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Abstract  In this paper we find sufficient conditions for the existence and uniqueness of fixed points of 
Chatterjea’s maps in b-metric space. These conditions do not involve the b-metric constant. We establish a priori 
error estimate for the sequence of successive iterations. The error estimate, which we present is better that the well-
known one for a wide class of Chatterjea’s maps in metric spaces. 
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1. Introduction 
Fixed point theory has got wide applications in different 

branches of mathematics. Since the work of S. Banach [3] 
known as the Banach Contraction Principle, many 
mathematicians have extended and generalized the results 
in [3]. Some of the classical generalizations of [3] are 
presented in [14]. The concept of a b-metric space as a 
generalization of a metric space is introduced in [2] and a 
contraction mapping theorem is proved there. Since then 
results about fixed points, variational principles and 
applications were obtained in b-metric spaces. We will 
cite just a few recent results in these directions 
[1,5,7,8,9,10,11,12,13,16]. 

We recall some definitions and properties for b-metric 
spaces [12,13,16]. 

Definition 1.1. Let X  be a non-empty set, 1s ≥ . A 
functional : X Xρ × →   is called a b-metric if it 
satisfies the following conditions: 

( ), 0x yρ ≥  for all ,x y X∈  and ( ), 0x yρ =  iff x y= ; 

( ) ( ), ,x y y xρ ρ=  for all ,x y X∈ ; 

( ) ( ) ( )( ), , ,x y s x z z yρ ρ ρ≤ +  for all , ,x y z X∈ . 

The ordered pair ( ),X ρ  is called a b-metric space 
(with constant s). 

Any metric space is a b-metric space with 1s = . 
An example of b-metric is the functional 

( ) 1: , , p
p p p i iil l x y x yρ ρ ∞

=× → = −∑ . It is easy to 

see that in this case 12 ps −= . 
Other classical example of b-metric space is   

endowed with the b-metric function ( ), p
p x y x yρ = −  

for [1, )p∈ +∞ . It is easy to see that in this case 12 ps −=  

and for 1p =  we get the metric space of the real numbers 
with a metric ( )1 ,x y x yρ = − . 

Definition 1.2. Let ( ),X ρ  be a b-metric space. 

A sequence { } 1n nx ∞
=  is called b-convergent if there 

exists x X∈ , such that for any 0ε >  there exists 
( )N N ε= ∈  such that the inequality ( ), nx xρ ε<  

holds true for all n N≥ ; 

A sequence { } 1n nx ∞
=  is called b-Cauchy sequence if for 

any 0ε >  there exists ( )N N ε= ∈  such that the 

inequality ( ),m nx xρ ε<  holds true for all n m N> ≥ ; 

The b-metric space ( ),X ρ  is called complete b-metric 
space if any Cauchy sequence is convergent; 

A subset A X⊆  is called b-bounded if 

( ){ }sup , : ,x y x y Aρ ∈ < ∞ ; 
If the set A  is b-bounded then the number 

( ){ }sup , : ,x y x y Aρ ∈  is called its b-diameter and is 

denoted with ( )b Aδ . 
A subset A X⊆  is called b-closed if for any 

convergent sequence { } 1n nx A∞
= ⊂  the convergence 

lim n
n

x x
→∞

=  implies x A∈ . 

A b-metric function ρ  is called continuous if for any 
y X∈  and any 0ε >  there exists ( ), 0yδ δ ε= >  such 

that there holds the inequality ( ) ( ), ,y x y zρ ρ ε− < , 

provided that ( ),x zρ δ< . It is easy to observe that if ρ  
is continuous and nx  is b-convergent to x  then 

( ) ( ), ,ny x y xρ ρ→ . 
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Every b-convergent sequence in b-metric space is a b-
Cauchy sequence. If a sequence is a b-convergent in b-
metric space then its limit is unique. In general a b-metric 
function is not continuous [5,10]. 

As far as we will consider only b-metrics we will omit 
the letter b in the above definitions. 

Definition 1.3. ([14]) Let ( ),X ρ  be a metric space. A 
map :T X X→  is a Hardy Rogers map is there exist 
nonnegative constants ia , 1, 2,3, 4,5i =  satisfying 

5

1
1i

i
a

=
<∑  such that for each ,x y X∈ the inequality 

 1 2 3

4 5

( , ) ( , ) ( , ) ( , )
( , ) ( , )

Tx Ty a x y a x Tx a y Ty
a x Ty a y Tx

ρ ρ ρ ρ
ρ ρ

≤ + +
+ +

 

holds for all ,x y X∈ . 
As pointed in [15] from the symmetry of the function 

ρ  it follows that 2 3a a= and 4 5a a= . Therefore if T  is 
a Hardy-Rogers contraction then there exist 1 2 3, , 0k k k ≥ , 
such that 1 2 32 2 1k k k+ + <  and there holds the inequality 

 1 2

3

( , ) ( , ) ( ( , ) ( , ))
( ( , ) ( , )).

Tx Ty k x y k x Tx y Ty
k x Ty y Tx

ρ ρ ρ ρ
ρ ρ

≤ + +
+ +

 

Generalizations of Hardy Rogers map in b-metric space 
are investigated in [8,13]. 

If 1 2 0k k= =  and 3 [0,1/ 2)k ∈ in the above inequality 
we get a generalization of Chatterjea’s map [6] in b-metric 
space. 

Definition 1.4. Let ( ),X ρ  be a b-metric space. A map 
:T X X→  is called Chatterjea’s map if there exists 
[ )0,1/ 2k ∈  such that the inequality 

 ( ) ( ) ( )( ), , ,Tx Ty k Tx y Ty xρ ρ ρ≤ +  

holds for all ,x y X∈ . 

We will denote for the rest of the article 
1

k
k

α =
−

, 

where k  is the constant from the definition of Chatterjea’s 
map. From [ )0,1/ 2k ∈  it follows that [ )0,1α ∈ . 

2. Fixed Points for Chatterjea’s Maps in 
b-Metric Spaces 

Theorem 2.1. Let ( ),X ρ  be a complete b-metric space, 
ρ  be a continuous function, :T X X→  be a Chatterjea’s 

map, such that the inequality ( ){ }sup ,n
n T x xρ∈ < ∞  

holds for any x X∈ . Then  
(i) there exists a unique fixed point say ξ  of T ; 

(ii) for any 0x A∈  the sequence { } 1n nx ∞
=  converges 

to ξ , where 1n nx Tx+ = , 0,1, 2,...n = ; 
(iii) there holds the a priori error estimate 

 ( ) ( ), sup ,m m j

j
T x T x xρ x α ρ

∈
≤


. (2.1) 

Lemma 2.2. Let ( ),X ρ  be a b-metric space and let 
:T X X→  be a Chatterjea’s map. Then for any x X∈  

there holds the inequality 

 ( ) ( ){ }
2

, sup ,
1

m
n m j

j n

kT x T x T x x
k

ρ ρ
≤ ≤

 ≤  − 
 (2.2) 

for any 1n m> ≥ . 

Proof. Let us denote ( ) ( ),n
nr x T x xr=  and 

( ), ,n m
m nx T x T xρ= . We consider the sequence 

2,1 3,1 3,2 1, 2 ,1 ,2 , 1 1,1, , ,... , , ,..., , ,...n n n n n n nx x x x x x x x− − − + (2.3) 

We will prove inequality (2.2) by induction on the 
sequence (2.3). Let us denote by i  the sum of the indices 
of the sequence in (2.3). 

Let 3i = , i.e. 2n =  and 1m = . Then 

( ) ( )2
2,1 2 ,

1
kx kr x T x x

k
r≤ ≤

−
. 

Let 4i = , i.e. 3n =  and 1m = . Then 

 
( )( ) ( )

( )

3,1 3 2,1
2 3

2 3

1 sup
1

sup , .
1

j
j

j

j

kx k r x x k r x
k

k T x x
k

r

≤ ≤

≤ ≤

 ≤ + ≤ + − 

=
−

 

Let inequality (2.2) holds for i p= . 
We will prove that (2.2) holds true for 1i p= + . Let 

n m p+ = . There are two cases: If m n<  then we 
consider , 1n mx + , if 1m n= −  then we consider 1,1nx + . 
Case I) There are two subcases: 2m n< −  and 2m n= − . 
Let first 2m n< − . Then 

 

( )

( )

( )

( )

( )

, 1 , 1, 1

2
1

2 1

2
1

2

sup
1

sup
1

1 sup
1 1

sup , .
1

n m n m n m

m

j
j n

m

j
j n

m

j
j n

m
j

j n

x k x x

k r x
k

k
k r x

k

k kk r x
k k

k T x x
k

r

+ − +

≤ ≤

+

≤ ≤ −

≤ ≤

+

≤ ≤

≤ +

    −  
≤  

  +  −  

   = +   − −   

 =  − 

 

Let now 2m n= − . Then 

 

( )

( )

( )

, 1 , 1, 1 ,

2
1

2

sup
1

sup , .
1

n m n m n m n m

m

j
j n

m
j

j n

x k x x kx

kk r x
k

k T x x
k

r

+ − +

≤ ≤

+

≤ ≤

≤ + =

 ≤  − 

 =  − 

 

Case II) 
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( )( )

( ) ( )

( )

( )

1,1 1 ,1

2 1 2

2 1

2 1

sup sup
1

1 sup
1

sup , .
1

n n n

j j
j n j n

j
j n

j

j n

x k r x x

kk r x r x
k

kk r x
k

k T x x
k

r

+ +

≤ ≤ + ≤ ≤

≤ ≤ +

≤ ≤ +

≤ +

  ≤ +   −  
 = + − 

=
−

 

Proof. of Theorem 2.1 (i) Let x X∈  be arbitrary. 

Let us put ( )
2

sup ,j

j
M T x xρ

≥
= . From Lemma 2.2 we 

have that the inequality 

 ( ) ( )
2

, sup ,n m m j m

j n
T x T x T x x Mρ α ρ α

≤ ≤
≤ ≤  

holds for every 1n m> ≥ . Consequently the sequence 

{ } 1
n

n
T x

∞

=
 is a Cauchy sequence. From the assumption that 

X  is complete b-metric space it follows that the sequence 

{ } 1
n

n
T x

∞

=
 is b-convergent. Therefore it follows that there 

exists lim n
n

T x Xx
→∞

= ∈ . Let us fix n∈ . After taking a 

limit on m →∞  from the assumption that the b-metric is 
continuous and using that T  is Chatterjea’s map we get 
the inequality 

 

( ) ( )
( ) ( )( )( )

( ) ( )( ) ( )

1

, lim ,

lim , ,

, , ,

m
m

m m
m

T T T x

k T T x T x

k T k T

ρ xx  ρ x

ρ x ρ x

ρ xx  ρ xx  ρ xx

→∞

−

→∞

=

≤ +

= + =

 

and therefore ( ), 0Tρ ξ ξ =  i.e. ξ  is a fixed point for T . 
Let suppose that there are two fixed points ξ η≠ . Then 
from the inequality 

 
( ) ( ) ( ) ( )( )

( )
, , , ,

2 ,

T T k T T

k

ρ ξ η ρ ξ η ρ ξ η ρ η ξ

ρ ξ η

= ≤ +

=
 

and the assumption that [ )0,1/ 2k ∈  it follows that ξ η= . 
(ii) The proof follows from (i), because any sequence 

{ }0 1
n

n
T x

∞

=
 is convergent to the fixed point of T , which is 

unique. 
(iii) Let x X∈  be arbitrary. From Lemma 2.2 we have 

the inequality 

 ( ) ( ), sup ,n m m j

j
T x T x T x xρ α ρ

∈
≤


 

holds for every 1n m> ≥  and every x X∈ . From (ii) it 

follows that the sequence { } 1
n

n
T x

∞

=
 converges to the 

unique fixed pointξ . Therefore using the continuity of ρ  
and Lemma 2.2 we get 

 ( ) ( ) ( ), lim , sup ,m n m m j
n j

T x T x T x T x xρ x ρ α ρ
→∞ ∈

= ≤


. 

As far as any metric space is a b-metric space, then 
Theorem 2.1 holds true for arbitrary metric space. If 
( ),X d  is a complete metric space and T  be Chatterjea’s 
map then the a priori error estimate is well known [4] 

 ( ) ( ), ,
1

m
md T x d Tx xαx

α
≤

−
. (2.4) 

If we assume that ( ) ( )sup , ,j

j
T x x Tx xρ ρ

∈
≤


 then we 

will get from Theorem 2.1 the a priori estimate 

  ( ) ( ), ,m mT x Tx xρ x α ρ≤ .  (2.5) 

Let us mention that in this case the a priori estimate (2.5) 
is better, than (2.4). 

Let ( )( )0, ,Tx xε ρ∈ , mα ∈  be the smallest number, 

that satisfies (2.5) and nα ∈  be the smallest number, 
that satisfies (2.4). Then 

 

( )
( ) ( )

( )

1
log log

, ,
1

log log

log 1
1.

log

Tx x Tx x
n mα α

ε α ε
ρ ρ

α α

α
α

−  
 
 − ≥ − +
 
 
 

−
= −

 

If k  gets close to 1/ 2  then α  gets closer to 1 and 
therefore n mα α−  gets closer to infinity. 

We would like to point out that if the space is a metric 
space than using the triangle inequality we can obtain (2.5) 
from (2.1). 

Example 2.3. Let us consider the b-metric space 

( ), pρ  for 1p ≥ . Let 0 α β< <  be two arbitrary 

positive real numbers. Let us define the map 

: [0, ) [0, )T β
α +∞ → +∞ , by 

, [ , )
0, [0, )

x
T x

x
β
α

α β
β

∈ +∞
=  ∈

 

(Figure 1), which is a variation of the classical examples 
from [14]. It is well known that 2

1/2T  is Chatterjea’s map 

and 1
1/2T  is not Chatterjea’s map in the metric space 

1( , )ρ  [14]. It is easy to observe that the Picard iteration 

sequence 1n nx T xβ
α −=  converges to the fixed point 0x =  

for any initial point 1 [0, )x ∈ +∞ . 

 
Figure 1 

If , [0, )x y β∈  or , [ , )x y β∈ +∞ , then T β
α  satisfies the 

condition in Definition 1.4 for any 10,
2

k  ∈  
, because 
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( , ) | | 0p
p Tx Ty Tx Tyρ = − = . If [0, )y β∈  and [ , )x β∈ +∞ , 

then we get ( , ) ( , ) | |p p
p pTx y Ty x yρ ρ α β+ = − +  and 

( , ) p
p Tx Tyρ α= . Using the inequality 

 { }inf | | : [0, ), [ , )p p py x y xα β β β− + ∈ ∈ +∞ =  

we get that there holds 

( )( , ) ( , ) ( , )p p
p p pTx Ty k k Tx y Ty xρ α β ρ ρ= ≤ ≤ + (2.6) 

for any 
p

k α
β

 
≥  
 

. Therefore if 2α β≥  then T β
α  is not a 

Chatterjea’s map in 1( , )ρ . For any arbitrary 0 α β< <  

we can choose [1, )p∈ +∞ , such that 10,
2

pα
β

   ∈    
. 

Consequently for any map T β
α  we can endow 1( , )ρ  

with a suitable b -metric ( ) | |pp x y x yρ − = −  so that T β
α  

to satisfy the condition in Definition 1.4 in ( ), pρ . 

Let us consider the particular case 2α β≥  and 1p > . 

If we choose in this case 1 10,
2 2

p p
k α

β
     ≥ ≥ ∈        

, 

provided that we have considered the b-metric space 

( , )pρ , 1p > , then 1.
2

k s ≥ , because 12 ps −=  in 

( , )pρ . Consequently T β
α  does not satisfy the 

conditions in ([16] Theorem 3) for any (1, )p∈ +∞  in 
( , )pρ  and thus Theorem 2.1 extends ([12] Theorem 3) 

in the case when ( )sup ,n

n
T x xρ

∈
< ∞


. 

In the particular case 1
1/2T  we get that 1.

2
k s = , 

provided that k  is chosen so that inequality (2.6) to hold 
in ( ), pρ  and therefore ([12] Theorem 3) could not be 

applied. 
When applying fixed point theorems for approximating 

of a solution of the equation Tx x=  we usually find an 
initial starting point 0x , which belongs to a neighborhood 
U  of the solution ξ , such that :T U U→  and U  is 
bounded and closed. Thus the next Corollary can be 
applied in a wide class of problems. 

Corollary 2.3. Let ( ),X ρ  be a complete b-metric 
space, ρ  be a continuous function, A X⊆  be a b-
bounded and b-closed set, :T A A→  be Chatterjea’s map. 
Then  
there exists a unique fixed point say ξ  of T ; 

for any 0x A∈  the sequence { } 1n nx ∞
=  converges to ξ , 

where 1n nx Tx+ = , 0,1, 2,...n = ; 
there holds the a priori  error estimate 

( ) ( ), n m
bT x Aρ x α δ≤ . 
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