ПЛОВДИВСКИ УНИВЕРСИТЕТ "ПАИСИЙ ХИЛЕНДАРСКИ", БЪЛГАРИЯ НАУЧНИ ТРУДОВЕ, ТОМ 36, КН. 3, 2009 – MATEMATИKA PLOVDIV UNIVERSITY "PAISSII HILENDARSKI", BULGARIA SCIENTIFIC WORKS, VOL. 36, BOOK 3, 2009 – MATHEMATICS

ON EQUIVALENT ANALYTIC NORMS IN ORLICZ–LORENTZ SEQUENCE SPACES ¹

B. Zlatanov

Abstract. We prove that if the generating Orlicz function M has not Δ_2 —condition at zero, then the existence of an equivalent analytic norm in the orlicz–Lorentz sequence space $d_0(w,M)$ is equivalent to $d_0(w,M)$ to be isomorphically polyhedral. We show that if $\lim_{t\to 0} \frac{M(\lambda t)}{M(t)} = \infty$ for some $\lambda>1$ then the Orlicz–Lorentz sequence space $d_0(w,M)$ is isomorphic to a polyhedral Banach space and therefore it admits an equivalent analytic norm, it is c_0 –saturated and it has a separable dual. We characterize all the c_0 –saturated Orlicz–Lorentz sequence spaces.

Mathematics Subject Classification 2000: 46E30, 46B45, 46B03 Key words: Orlicz-Lorentz sequence space, polyhedral space, analytic norm

1. Introduction

The notion of polyhedral Banach spaces was introduced in [10]. A Banach space is called polyhedral if the unit ball of each of its finite dimensional subspaces is a polyhedron, i.e. it has finitely many extreme points. A Banach space is called isomorphically polyhedral if it is isomorphic to a polyhedral Banach space. Fundamental results about polyhedral Banach spaces can be found in [3] and [5]. Isomorphically polyhedral Banach spaces are c_0 [6], the spaces $C(\alpha)$ for any ordinal α [4]. The Orlicz sequence space h_M is isomorphically polyhedral if $\lim_{t\to 0} \frac{M(\lambda t)}{M(t)} = \infty$ for some $\lambda > 1$ [11]. The Musielak–Orlicz

 $^{^1{\}rm Research}$ is partially supported by National Fund for Scientific Research of the Bulgarian Ministry of Education and Science, Contract MM-1401/04.

sequence spaces h_{Φ} is isomorphically polyhedral if h_{Φ} is stabilized asymptotic ℓ_{∞} with respect to the unit vector basis [2].

Recall that a Banach space is c_0 -saturated if every closed infinite dimensional subspace contains a subspace which is isomorphic to c_0 . It is shown [4] that any separable isomorphically polyhedral Banach space is c_0 -saturated and has a separable dual. Thus the Orlicz and Musielak-Orlicz sequence spaces mentioned above are c_0 -saturated.

Using the ideas of [11] we find a sufficient condition for the Orlicz–Lorentz sequence spaces $d_0(w, M)$ to be isomorphically polyhedral and we characterize all the c_0 –saturated Orlicz–Lorentz sequence spaces.

It is well known that any separable, isomorphically polyhedral Banach space admits an equivalent analytic norm [1]. A general result for a Banach space with an equivalent analytic norm to be isomorphically polyhedral is obtained in [8]. This result is applied in the same article to show that for a wide class of Orlicz spaces h_M the existence of an equivalent analytic norm is equivalent to h_M to be isomorphically polyhedral. It turns out that this general result can be applied in Orlicz–Lorentz sequence spaces to investigate the same problem as well.

2. Preliminaries

A standard Banach space terminology can be found in [12].

Let us recall that an Orlicz function M is an even, continuous, nondecreasing, convex function defined for $t \geq 0$ such that M(0) = 0 and $\lim_{t \to \infty} M(t) = \infty$. We say that M is non–degenerate Orlicz function if M(t) > 0 for every t > 0.

The Orlicz function M is said to have the property Δ_2 at zero if there is a constant C > 0 such that $M(2t) \leq CM(t)$ for every $t \in [0, t_0]$ for some $t_0 > 0$ and we write $M \in \Delta_2(0)$.

To every Orlicz function M the following numbers are associated ([12], p.143):

$$\alpha_M = \sup \left\{ p > 0 : \sup_{0 < u, v \le 1} \frac{M(uv)}{M(u)v^p} < \infty \right\},$$

$$\beta_M = \inf \left\{ q > 0 : \inf_{0 < u, v \le 1} \frac{M(uv)}{M(u)v^q} > 0 \right\}.$$

It is easy to see that $1 \le \alpha_M \le \beta_M \le \infty$. A well known fact is that $M \in \Delta_2(0)$ iff $\beta_M < \infty$.

For a given Orlicz function M and $a \in (0, +\infty)$, let M_a be the function M scaled at a, defined by $M_a = \frac{M(at)}{M(a)}$. The following sets of functions mapping $[0, +\infty)$ into $[0, +\infty)$

$$E_{M,A}^0 = \{ M_a : 0 < a < A \}, \quad C_{M,A} = \overline{\text{conv} E_{M,A}^0}, \quad C_M = \cap_{A > 0} C_{M,A}$$

will be needed in the sequel [9], [12].

The Orlicz sequence space ℓ_M , generated by an Orlicz function M is the set of all real sequences $x = \{x_i\}_{i=1}^{\infty}$ such that $\sum_{i=1}^{\infty} M(\lambda x_i) < \infty$ for some $\lambda > 0$. The Luxemburg norm is defined by

$$||x||_M = \inf \left\{ \lambda > 0 : \sum_{i=1}^{\infty} M\left(\frac{x_i}{\lambda}\right) \le 1 \right\}.$$

We denote by h_M the closed linear subspace of ℓ_M , generated by all $x \in \ell_M$, such that $\sum_{i=1}^{\infty} M(\lambda x_i) < \infty$ for every $\lambda > 0$. If $M(t) = t^p$, $p \ge 1$ we get the space ℓ_p .

An extensive study of Orlicz spaces can be found in [12].

Let $w = \{w_i\}_{i=1}^{\infty}$ be a positive decreasing sequence such that $w_1 = 1$, $\lim_{i \to \infty} w_i = 0$ and $\lim_{n \to \infty} W(n) = \infty$, where $W(n) = \sum_{i=1}^n w_i$ for every $n \in \mathbb{N}$. The Orlicz–Lorentz sequence space d(w, M) consists of all bounded real sequences $x = \{x_i\}_{i=1}^{\infty}$ such that for some $\lambda > 0$ holds $I(\lambda x) < \infty$, where

$$I(x) = \sum_{i=1}^{\infty} w_i M(x_i^*) = \sup \left\{ \sum_{i=1}^{\infty} w_i M(x_{\pi(i)}) : \pi \text{ is an injection } \mathbb{N} \to \mathbb{N} \right\},$$

and $x^* = \{x_i^*\}_{i=1}^{\infty}$ is the decreasing rearrangement of $|x| = \{|x_n|\}_{n=1}^{\infty}$. The space d(w, M) equipped with the Luxemburg norm

(1)
$$||x||_{d(w,M)} = \inf\{\lambda > 0 : I(x/\lambda) \le 1\}$$

is a Banach space [9].

Notice that the assumption $\lim_{n\to\infty} W(n) = \infty$ yields that $d(w,M) \hookrightarrow c_0$, where by $Y \hookrightarrow X$ we will denote that Y is isomorphic to a subspace of X.

We denote by $d_0(w, M)$ the closure of all finitely supported sequences in d(w, M).

The next proposition from [9] shows that the space d(w, M) has much in common with ℓ_M .

Proposition 2.1. ([9]) I) The subspace $d_0(w, M)$ coincides with the set of all sequences $x = \{x_i\}_{i=1}^{\infty}$ such that for every $\lambda > 0$ holds $I(\lambda x) < \infty$. Moreover, the sequence of the unit vectors $\{e_i\}_{i=1}^{\infty}$ is a symmetric basis in $d_0(w, M)$.

- II) The following assertions are equivalent:
- i) The Orlicz function M satisfies the Δ_2 -condition;
- ii) the unit vectors $\{e_i\}_{i=1}^{\infty}$ form a boundedly complete basis in $d_0(w, M)$;
- iii) $d_0(w, M) = d(w, M);$
- iv) $d_0(w, M)$ does not contain a closed subspace isomorphic to c_0 .

If $M(t) = t^p$, $1 \le p < \infty$, then d(w, M) = d(w, p) is the Lorentz sequence space. If $w_i = 1$ for every $i \in \mathbb{N}$, then d(w, M) is the Orlicz sequence space ℓ_M and $h_M = d_0(w, M)$.

The symbol e_i will stand for the unit vectors in $d_0(w, M)$.

We say that two basic sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ in the Banach spaces $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ respectively are C-equivalent, whenever for any real sequence $\{a_i\}_{i=1}^{\infty}$ we have

$$\frac{1}{C} \left\| \sum_{i=1}^{\infty} a_i x_i \right\|_{X} \le \left\| \sum_{i=1}^{\infty} a_i y_i \right\|_{Y} \le C \left\| \sum_{i=1}^{\infty} a_i x_i \right\|_{X}.$$

The basic sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ are said to be almost isometrically equivalent if for all $k \in \mathbb{N}$ the tails $\{x_i\}_{i=k}^{\infty}$ and $\{y_i\}_{i=k}^{\infty}$ are $(1+\varepsilon_k)$ -equivalent, for some positive sequence $\{\varepsilon_k\}_{k=1}^{\infty}$, such that $\lim_{k\to\infty} \varepsilon_k = 0$.

Deep results concerning the embedding of ℓ_p spaces into Orlicz–Lorentz sequence spaces are obtained in [9]. It is shown there that in any infinite dimensional subspace X of $d_0(w,M)$ there is an almost isometrically equivalent copy either of c_0 or to some Orlicz sequence space h_{ψ} , for some $\psi \in C_M$. Moreover it is shown in [9] that the same result as like as for Orlicz sequence spaces hold for the embedding of the ℓ_p spaces i.e. $\ell_p \hookrightarrow d_0(w,M)$ iff $p \in [\alpha_M, \beta_M]$.

If $\{v_n\}_{n=1}^{\infty}$ is a basis of a Banach space $(X, \|\cdot\|)$, and $\|\cdot\|$ is a norm equivalent to the given norm $\|\cdot\|$. We say that $\{v_n\}_{n=1}^{\infty}$ is monotone with respect to $\|\cdot\|$ if

$$\left\| \left| \sum_{n=1}^{k} a_n v_n \right| \right\| \le \left\| \left| \sum_{n=1}^{k+1} a_n v_n \right| \right\|$$

for every real sequence $a = \{a_n\}_{n=1}^{\infty}$ and for all $k \in \mathbb{N}$.

Theorem 1. ([11]) Let $\{v_n\}_{n=1}^{\infty}$ be a shrinking basis of a Banach space $(X, \|\cdot\|)$. The following are equivalent:

a) X is isomorphically polyhedral.

b) There exists an equivalent norm $|||\cdot|||$ on X such that $\{v_n\}_{n=1}^{\infty}$ is a monotone basis with respect to $|||\cdot|||$, and for all $\sum_{n=1}^{\infty} a_n v_n \in X$, there exists $m \in \mathbb{N}$ such that

 $\left\| \left| \sum_{n=1}^{\infty} a_n v_n \right| \right\| = \left\| \left| \sum_{n=1}^{m} a_n v_n \right| \right\|.$

By the Remark following Theorem 1 in [11] it follows that Theorem 1 holds also if the shrinking basis is replaced by an unconditional one.

According to a result from [1] we have the following

Theorem 2. ([1]) Every separable isomorphically polyhedral Banach space X admits an equivalent analytic norm.

Definition 2.1. Let U be an open, convex and bounded subset of a Banach space X, f be a real function on U. We say that f is weakly sequentially continuous (wsc) if it maps weakly Cauchy sequences from U into convergent ones.

The next theorem, obtained in [8] gives a sufficient condition so that Banach spaces with an equivalent analytic norm to be isomorphically polyhedral.

Theorem 3. ([8]) Let $(X, \|\cdot\|)$ be a Banach space, where $\|\cdot\|$ is an analytic norm. If all polynomials on X are wsc, then X is separable and isomorphically polyhedral.

Let us recall that a Banach space X with an unconditional basis is said to satisfy an upper p-estimate, p>1, if for some constant C>0 holds

$$\left\| \sum_{i=1}^{n} u_i \right\| \le C \left(\sum_{i=1}^{n} \|u_i\|^p \right)^{1/p},$$

whenever u_i are disjointly supported in X.

We finish the preliminaries with the following

Lemma 2.1. ([7], [8]) Let X be a Banach space with an unconditional basis satisfying an upper p-estimate. Then all polynomials of degree n < p on X are wsc.

3. Main Result

Theorem 4. Let M be an Orlicz function without Δ_2 -condition at zero. Then the Orlicz-Lorentz sequence spaces $d_0(w, M)$ admits an equivalent analytic norm iff it is isomorphically polyhedral.

4. Auxiliary Results

The next Proposition shows that results as like as the results obtained in [11] hold for characterizing the c_0 -saturated Orlicz-Lorentz sequence spaces.

Proposition 4.1. Let M be a non-degenerate Orlicz function, then the following are equivalent:

- a) $d_0(w, M)$ is c_0 -saturated;
- b) $d_0(w, M)$ does not contain an isomorphic copy of ℓ_p for any $p \in [1, \infty)$;
- c) for all $q \in [1, +\infty)$ holds

$$\sup_{0 < u, v < 1} \frac{M(uv)}{M(u)v^q} < \infty.$$

Proof. Clearly a) implies b).

Let now b) holds, but a) fails, then there exists an infinite dimensional closed subspace Y of $d_0(w, M)$, which contains no isomorphic copy of c_0 . According to [9] Y has a subspace Z, which is almost isometrically equivalent either to c_0 or to h_{ψ} for some $\psi \in C_M$. As Y does not contain an isomorphic copy of c_0 , the Z is almost isometrically equivalent to h_{ψ} . By the assumption that Y has no an isomorphic copy of c_0 and by [12](Theorem 4.a.9) it follows that h_{ψ} contains an isomorphic copy of ℓ_p for some $p \in [1, \infty)$, which is a contradiction.

Let now b) holds i.e. there is no isomorphic copy of ℓ_p in $d_0(w,M)$ for any $p \in [1,\infty)$. According to [9] $\ell_p \hookrightarrow d_0(w,M)$ iff $p \in [\alpha_M,\beta_M]$. Therefore $\alpha_M = \infty$ and thus for any $q \in [1,\infty)$ the inequality $\sup_{0 < u,v \le 1} \frac{M(uv)}{M(u)v^q} < \infty$ holds.

Let c) holds. Then $\alpha_M = \beta_M = \infty$. Let Y be an arbitrary infinite dimensional subspace of $d_0(w, M)$. According to [9] Y has a subspace Z, which is almost isometrically equivalent either to c_0 or to h_{ψ} for some function $\psi \in C_M$. If Z is almost isometrically equivalent to c_0 , then there is an isomorphic copy of c_0 in Y. Let suppose that Z is not almost isometrically equivalent to c_0 , then Z is almost isometrically equivalent to h_{ψ} for some function $\psi \in C_M$.

It is easy to see that $\alpha_{\psi} = \infty$, because $C_M \subseteq C_{M,1}$ and for every $\varphi \in C_{M,1}$ it is easy to show, that $[\alpha_{\varphi}, \beta_{\varphi}] \subseteq [\alpha_M, \beta_M]$. Consequently $c_0 \hookrightarrow h_{\psi} \hookrightarrow Y$. \square The next Lemma will be needed in the sequel in order to apply Theorem 3.

Lemma 4.1. Let M be an Orlicz function. If $\sup_{0 < u, v \le 1} \frac{M(uv)}{u^p M(v)} < \infty$, for some p > 1, then the Orlicz–Lorentz sequence spaces $d_0(w, M)$ has an upper p–estimate.

Proof. Let $\sup_{0 < u, v \le 1} \frac{M(uv)}{u^p M(v)} \le C_1 < \infty$. WLOG we may assume that $C_1 > 1$. Let $\{A_k\}_{k=1}^n$, $A_k \subset \mathbb{N}$, $A_j \cap A_k = \emptyset$, for every $j \ne k$. Denote by $a_k = |A_k|$ and $S = \sum_{k=1}^n a_k$. If $a_k = +\infty$ for some $k = 1, \ldots, n$, then $S = +\infty$. Let $u_k = \sum_{i \in A_k} x_i e_i$, $k = 1, \ldots, n$. Let $\{x_{ki}^*\}_{i=1}^{a_k}$ be a decreasing rearrangement of the sequence $\{|x_i|\}_{i \in A_k}$, for every $k = 1, 2, \ldots, n$ and $\{x_i^*\}_{i=1}^S$ be a decreasing rearrangement of the sequence $\{\{|x_i|\}_{i \in A_k}\}_{k=1}^n$.

By the definition of the Luxemburg norm in $d_0(w, M)$ we have

$$\left\| \sum_{i=1}^{n} u_i \right\| = \inf \left\{ \lambda > 0 : \sum_{i=1}^{S} w_i M\left(\frac{x_i^*}{\lambda}\right) \le 1 \right\} \text{ and}$$
$$\left\| u_k \right\| = \inf \left\{ \lambda > 0 : \sum_{i=1}^{a_k} w_i M\left(\frac{x_{ki}^*}{\lambda}\right) \le 1 \right\}$$

for every k = 1, 2, ..., n. Therefore by the chain of the inequalities

$$\sum_{i=1}^{S} w_{i} M \left(\frac{x_{i}^{*}}{C_{1}^{1/p} \left(\sum_{j=1}^{n} \|u_{j}\|^{p} \right)^{\frac{1}{p}}} \right) \leq \sum_{k=1}^{n} \sum_{i=1}^{a_{k}} w_{i} M \left(\frac{x_{ki}^{*} \|u_{k}\|}{C_{1}^{1/p} \left(\sum_{j=1}^{n} \|u_{j}\|^{p} \right)^{\frac{1}{p}} \|u_{k}\|} \right) \\
\leq \sum_{k=1}^{n} \sum_{i=1}^{a_{k}} w_{i} \frac{\|u_{k}\|^{p}}{\sum_{i=1}^{n} \|u_{i}\|^{p}} M \left(\frac{x_{ki}^{*}}{\|u_{k}\|} \right) = \sum_{k=1}^{n} \frac{\|u_{k}\|^{p}}{\sum_{i=1}^{n} \|u_{i}\|^{p}} \sum_{i=1}^{a_{k}} w_{i} M \left(\frac{x_{ki}^{*}}{\|u_{k}\|} \right) \leq 1$$

we get that
$$\|\sum_{i=1}^n u_i\| \le C \left(\sum_{i=1}^n \|u_i\|^p\right)^{1/p}$$
, where $C = C_1^{1/p}$.

Proposition 4.2. The Orlicz–Lorentz sequence space $d_0(w, M)$ is separable.

Proof. Indeed according to Proposition 2.1 the unit vectors $\{e_i\}_{i=1}^{\infty}$ is a Schauder basis in $d_0(w, M)$ and therefore the set $M = \{\sum_{i=1}^n p_i e_i : p_i \in \mathbb{Q}, n \in \mathbb{N}\}$ is a countable dense set in $d_0(w, M)$.

5. Proof of Main Result

Proof. If $d_0(w, M)$ is isomorphically polyhedral, then according to Theorem 2 and Proposition 4.2 it admits an equivalent analytic norm.

Let now $M \notin \Delta_2(0)$ and let there exists an equivalent analytic norm in $d_0(w, M)$. According to [9] $\ell_p \hookrightarrow d_0(w, M)$ iff $p \in [\alpha_M, \beta_M]$, therefore $\alpha_M = \beta_M = +\infty$. By Lemma 4.1 $d_0(w, M)$ has an upper p-estimate for every p > 1 and finally according to Theorem 3 we get that $d_0(w, M)$ is isomorphically polyhedral.

Remark: A natural question arises to characterize the Orlicz-Lorentz sequence spaces $d_0(w, M)$, which admit an equivalent analytic norm as like as it was done in [8]. Let us mention that if $M \in \Delta_2(0)$ and there exists an equivalent analytic norm in $d_0(w, M)$, then according to [9] we get that $\alpha_M = \beta_M \in \{2n\}_{n \in \mathbb{N}} \cup \{+\infty\}.$

6. A class of Orlicz–Lorentz sequence spaces $d_0(w, M)$, that admit an equivalent analytic norm

Proposition 6.1. Let M be a non-degenerate Orlicz function, such that there exists a finite number $\lambda > 1$ satisfying

(2)
$$\lim_{t \to 0} \frac{M(\lambda t)}{M(t)} = \infty.$$

Then $d_0(w, M)$ is isomorphically polyhedral.

Proof. For all $k \in \mathbb{N}$ let define:

$$b_k = \inf \left\{ \frac{M(\lambda t)}{M(t)} : 0 < t \le M^{-1} \left(\frac{1}{W(k)} \right) \right\}.$$

By (2) and the fact that $\lim_{k\to\infty}W(k)=\infty$ it follows that $\{b_k\}_{k=1}^\infty$ is an increasing sequence and $\lim_{k\to\infty}b_k=\infty$. Thus there exists a sequence $\{\eta_k\}_{k=1}^\infty$ such that $\eta_k \setminus 1$ and $\eta_k > \frac{1}{1-\frac{1}{b_{k+1}}}$.

For $x = \{x_n\}_{n=1}^{\infty} \in d_0(w, M)$ define a norm $||| \cdot |||$ in $d_0(w, M)$ by

(3)
$$|||\{x_n\}||| = \sup_k \eta_k ||(x_1^*, x_2^*, \dots, x_k^*, 0, 0, \dots)||,$$

where $\|\cdot\|$ is the Luxemburg's norm in $d_0(w, M)$.

Claim 6.1. The norm $|||\cdot|||$ is an equivalent to the Luxemburg norm in $d_0(w, M)$.

PROOF OF CLAIM 6.1: The proof follows by the inequalities:

$$\|\|\{x_n\}\|\| = \sup_k \eta_k \|(x_1^*, \dots, x_k^*, 0, 0, \dots)\| \le \eta_1 \|\{x_n\}\|\|$$

and

$$|||\{x_n\}||| = \sup_k \eta_k ||(x_1^*, \dots, x_k^*, 0, 0, \dots)|| \ge \sup_k ||(x_1^*, \dots, x_k^*, 0, 0, \dots)|| \ge ||\{x_n\}||.$$

Claim 6.2. The unit vector basis $\{e_i\}_{i=1}^{\infty}$ is a monotone basis in $d_0(w, M)$ with respect to $||| \cdot |||$.

PROOF OF CLAIM 6.2: Let $\{x_n\}_{n=1}^{\infty}$ be an arbitrary real sequence and $k \in \mathbb{N}$ be an arbitrary chosen. We need to show that

$$\left\| \left| \sum_{i=1}^{k} x_i e_i \right| \right\| \le \left\| \left| \sum_{i=1}^{k+1} x_i e_i \right| \right\|.$$

Let denote by $\{a_i\}_{i=1}^k$ the decreasing rearrangement of the set $\{|x_i|\}_{i=1}^k$ and by $\{b_i\}_{i=1}^{k+1}$ the decreasing rearrangement of the set $\{|x_i|\}_{i=1}^{k+1}$. It is easy to see that $b_i \geq a_i$ for every $i=1,\ldots,k$. Thus

$$\left\| \left\| \sum_{i=1}^{k} x_{i} e_{i} \right\| \right\| = \sup_{i=1,\dots,k} \eta_{i} \|(a_{1},\dots,a_{i},0\dots)\| \leq \sup_{i=1,\dots,k} \eta_{i} \|(b_{1},\dots,b_{i},0\dots)\|$$

$$\leq \sup_{i=1,\dots,k+1} \eta_{i} \|(b_{1},\dots,b_{i},0\dots)\| = \left\| \left\| \sum_{i=1}^{k+1} x_{i} e_{i} \right\| \right\|.$$

To finish the proof of the theorem it suffices to show that $||| \cdot |||$ satisfies the condition b) in Theorem 1.

Claim 6.3. For any positive decreasing sequence $x = \{x_i\}_{i=1}^{\infty} \in d_0(w, M)$ there is $k \in \mathbb{N}$ such that

$$||x|| \le \eta_k ||(x_1, x_2, \dots, x_k, 0, 0, \dots)||.$$

PROOF OF CLAIM 6.3: Assume otherwise i.e. for any $k \in \mathbb{N}$ the inequality (4) does not hold. WLOG we may assume that ||x|| = 1. Then

(5)
$$\sum_{i=1}^{\infty} w_i M(x_i) = 1$$

and

(6)
$$\sum_{i=1}^{k} w_i M(\eta_k x_i) \le 1$$

holds for every $k \in \mathbb{N}$. Notice that by the fact that $\{x_i\}_{i=1}^{\infty}$ is a decreasing sequence and $\eta_k \geq 1$ it follows from inequality (6) that $x_k \in [0, M^{-1}(1/W(k))]$.

By the fact that $\{e_i\}_{i=1}^{\infty}$ is a basis in $d_0(w, M)$ it follows that there exists $m \in \mathbb{N}$ such that $\|(0, \dots, 0, x_m, x_{m+1}, \dots)\| \le 1/\lambda$ i.e. $\sum_{i=1}^{\infty} w_i M(\lambda x_{m+i-1}) \le 1$.

For any $i \in \mathbb{N}$, $i \geq m$ the inequality $\frac{M(\lambda x_i)}{M(x_i)} \geq b_m$ holds. Now we can write the chain of inequalities:

$$1 = \sum_{i=1}^{\infty} w_i M(x_i) = \sum_{i=1}^{m-1} w_i M(x_i) + \sum_{i=m}^{\infty} w_i M(x_i)$$

$$\leq \frac{1}{\eta_{m-1}} \sum_{i=1}^{m-1} w_i M(\eta_{m-1} x_i) + \frac{1}{b_m} \sum_{i=m}^{\infty} w_i M(\lambda x_i)$$

$$\leq \frac{1}{\eta_{m-1}} + \frac{1}{b_m} \sum_{i=1}^{\infty} w_i M(\lambda x_{m+i-1})$$

$$\leq \frac{1}{\eta_{m-1}} + \frac{1}{b_m} < 1$$

which is a contradiction. Hence (4) holds for some $k \in \mathbb{N}$.

Now for a general element $x = \{x_i\}_{i=1}^{\infty} \in d_0(w, M)$, choose $m \in \mathbb{N}$ such that

$$\|\{x_i\}\| = \|\{x_i^*\}\| \le \eta_m \|(x_1^*, \dots, x_m^*, 0, 0, \dots)\|.$$

Since $\lim_{k\to\infty} \eta_k \|(x_1^*,\ldots,x_k^*,0,0,\ldots)\| = \|\{x_i\}\|$ by Claim 6.3 the supremum in (3) is attained at some $j\in\mathbb{N}$. Choose $i\in\mathbb{N}$ so that $\{x_1^*,\ldots,x_j^*\}\subset\{|x_1|,\ldots,|x_i|\}$, then

$$|||(x_1,\ldots,x_i,0,0,\ldots)||| \ge \eta_j ||(x_1^*,\ldots,x_i^*,0,0,\ldots)|| = |||\{x_n\}|||.$$

Since the reverse inequality $|||\{x_n\}||| \ge |||(x_1, \dots, x_i, 0, 0, \dots)|||$ is obvious it follows that

$$|||\{x_n\}||| = |||(x_1, \dots, x_i, 0, 0, \dots)|||.$$

Corollary 6.1. Let M be a non-degenerate Orlicz function, such that there exists a finite number $\lambda > 1$ satisfying

$$\lim_{t \to 0} \frac{M(\lambda t)}{M(t)} = \infty.$$

Then $d_0(w, M)$ admits an equivalent analytic norm, it is c_0 -saturated and it has a separable dual.

Proposition 6.2. Let M be a non-degenerate Orlicz function. Suppose there exists a sequence $\{t_n\}_{n=1}^{\infty}$ decreasing to 0 such that

$$\sup_{n\in\mathbb{N}}\frac{M(Kt_n)}{M(t_n)}<\infty$$

for all $K < \infty$. Then $d_0(w, M)$ is not isomorphically polyhedral.

Proof. Suppose the contrary i.e. $d_0(w,M)$ is isomorphically polyhedral. According to Theorem 1 one can obtain an equivalent norm $|||\cdot|||$ on $d_0(w,M)$ as prescribed by part b). Fix $\alpha > 0$ so that $|||x||| \le \alpha$ implies $||x|| \le 1$. Choose an arbitrary sequence $\eta_k \searrow 1$. Let

$$n_1 = \min\{n \in \mathbb{N} : \eta_1 | ||t_n e_1||| \le \alpha\}.$$

If $n_1 \leq n_2 \leq \ldots \leq n_k$ are chosen so that $\eta_i \left| \left| \left| \sum_{j=1}^i t_{n_j} e_j \right| \right| \right| \leq \alpha$, for every $i = 1, 2, \ldots, k$, then by $\eta_{k+1} < \eta_k$ it follows that $\eta_{k+1} \left| \left| \left| \left| \sum_{j=1}^k t_{n_j} e_j \right| \right| \right| < \alpha$. Hence $\left\{ n \geq n_k : \eta_{k+1} \left| \left| \left| \sum_{j=1}^k t_{n_j} e_j + t_n e_{k+1} \right| \right| \right| < \alpha \right\} \neq \emptyset$. Now define

(7)
$$n_{k+1} = \min \left\{ n \ge n_k : \eta_{k+1} \left\| \left| \sum_{j=1}^k t_{n_j} e_j + t_n e_{k+1} \right| \right\| \le \alpha \right\}.$$

This inductively defines a nondecreasing sequence of naturals $\{n_k\}_{k=1}^{\infty}$, such that

(8)
$$\eta_k \left\| \left| \sum_{j=1}^k t_{n_j} e_j \right| \right\| \le \alpha$$

for every $k \in \mathbb{N}$, fulfilling the minimality condition (7). In particular $\left|\left|\left|\sum_{j=1}^{k}t_{n_{j}}e_{j}\right|\right|\right| \leq \alpha$. Therefore $\left|\left|\sum_{j=1}^{k}t_{n_{j}}e_{j}\right|\right| \leq 1$, i.e. $\sum_{j=1}^{k}w_{j}M(t_{n_{j}}) \leq 1$ holds for every $k \in \mathbb{N}$.

For any $\lambda < \infty$ and for any $k \in \mathbb{N}$ the chain of inequalities

$$\sum_{j=1}^{k} w_j M(\lambda t_{n_j}) = \sum_{j=1}^{k} w_j \frac{M(\lambda t_{n_j})}{M(t_{n_j})} M(t_{n_j}) \le$$

$$\le \sup_{m \in \mathbb{N}} \frac{M(\lambda t_m)}{M(t_m)} \sum_{j=1}^{k} w_j M(t_{n_j}) \le \sup_{m \in \mathbb{N}} \frac{M(\lambda t_m)}{M(t_m)} < \infty$$

holds. Hence $x = \sum_{j=1}^{\infty} t_{n_j} e_j \in d_0(w, M)$. Clearly

$$|||x||| = \lim_{k \to \infty} \left| \left| \left| \sum_{j=1}^k t_{n_j} e_j \right| \right| \right| \le \alpha.$$

Claim 6.4. $|||x||| = \alpha$.

PROOF OF CLAIM 6.4: Suppose otherwise i.e. $|||x||| = \beta < \alpha$ for some β . Since $\{e_n\}_{n=1}^{\infty}$ is a monotone basis with respect to $|||\cdot|||$ we get $|||\sum_{j=1}^{k} t_{n_j} e_j||| \le \beta < \alpha$ for every $k \in \mathbb{N}$.

By $x = \sum_{j=1}^{\infty} t_{n_j} e_j \in d_0(w, M)$ it follows that $t_{n_j} \setminus 0$. We can choose $i_0 \in \mathbb{N}$ such that $|||t_{n_{i_0}} e_j||| \leq \alpha - \beta$ holds for every $j \in \mathbb{N}$. Then by the minimality condition (7) and the inequalities:

$$\left| \left| \left| \sum_{j=1}^{i_0} t_{n_j} e_j + t_{n_{i_0}} e_{i_0+1} \right| \right| \le \left| \left| \left| \sum_{j=1}^{i_0} t_{n_j} e_j \right| \right| + \left| \left| \left| t_{n_{i_0}} e_{i_0+1} \right| \right| \right| \le \beta + \alpha - \beta = \alpha$$

it follows that $n_{i_0+1}=n_{i_0}$. Similarly $n_j=n_{i_0}$ for all $j\geq i_0$ which contradicts with the convergence of $x=\sum_{j=1}^\infty t_{n_j}e_j\in d_0(w,M)$.

Now by Claim 6.4 and (8) the inequalities

$$|||x||| = \alpha \ge \eta_k \left| \left| \left| \sum_{j=1}^k t_{n_j} e_j \right| \right| > \left| \left| \sum_{j=1}^k t_{n_j} e_j \right| \right| \right|$$

hold for every $k \in \mathbb{N}$, which is a contradiction with the choice of the norm $||| \cdot |||$.

Remark: Using the construction of Orlicz functions from [11] (Proposition 7, Theorem 8) we get that there exists an Orlicz–Lorentz sequence space $d_0(w, M)$, with generating Orlicz function $M \notin \Delta_2(0)$, which is not isomorphically polyhedral and therefore without any equivalent analytic norm.

References

- [1] R. Deville, V. Fonf, P. Hájek. Analytic and polyhedral approximation of convex bodies in separable polyhedral Banach space. *Israel J. Math.*, **105** (1998), 139-154.
- [2] Neil Dew, Asymptotic structure of banach spaces, PhD Thesis (St. john,s College University of Oxford) 2002.
- [3] V. Fonf, On property of Lindenstrauss-Phelps spaces Func. Anal. Appl., 13 (1979), 79–80.
- [4] V. Fonf, Some properties of polyhedral Banach spaces Funkts. Anal. Prilozhen, 14 (1980), 89–90.
- [5] V. Fonf, Polyhedral Banach spaces Matematicheskie Zametki, 30 (1981), 627–634.
- [6] V. Fonf, Weakly extremely properties of Banach spaces *Math. Notes. Acad. Sci. USSR*, **45** (1989), 488–494.
- [7] R. Gonzalo. Upper and lower estimates in Banach sequence spaces. Comment Math. Univ. Carolinae, **36** (1995), 321-341.
- [8] P. HÁJEK, S. TROYANSKI. Analytic norms in Orlicz spaces. Proc. Amer. Math. Soc., 129 (2000), 713-717.
- [9] A. Kaminska, Y. Raynaud, Isomorphic ℓ^p -subspaces in Orlicz-Lorentz sequence spaces, Proc. American Math. Soc. **134** (2006), 2317–2327.

- [10] V. Klee, Polyhedral sections of convex bodies Acta Math., 4 (1966), 235–242.
- [11] D. Leung, Some isomorphically polyhedral Orlicz sequence spaces *Israel J. Math.*, **87** (1994), 117-128.
- [12] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach spaces I, Sequence spaces, Springer-Verlag, Berlin, 1977

Department of Mathematics and Informatics Plovdiv University, 24 "Tzar Assen" str. Plovdiv, 4000 Bulgaria Received 16 January 2009

ВЪРХУ ЕКВИВАЛЕНТНИ АНАЛИТИЧНИ НОРМИ В РЕДИЧНИ ПРОСТРАНСТВА НА ОРЛИЧ-ЛОРЕНЦ

Б. Златанов

Резюме. Доказли сме, че ако пораждащата функция на Орлич M не удовлетворява Δ_2 -условието в нулата, тогава съществуването на еквивалентна аналитична норма в редичното пространство на Орлич-Лоренц $d_0(w,M)$ е еквивалентно на това $d_0(w,M)$ да е изоморфно полиедрално. Показали сме, че ако $\lim_{t\to 0} \frac{M(\lambda t)}{M(t)} = \infty$ за някое $\lambda>1$, тогава редичното пространство на Орлич-Лоренц $d_0(w,M)$ е изоморфно полиедрално банахово пространство и следователно в него съществува еквивалентна аналитична норма, то е наситено с c_0 и спрегнатото му пространство е сепарабелно. Направили сме пълна характеризация на редичните пространства на Орлич-Лоренц, които са наситени с c_0 .