anna Malinova

process for simulation, as discussed in [12]. The main purpose of this research
is to reuse and integrate codes that have been developed in our group (e.g. [4],
[6]), as well as codes developed by other scientific groups.

In this paper the design patterns are discussed in the context of invo-
king native applications from Java. Two integration options when linking to
programs in other languages have been investigated in [10] and [11]:

– Invoking the program at operating system level. In this case the
java.lang.Process and java.lang.Runtime classes are used to invoke a ran-
dom program, pass in arguments via the standard input and read results
via the standard output.

– Using native methods. In this case the Sun’s Java Native Interface (JNI)
is used to link the Java code to the native code through Java methods
declared as native. Java applications call native methods in the same
way they call methods implemented in the Java programming language.
Behind the scenes, native methods are implanted in another language
and reside in native libraries.

The first method has many limitations and is appropriate when the interac-
tion requirements are relatively simple. In contrast, JNI provides rich interface
between native and Java code and is suitable for fine grained interactions. The
latter approach is considered in the rest of the paper.

2. Design patterns applied

In the context of creating JNI wrappers, a Java wrapper calls a legacy API
through the created JNI glue code, as it is shown Figure 1.

Figure 1. Interaction between legacy application and its Java wrapper

90



Design Approaches to Wrapping Native Legacy Codes

Figure 1 does not show whether a single wrapper should encapsulate an
entire legacy application, or whether multiple wrappers should wrap an appli-
cation’s services individually.

There are two integration options when encapsulating a native legacy ap-
plication, as discussed in [1]. There could be either one wrapper for the entire
application (Figure 2) or several of them, one per a needed functionality (Fig-
ure 3). These wrappers can be used to form a library of wrapper classes,
corresponding with different native classes or base services.

A single wrapper encapsulating the legacy application’s functionality need-
ed by the Java application has the form depicted by the UML class diagram in
Figure 2. In this model one wrapper class contains all the methods that invoke
the legacy API. When a client (SomeClass) requires something form the legacy
application, it sends a message to the wrapper (SingleWrapper), which in turn
calls native API through already created JNI stub functions.

Figure 2. Single class wraps the entire application

Two important characteristics can be noted concerning the model shown
in Figure 2:

– This structure does not require wrapping all the services of the legacy
application. It only requires one wrapper to provide methods for all the
native services that are wrapped;

– The wrapper class does not implement the native API. Instead, the wrap-
per calls the native methods, as indicated by the stereotype on the de-
pendency relationship in Figure 2. The legacy application implements
the API.

91



Anna Malinova

The alternative to a single wrapper is shown in Figure 3. There are shown
a number of classes each encapsulating different functionality provided by the
legacy application.

Figure 3. Create a library of wrapper classes

Both approaches allow replacement of legacy services when the new ap-
plication no longer needs a native legacy application to provide a service. In
this case, if a new implementation of this functionality is provided, one method
invocation would simply be replaced with another inside the wrapper class.

In the process of creating Java wrappers of native legacy applications,
some well-known object-oriented techniques can be applied, such as design
patterns. Specifically the patterns Adapter and Proxy [3] are considered. Both
are not directly applicable in this situation because here we have client and
adapted code written in different languages. In addition it is often a question
of adapting non-object-oriented legacy software. Bellow the application of the
Wrapper Façade design pattern when wrapping non-object-oriented native code
is also described. [17].

92



Design Approaches to Wrapping Native Legacy Codes

The most straightforward way to create wrapper classes through JNI is
one-to-one mapping [7, 8]. This approach requires us to write one stub function
for each native function we want to wrap. Hence, each Java method declared
as native maps to a single native stub function, which in turn maps to a single
native method definition. The stub serves two purposes:

– to adapt the native function’s argument passing convention to what is
expected by the Java virtual machine;

– to convert between Java programming language types and native types.

Adapter design pattern relates to creating JNI stub functions in the sense
that it converts the interface of a class into another interface the client expects
[3]. Thus Adapter makes it possible for classes to work together where that
wouldn’t be possible because of incompatible interfaces. This is exactly the
reason for creating a JNI adapter – without it the native class and its Java
wrapper would not be able to work together.

The class version of Adapter uses multiple inheritance to adapt the
Adaptee’s interface to Target’s interface (see Figure 4), and therefore it can-
not be applied with wrapping through JNI since in this case the inheritance is
impossible.

Figure 4. Adapter design pattern – class version

The object version of Adapter realizes the adaptation by using object com-
position, instead of inheritance. Thus an object adapter lets a single Adapter
work with many Adaptees – the Adaptee itself and all of its subclasses (if any).

The object adapter relates to the process of JNI wrapping of native legacy
codes – the client sends request to the Java wrapper class; then the JNI stub
functions, implementing the Java methods declared as native, make the corres-
ponding invocations of the underlying native functions. As a result, the native
interface is adapted to Java interface.

93



Anna Malinova

Figure 5. Adapter design pattern – object version

One-to-one mapping addresses the problem of wrapping native functions.
These can be standalone C/C++ functions that return result or modify pa-
rameters passed into the function, or they can be C++ class member functions.
However, if an instance of a C++ class is created in a JNI stub function, ano-
ther problem arises: how can C++ classes be used by a Java program and keep
objects around while the program is running. One way to handle this situation
is to define a Java class called ”peer class” that corresponds to the C++ class
[7, 8]. Peer classes directly correspond to native data structures. Each instance
of the peer class corresponds to a C++ object, tracking the state of the object.
The Proxy design pattern can be considered when creating Java peer classes
that wrap native structures, as it is shown in Figure 6.

Figure 6. Proxy design pattern

In [3] the Proxy is defined as surrogate or placeholder for another object to
control the access to it. Thus the Proxy pattern makes the client of an object to
communicate with a representative of this object rather then the object itself.
Such a representative can serve many purposes determined by its pre- and post-

94



Design Approaches to Wrapping Native Legacy Codes

processing of requests. Several versions of Proxy can be distinguished: Remote
Proxy, Virtual Proxy, Cache Proxy, Synchronization Proxy, Protection Proxy,
Counting Proxy, Firewall Proxy. However common characteristics for Proxy
classes are the following [3]:

– maintains a reference that lets the proxy access the real subject;
– provides an interface identical to Subject’s so that a proxy can be sub-

stituted for the real subject;
– controls access to the real subject and may be responsible for creating

and deleting it.

The design patterns Adapter and Proxy are related. Adapter provides
a different interface to the object it adapts. In contrast, a proxy provides
the same interface as its object. However, a proxy used for access protection
might refuse to perform an operation that the subject will perform, so its
interface may be subset of the subject’s. Java peer classes that wrap native
data structures apply both Adapter and Proxy design patterns. On one hand
the existing C++ interface is adapted to Java interface, and from the other the
peer class serves as a proxy to the native C++ class it represents, taking care
of creating and deleting the instances of this class, and providing interface that
is identical to or a subset of the wrapped one.

Integration with non-object-oriented code, written in such languages as C
and Fortran, is discussed in [13]. The object-oriented re-architecturing tech-
nique presented there implies to use object-oriented architecture (wrapper)
around internal elements that are not object-oriented. Examples of object-
oriented encapsulation, hiding the underlying routines are provided, i.e. the
NAG software from the Numerical Algorithms Group [14]. Although written
in C, the NAG C library’s functionality can be accessed from other higher-level
languages.

The Wrapper Façade design pattern, presented in [17], encapsulates the
functions and data provided by the non-object-oriented legacy native API
within more concise, portable and maintainable object-oriented class inter-
faces, as it is shown in Figure 7. An example of occurrence of Wrapper Façade
pattern can be found in the context of Internet communications, as discussed
in [16]. For efficiency or legacy reasons, many protocols of the TCP stack are
implemented in C. And even though Java, trough the JNI, allows a program-
mer to directly invoke C functions, one or more classes are introduced in order
to separate the protocol from the client application.

95



Anna Malinova

In Figure 7 the application code invokes a method on an instance of the
Wrapper Façade. The Wrapper Façade forwards the request and its parameters
to one or more of the lower-level native API functions that it encapsulates,
passing along any internal data needed by the underlying functions.

Figure 7. Wrapper Façade design pattern

Concerning the Java wrapping the Wrapper Façade pattern corresponds
to creating a C++ class that invokes the non-object-oriented code. That class
is then wrapped through JNI. This additional C++ class (classes) provides
higher-level object-oriented interface that is easier to maintain and reuse. he
alternative to Wrapper Façade is to create a Java class that directly accesses
the non-object code through the JNI stubs. This implies that all the methods,
declared as native inside it, are also static. However, Wrapper Façade can
simplify the wrapping if there is a large amount of native functions to be
wrapped.

3. Real use case

In this section are presented recent results of creating Java front-ends for
some basic functionality of the Plasimo simulation software [15]. The Plasimo
code is multi-physics code for simulating a variety of plasma sources with vari-
ous degrees of equilibrium, electromagnetic field configurations, flow regimes
and geometries [2]. Plasimo is a framework written in C++ and the application
of different wrapping techniques was investigated. The Java Native Interface
was used to produce a class library that wraps a set of Plasimo’s functions and
classes. The aim of this wrapping was to give the legacy code access to the
new web technologies and best practices. For details refer to [9] and [2].

96



Design Approaches to Wrapping Native Legacy Codes

F
ig

ur
e

8.
U

M
L

co
m

po
ne

nt
di

ag
ra

m
sh

ow
in

g
th

e
de

pe
nd

en
cy

re
la

ti
on

s
be

tw
ee

n
di

ffe
re

nt
P

la
si

m
o

co
m

po
ne

nt
s

af
te

r
th

e
Ja

va
w

ra
pp

in
g

97



Anna Malinova

The techniques ”one-to-one mapping” and creating Java peer classes, re-
lated to the Adapter and Proxy design patterns, were applied. The Wrapper
Façade pattern was not used because of the small amount of non-object-oriented
code that was wrapped. As discussed in the previous section, direct access form
the Java class to the non-object code was chosen instead.

In Figure 8 are presented the dependency relationships between different
Plasimo components after the Java front-end was created. The application
JPlasimo is test application that invokes the native methods of the created
Java wrapper classes. The implementation of the native methods is provided
by a set of libraries consisting of JNI stub functions, which in turn invoke the
Plasimo functions inside the Plasimo compiled libraries.

4. Conclusion

A significant amount of high-performance scientific simulation software in
the domain of plasma physics, created during the last two decades, is written
in native languages, such as C, C++ and FORTRAN. Since it is highly desi-
rable to be able to reuse these large and complicated software packages, such
techniques as wrapping native legacy codes, is still a question of present inte-
rest. Considering the object-oriented re-architecturing of non-object-oriented
code and design patterns can help with further understanding of the wrapping
process and better structuring of the wrapper code.

5. Acknowledgements

This work is partially supported by the NSF of the Bulgarian Ministry
of Education and Science, Project VU-MI-205/2006 and IS-M-4 project of the
University of Plovdiv ”Paisii Hilendarski”, Bulgaria.

References

[1] Asman P., Legacy Wrapping,
http://www.hillside.net/plop/plop2k/proceedings/Asman/Asman.pdf

[2] Dijk J., A. Malinova, V. Yordanov, J. van der Mulen, New Interfaces for
the Plasimo Framework, Proceedings of the the 6th International Con-
ference on Atomic and Molecular Data and Their Applications (ICAM-
DATA), Beijing, China, October 28-31, 2008 (to appear).

98



Design Approaches to Wrapping Native Legacy Codes

[3] Gamma E., R. Helm, R. Johnson, J. Visslides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[4] Gocheva-Ilieva S. G., I. P. Iliev, Mathematical modeling of the elec-
tric field in copper bromide laser, Proceedings of Int. Conf. of Nu-
merical Analysis and Applied Mathematics, ICNAAM 2007, Septem-
ber 16-20, 2007, Conference Proceedings of American Institute of
Physics (AIP), vol. CP936, pp. 527-530, 2007. doi:10.1063/1.2790197,
http://adsabs.harvard.edu/abs/2007AIPC..936..527G

[5] Gosling J., B. Joy, G. Steele, G. Bracha, Java Language Specification, 3rd
ed., http://java.sun.com/docs/books/jls/third edition/html/j3TOC.html

[6] Iliev I.P., S. G. Gocheva-Ilieva, On the application of the multidimensional
statistical techniques for exploring copper bromide vapor laser, CP1067,
Applications of Mathematics in Engineering and Economics ’34-AMEE
’08, American Institute of Physics, 2008, 475-482.

[7] Java Native Interface 5.0 Specification,
http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html

[8] Liang S., The Java Native Interface: Programmers Guide and Specifica-
tion, Addison-Wesley, 1999.

[9] Malinova A., V. Yordanov, J. van Dijk, Leveraging existing plasma simula-
tion codes, International Book Series ”Information Science & Computing”,
Number 5, pp.136-142, Supplement to the International Journal ”Informa-
tion Technologies & Knowledge”, Volume 2/2008.

[10] Malinova A. A., S. G. Gocheva-Ilieva, I. P., Iliev, Wrapping legacy codes
for Numerical simulation applications, Proceedings of the III International
Bulgarian-Turkish Conference Computer science, Istanbul, Turkey, Octo-
ber 12-15, 2006, Part II, pp. 202-207, 2007.

[11] Malinova A. A., S. G. Gocheva-Ilieva, I. P. Iliev, Web Services-based simu-
lation of metal vapour lasers, Proceedings of ILLA ’2006 - IX International
Conference on Laser and Laser-information Technologies: Fundamental
Problems and Applications and LTL ’2006 - V Intern. Symp. Laser Tech-
nologies and Lasers, Smolyan, Bulgaria, October 4-7, 2006, pp. 315-323,
April 2007.

[12] Malinova A. A., S. G. Gocheva-Ilieva, Application of the Business Process
Execution Language for building scientific processes for simulation of metal
vapor lasers, Proceedings of the 3rd Balkan Conference in Informatics,
Sofia, Bulgaria, 27-29 September, 2007, Volume 2, pp.75-86, 2007.

[13] Meyer, Bertrand, Object Oriented Software Construction, 2nd ed., Pren-
tice Hall, New York, 1997.

99



Anna Malinova

[14] NAG libraries, Numerical Algorithms Group, http://www.nag.co.uk
[15] Plasimo simulation software, http://plasimo.phys.tue.nl
[16] Sevinc P., Flatin J., Guerraoui R., Patterns in SNMP-Based Network

Management, Proc. 17th International Conference on Software and Sys-
tems Engineering and their Applications (ICSSEA 2004), vol.1 à 3, pp.
1.1-1.12, Paris, France, November 2004.

[17] Schmidt D., M. Stall, H. Rohnert, F. Buschmann, Pattern-Oriented Soft-
ware Architecture — Patterns for concurrent and networked objects, Volu-
me 2, Willey, 2000.

Anna Malinova Received 26 November 2008
Faculty of Mathematics and Informatics
University of Plovdiv
236 Bulgaria Blvd.,
4003 Plovdiv, Bulgaria
e-mail: malinova@uni-plovdiv.bg

ПОДХОДИ ЗА ПРОЕКТИРАНЕ НА ОБВИВКИ
НА НАТИВНИ НАСЛЕДЕНИ КОДОВЕ

Анна Малинова

Резюме. В статията са описани част от резултатите, получени след
прилагането на различни подходи за обвиване на наследен научен софтуер
в областта на физиката на плазмата и симулацията на лазери с метални
пари. Процесът на обвиване включва създаване на Java-обвивки чрез интер-
фейса Java Native Interface и прилагането на такива образци за проектиране
като Adapter, Proxy и Wrapper Façade. Представено е и реално приложение
на използваните техники при обвиване на наследен код за симулация на
нискотемпературна плазма.

100


