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Abstract. In 1957 year Hughes constructed a significant example
of finite non-Desarguesian projective plane. In this paper there is given
a new representation of the Hughes plane and some its properties are
considerate.
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An axiomathic definition for projective plane is given by three primary
notions and three axioms. The primary notions are the following:

E1 Set P of points;
E2 Set S of straight lines;
E3 Binomial relation of incidence betwin P and S.
The axioms are the following:
P1 Through two different points goes just one straight line.
P2 Two different straight lines intersect in just one point.
P3 There exsist at least one set of four points, no one but three of them

do not lie on a straight line.
We call a projective plane Desarguesian if for it is true the Desargue’s

theorem for perspective triangles. We will note, that from the above three
axioms does not follow the Desargue’s theorem, which means that there exist
non-Desarguesian planes. In every Desarguesian plane one can introduce a co-
ordinate system. The coordinates of points are elements of an associative body
(in particular field) but the equations of the straight lines define by standart
way, which is well-known by the course of analytic and projective geometry.
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By the same way one can introduce a coordinate method in non-Desarguesian
planes, but here the coordinates of points belong to an algebraic system con-
tains 0 and 1 in which act ternary operation. Such kind of system is not
associative body and it is called ternary ring. The ternary operation satisfies
requirements making sure the validity of axioms P1.P2.P3 (see [4], p. 382,
Theorem 20.3.1). The construction of a ternary ring of the requirements of the
cited theorem appears to be a very hard problem and such kind constructions
are made only in some particular cases. These constructions are obtained by
Veblen O., Wederburn J. H. M. [9], Hall M. Jr. [3], Moufang R. [6]. These
descriptions are given also in the book of Marshall Hall, Jr. [4].

One close to field algebraic system by means of which one can obtain non-
Desarguesians projective planes is the notion near - field. A non-empty set K
of elements is called near-field if in it are defined binary algebraic operations
addition and multiplication, such that the following axioms hold.

A1 With regard to addition K is an abelian group.
A2 Non-zero elements of K form non-abelian group in respect to mutipli-

cation.
A3 The right distributive holds i.e.

(a + b)c = ac + bc

for every a, b, c ∈ K The left distributive law in the general case does not hold
and one can add a suplement axiom. It is

A4 For k 6= 1, k ∈ K, b ∈ K the equation xk = x+b has an unique solution
in K.

If near-field K is finite, then A4 follows from the rest three axioms. (see
[4], p.422, Corollary 20.8.1).

The big interest present the finite projective planes. A projective plane is
called finite if it consist of finite numbers of points and consequently it consist
of finite number of straight lines. For these planes the following properties
hold:

1. The plane contains just n2 + n + 1 straight lines.
2. The numbers of points is just n2 + n + 1.
3. Every straight line consist of n + 1 points.
4. Through every point go n + 1 straight lines.
5. Throught two different points goes just one straight line.
6. Two different straight lines intersect in just one point, where n ≥ 2 is a

natural number. This number is called order of the plane.
In [4] there is proved that the conditions 1, 3, 5 are equivalent to dual-

ity conditions 2, 4, 6 and every one of these triple conditions determines a
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projective plane by order n satisfying the other triple too.
An elementary example for finite projective plane is the plane which con-

sists of 7 points and 7 straight lines. It is by order 2. If we denote the point
of this plane by letters A, B, C, D, E, F, G, then the straight lines the matrix
columns

A B C D E F G
B C D E F G A
D E F G A B C .

A point lies on a given straight line if the point lies in the column defining
the straight line. By this way determine the relation of incidence in this plane.
It is easy to see that the axioms of a projective plane are satisfied, the conditions
1, 3, 5 are fulfiled and the conditions 2, 4, 6 are fulfiled too, such that this is a
finite projective plane. Formally this plane can be presented with fig. 1.

Figure 1

The straight line BFG is imagined by a circle and the other straight lines
are given through straight lines. The above figure is called configuration of
Fanao. Plane in which the diagonal points of every full quadrangle lie on a
straight line is called Fanao’s plane (see [2]).

A projective plane can be determined by means of incidence matrix. This
is a quadratic matrix by order n2 + n + 1 containing of zeros and unities. The
matrix rows imitate the points of the plane and the columns - the straight lines.
A point and straight line are incidence if the corresponding row and column
intersect in 1 and non-incidence if they intersect in 0. The incidence matrix of
the plane by order 2 is the following:

A 1 0 0 0 1 0 1
B 1 1 0 0 0 1 0
C 0 1 1 0 0 0 1
D 1 0 1 1 0 0 0
E 0 1 0 1 1 0 0
F 0 0 1 0 1 1 0
G 0 0 0 1 0 1 1
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In every row and every column there are 3 unites and 4 zeros.
It is established that from every from the following orders 2, 3, 4, 5, 7, 8

there exisits one projective plane and it is Desarguesian. In 1900 year Tarry G.
[8] proved that the plane by order 6 does not exist. From the order 9 there is one
Desarguesian plane and 3 non-Desarguesian planes. The big problem appears
to be the existence of a plane by order 10, known as the problem for the ten.
This problem is very hard and as it is known of the author it is stile unsolved.
A significant result in the theory of finite projective planes is the theorem of
Bruck R. H., Ruser H. J. [1], in which is argued that if n ≡ 1 (mod 4) or
n ≡ 2 (mod 4) and n 6= a2 + b2, a, b ∈ N , then projective plane by order n
does not exist. From it follows that planes by order 6, 14, 21, 22, 30, 33, . . .
do not exist, but it cannont solve the problem for the ten, since 10 = 32 + 12.

A significant example of non-Desarguesian planes had been constructed
by Hughes [5]. Let q = pr be degree of odd prime number. Then there exsist
near - field K by order q2, the center Z of which is Galoi’s field GF (q). The
Hughes planes have order q2. Let fix an collineation α of the Desarguesian
plane by order q which coordinates from field Z = GF (q), such that the order
of α to be q2 + q + 1. Such kind of collineation exists by a theorem of Singer
J. [7]. A Hughes plane obtain as the collineation α spreds on the points with
coordinates from near-field K. Let consider the straight lines with equations

(1) x + ty + z = 0

in homogeneous coordinates, where t = 1 or t /∈ Z. These straight lines are
called basic straight lines. We apply the degrees of collineation α over the basic
straight lines. By this way we obtain straight lines with the following equations

(2) a1x + b1y + c1z = t(a2x + b2y + c2z),

where a1, b1, c1, a2, b2, c2 ∈ Z and t = 1 or t /∈ Z. This set of straight lines con-
tains the basic straight lines, since the identity is a degree of α. The number of
straight lines from kind (2) is (q2 +q +1)(q2−q +1) = q4 +q2 +1 = n2 +n+1,
where n = q2. The relation of incidence determines with the condition the
coordinates of the point satisfy the equality the straight line. The point have
homogeneous coordinates within non-zero right factor of K. At this chosen sets
of point and straight lines and the relation of incidence it is proved in [4] that
it is a projective plane π which is called Hughes plane. The points with coor-
dinates from Z and straight lines (2) for t = 1 make up Desarguesian subplane
π1 of the plane π. We shall explain that the coordinates of the points from π
and the equations of the straight lines refer to coordinate system with a coor-

104



Plane of Hughes

dinate quadrangle XYOI lieing in subplane π1. The vertices of this quadran-
gle have homogenuous coordinates X(1, 0, 0), Y (0, 1, 0), O(0, 0, 1), I(1, 1, 1). For
the points outside from the straight line XY we introduce non-homogenuous
coordinates, but for the straight lines different from XY -non-homogenuous
equalities. This can be made when we set in (2) z = 1.

We shall show that the equations of the straight lines from the Hughes
plane can be presented in another more couviniance form. For this purpose
we shall use non-homogenuous coordinates. We shall prove the following main
result.

Theorem 1. Let XY OI be a coordinate quadrangle in the Hughes plane
π, lieing in the subplane π1 and l be an arbitrary straight line from π, different
from XY . Then for non-homogenuous equation of l just one of the cases holds.

a) if l intersects XY in a point not belonging to π1, then l has non-
homogenuous equation by the kind

(3) y − y0 = k(x− x0),

where k ∈ K\Z, x0, y0 ∈ Z.
b) if l intersects XY in a point belonging to π1 and different from Y , then

l has non-homogenuous equation by the kind

(4) y = kx + b,

where k ∈ Z, b ∈ K.
c) if l goes through Y , then its non-homogenuous equation is

(5) x = x1, x1 ∈ K.

Proof. The straight line l will have non-homogenuous equation by the
kind (2) as we put z = 1. If t = 1, then l ∈ π1 and since π1 is a Desarguesian,
then the equation of l turus to (4) with b ∈ Z or turus to (5) with x1 ∈ Z. Let
now t 6= 1. Then t ∈ K\Z. The straight lines with the equations

l1 : a1x + b1y + c1 = 0

l2 : a2x + b2y + c2 = 0

lie in π1 and imagines of the different straight lines x+z = 0 and y = 0 through
collineation of π1. Consequently l1 6= l2. We shall consider the following cases:
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a′) Let l1 and l2 intersect in a point not lieing on XY . Then a1b2−a2b1 6= 0
and the system (6) will have an unique solution (x0, y0); x0, y0 ∈ Z. This
solution gives non-homogenuous variant of (2) can be presented as

(7) a1(x− x0) + b1(y − y0) = t(a2(x− x0) + b2(y − y0)),

which is the equation of the straight line l. Since a1b2 − a2b1 6= 0 then at least
b1 or b2 is different from zero. Without limitation of generating we can accept
b2 6= 0. We shall note in details that at the reveal of clamps with factor from
Z one can use both distributive laws. Then (7) can be reprezented in the kind

(8) δ(x− x0) = (b2t− b1)(a2(x− x0) + b2(y − y0)),

where δ = a1b2 − a2b1 6= 0. Since b1, b2 ∈ Z, b2 6= 0, t /∈ Z then it follows
b2t− b1 /∈ Z and it seems that b2t− b1 6= 0. Putting λ = (b2t− b1)−1 we reduce
(8) to the type

(9) y − y0 =
λδ − a2

b2
(x− x0).

As we set k =
λδ − a2

b2
the equation (9) takes the kind (3). Consequently the

straight line l has the equation from the type (3) with k ∈ K\Z and x0, y0 ∈ Z
b′) Let l1 and l2 intersect on XY in point different from Y with direction

k. Then we will have a1 + b1k = 0, a2 + b2k = 0, at that b1 6= 0 or b2 6= 0.
Without limitattion of generating we can accept b2 6= 0. Then (2) will take the
type

(10) (b2t− b1)(b2(−kx + y) + c2) = b2c1 − b1c2.

We put now λ = (b2t− b1)−1 as in the case a′) and then (10) will take the type

(11) y = kx + b,

where b =
λδ1 − c2

b2
and δ1 = b2c1 − b1c2. By the way we obtain (4).

c′) Let l1 and l2 intersect in point Y . Then it follows b1 = b2 = 0. The
equation (2) gets a1x + c1 = t(a2x + c2). Moreover we can accept a2 6= 0. The
last equation turus to the kind

(12) x = x1

where x1 =
µδ2 − c2

a2
, µ = (a2t− a1)−1, δ2 = a2c1 − a1c2 as we obtain (5).
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From this theorem follows that the Hughes plane does not depend on the
chosen collineation α. One can choose any group of collineations of π1 having
order q2 + q +1 and acting transitive on π1.So one can obtain the same Hughes
plane. From the proof of this theorem one can see that the straight lines
from the Hughes plane can be distributed in three types which we shall call
respectively type a), type b) and type c), where their equations give with form
(3), (4) and (5), respectively. Now we shall give a criterion for coincidence of
two straight lines from the plane π.

Theorem 2. Two straight lines coincide if and if when their equations
coincide i.e. every straight line has a unique equation from any type.

Proof. From the cases considered in the proof of Theorem 1one can see
that two straight lines from different types cannot coincide. If l is a straight
line from type a) with equation (3) it intersects XY in a point with coordinate
k /∈ Z. But since the crossing point of two straight lines is unique then it follows
that k is uniquely defined from l. From the fact k /∈ Z follows that l /∈ π1. Then
l cannot walk throught different points belonging to π1 from where it follows
that x0 and y0 in (3) are uniquely defined too. Let now the straight line l is
from the type b) with equation (4). Then it is different from the straight line
OY since l does not walk through the point Y . But the equation of OY is
x = 0 (from type c) with x1 = 0) and consequently l intersects OY in the point
(0, b). From this follows the uniquely of b and the uniquely of k follows as it
proved above. At the end if l is from type c) with equation (5) then every point
from l has abscissa x1. This uniquely determines x1 from the straight line l.

Theorem 3. Every straight line from the Hughes plane not belonging to
the subplane π1 passes through just one point from π1. Through every point not
belonging to π1 walks only one straight line from π1.

Proof. Every straight line not belonging to π1 can pass at most through
one point from π1. If the straight line is from type a) with equation (3) then
it walks through the point (x0, y0) from π1. If the straight line is from type
b) then it passes through the point (k) which is from π1 because k ∈ Z. If
straight line is from type c), then it walks through the point Y ∈ π1. The
second assertion follows from the duality principle.

We shall note that this theorem is true for every finite projective plane by
order n2 having subplane by order n.

As we have already seen every finite near-field by order q2 with center the
Galoi’s field GF (q) for odd q defines Hughes plane and vice versa. Because of
this it is necessary to make a classification of all such near-fields. Such kind of
classification is made by Zassenhaus H. [9] without limitation of their order.
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РАВНИНА НА ХЮГЕС

Нако А.Начев

Резюме. В 1957 г. Хюгес построява един забележителен пример на
крайна недезаргова проективна равнина. В тази статия се дава ново пред-
ставяне на равнината на Хюгес и се разглеждат някои нейни свойства.
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