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ON EQUIVALENT ANALYTIC NORMS
IN ORLICZ-LORENTZ SEQUENCE SPACES !

B. Zlatanov

Abstract. We prove that if the generating Orlicz function M has not
As—condition at zero, then the existence of an equivalent analytic norm
in the orlicz—Lorentz sequence space do(w, M) is equivalent to do(w, M)
to be isomorphically polyhedral. We show that if lim:—,¢ % = oo for
some A > 1 then the Orlicz—Lorentz sequence space do(w, M) is isomor-
phic to a polyhedral Banach space and therefore it admits an equivalent
analytic norm, it is co—saturated and it has a separable dual. We char-
acterize all the cp—saturated Orlicz—Lorentz sequence spaces.
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1. Introduction

The notion of polyhedral Banach spaces was introduced in [10]. A Ba-
nach space is called polyhedral if the unit ball of each of its finite dimensional
subspaces is a polyhedron, i.e. it has finitely many extreme points. A Banach
space is called isomorphically polyhedral if it is isomorphic to a polyhedral Ba-
nach space. Fundamental results about polyhedral Banach spaces can be found
in [3] and [5]. Isomorphically polyhedral Banach spaces are ¢y [6], the spaces
C(a) for any ordinal « [4]. The Orlicz sequence space hjs is isomorphically

MO

polyhedral if lim o 575" = oo for some A > 1 [11]. The Musielak—Orlicz
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sequence spaces he is isomorphically polyhedral if he is stabilized asymptotic
ls with respect to the unit vector basis [2].

Recall that a Banach space is co—saturated if every closed infinite dimen-
sional subspace contains a subspace which is isomorphic to ¢y. It is shown
[4] that any separable isomorphically polyhedral Banach space is co—saturated
and has a separable dual. Thus the Orlicz and Musielak—Orlicz sequence spaces
mentioned above are cyp—saturated.

Using the ideas of [11] we find a sufficient condition for the Orlicz—Lorentz
sequence spaces do(w, M) to be isomorphically polyhedral and we characterize
all the cp—saturated Orlicz—Lorentz sequence spaces.

It is well known that any separable, isomorphically polyhedral Banach
space admits an equivalent analytic norm [1]. A general result for a Banach
space with an equivalent analytic norm to be isomorphically polyhedral is ob-
tained in [8]. This result is applied in the same article to show that for a wide
class of Orlicz spaces hj; the existence of an equivalent analytic norm is equiv-
alent to hjs to be isomorphically polyhedral. It turns out that this general
result can be applied in Orlicz—Lorentz sequence spaces to investigate the same
problem as well.

2. Preliminaries

A standard Banach space terminology can be found in [12].

Let us recall that an Orlicz function M is an even, continuous, nondecreas-
ing, convex function defined for ¢ > 0 such that M (0) = 0 and lim; o, M (t) =
oco. We say that M is non—degenerate Orlicz function if M(t) > 0 for every
t>0.

The Orlicz function M is said to have the property Ao at zero if there is a
constant C' > 0 such that M (2t) < CM(t) for every t € [0, o] for some tg > 0
and we write M € A»(0).

To every Orlicz function M the following numbers are associated ([12],

p.143):
>0 M(uw)
ayp = su Dosup — = < 00
M PSP 0<u,£§1M(U)U” ,

M (uv)
= inf ¢ inf ———~% .
Fu =in {q >0 0<uw<1 M (u)ve ” 0}
It is easy to see that 1 < aps < By < oo, A well known fact is that M € A, (0)
iff By < 0.
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For a given Orlicz function M and a € (0,400), let M, be the function M

Mat

scaled at a, defined by M, = M(((Z))
[0, 4+00) into [0, +00)

. The following sets of functions mapping

E?V[)A ={M,:0<a<A}, Cupa= convE?V[,A, Cr =Nas0Cwm,a

will be needed in the sequel [9], [12].

The Orlicz sequence space £jy, generated by an Orlicz function M is the
set of all real sequences x = {z;}52, such that Y .=, M(Az;) < oo for some
A > 0. The Luxemburg norm is defined by

. o zi
||m||M:1nf{/\>0.iz_;M(>\>§1}.

We denote by hj the closed linear subspace of £, generated by all € £,
such that >~ M(Az;) < oo for every A > 0. If M(¢t) = t*, p > 1 we get the

space £p,.
An extensive study of Orlicz spaces can be found in [12].
Let w = {w;}2, be a positive decreasing sequence such that w; = 1,

lim; oo w; = 0 and lim,, .o, W(n) = oo, where W(n) = > I, w; for every
n € N. The Orlicz-Lorentz sequence space d(w, M) consists of all bounded
real sequences x = {x;}$2; such that for some A > 0 holds I(Az) < oo, where

I(z) = szM(!Cf) = sup {Z w; M () : ™ is an injection N — N} ,
i=1 i=1

and z* = {xf}5°, is the decreasing rearrangement of |z| = {|x,|}22;. The

space d(w, M) equipped with the Luxemburg norm
1) |2l dquwar) = nf{A > 0: I(a/A) <1}

is a Banach space [9)].

Notice that the assumption lim,, ., W(n) = oo yields that d(w, M) < ¢y,
where by Y < X we will denote that Y is isomorphic to a subspace of X.

We denote by do(w, M) the closure of all finitely supported sequences in
d(w, M).

The next proposition from [9] shows that the space d(w, M) has much in
common with £p;.
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Proposition 2.1. ([9]) I) The subspace do(w, M) coincides with the set
of all sequences x = {x;}32, such that for every A > 0 holds I(Ax) < oc.
Moreover, the sequence of the unit vectors {e;}{2, is a symmetric basis in
do (w, M) .

II) The following assertions are equivalent:

i) The Orlicz function M satisfies the As—condition;

ii) the unit vectors {e;}$2, form a boundedly complete basis in do(w, M);
iii) do(w, M) = d(w, M );

iv) do(w, M) does not contain a closed subspace isomorphic to cg.

If M(t) =17, 1 <p < oo, then d(w, M) = d(w, p) is the Lorentz sequence
space. If w; = 1 for every i € N, then d(w, M) is the Orlicz sequence space £y
and h]\/[ = do(w,M).

The symbol e; will stand for the unit vectors in do(w, M).

We say that two basic sequences {x;}52; and {y;}52, in the Banach spaces
(X, |- lx) and (Y,] - [|ly) respectively are C—equivalent, whenever for any real
sequence {a;}$2; we have

o0 oo oo
E 072 ; g a;Yi E a;T;
i=1 i=1 i=1

The basic sequences {x;}5°; and {y;}2, are said to be almost isometrically
equivalent if for all k € N the tails {z;}5°, and {y;}22, are (1+¢ey)—equivalent,
for some positive sequence{ey }° ;, such that limy_o ex = 0.

Deep results concerning the embedding of £, spaces into Orlicz-Lorentz
sequence spaces are obtained in [9]. It is shown there that in any infinite
dimensional subspace X of do(w, M) there is an almost isometrically equivalent
copy either of ¢y or to some Orlicz sequence space hy, for some ¢ € Cyy.
Moreover it is shown in [9] that the same result as like as for Orlicz sequence
spaces hold for the embedding of the ¢, spaces i.e. £, — do(w,M) iff p €
[oar, B

< <C

Y

1
c

X X

If {v,}52, is a basis of a Banach space (X,| - ||), and ||| - ||| is a norm
equivalent to the given norm || - ||. We say that {v,}52; is monotone with
respect to ||| - ||| if

k+1

k
§ ApUn § AnUn
n=1 n=1

for every real sequence a = {a,, }2>; and for all k € N.

<
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Theorem 1. ([11]) Let {v,}52, be a shrinking basis of a Banach space
(X, |- 1I). The following are equivalent:
a) X is isomorphically polyhedral.

b) There exists an equivalent norm |||-]|| on X such that {v, }22 ; is a monotone
basis with respect to ||| - |||, and for all Y7, a,v, € X, there exists m € N
such that

00 m
g AnUn g AnUn
n=1 n=1

By the Remark following Theorem 1 in [11] it follows that Theorem 1 holds
also if the shrinking basis is replaced by an unconditional one.
According to a result from [1] we have the following

Theorem 2. ([1]) Every separable isomorphically polyhedral Banach space
X admits an equivalent analytic norm.

Definition 2.1. Let U be an open, convex and bounded subset of a Banach
space X, f be a real function on U. We say that f is weakly sequentially
continuous (wsc) if it maps weakly Cauchy sequences from U into convergent
ones.

The next theorem, obtained in [8] gives a sufficient condition so that Ba-
nach spaces with an equivalent analytic norm to be isomorphically polyhedral.

Theorem 3. ([8]) Let (X, ||-||) be a Banach space, where ||-|| is an analytic
norm. If all polynomials on X are wsc, then X is separable and isomorphically
polyhedral.

Let us recall that a Banach space X with an unconditional basis is said to
satisfy an upper p—estimate, p > 1, if for some constant C' > 0 holds

n n 1/11
S <c (z uuz-up) |
i=1 =1

whenever u; are disjointly supported in X.
We finish the preliminaries with the following

Lemma 2.1. ([7], [8]) Let X be a Banach space with an unconditional
basis satisfying an upper p—estimate. Then all polynomials of degree n < p on
X are wsc.
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3. Main Result

Theorem 4. Let M be an Orlicz function without As—condition at zero.
Then the Orlicz—Lorentz sequence spaces do(w, M) admits an equivalent ana-
Iytic norm iff it is isomorphically polyhedral.

4. Auxiliary Results

The next Proposition shows that results as like as the results obtained in
[11] hold for characterizing the co—saturated Orlicz—Lorentz sequence spaces.

Proposition 4.1. Let M be a non-degenerate Orlicz function, then the
following are equivalent:
a) do(w, M) is co—saturated;
b) do(w, M) does not contain an isomorphic copy of ¢,, for any p € [1,00);
¢) for all q € [1,+00) holds

M (uv) <
sup ————— < 00.
O<u,§§1 M (u)v?

Proof. Clearly a) implies b).

Let now b) holds, but a) fails, then there exists an infinite dimensional
closed subspace Y of dy(w, M), which contains no isomorphic copy of ¢g. Ac-
cording to [9] Y has a subspace Z, which is almost isometrically equivalent
either to ¢y or to hy for some 1 € Chs. As Y does not contain an isomorphic
copy of ¢y, the Z is almost isometrically equivalent to hy. By the assumption
that ¥ has no an isomorphic copy of ¢y and by [12](Theorem 4.a.9) it follows
that hy contains an isomorphic copy of ¢, for some p € [1,00), which is a
contradiction.

Let now b) holds i.e. there is no isomorphic copy of ¢, in do(w, M) for
any p € [1,00). According to [9] ¢, — do(w, M) iff p € [an, Bm]. Therefore
apy = oo and thus for any ¢ € [1,00) the inequality supg.,, ,<1 % < 00
holds.

Let ¢) holds. Then ap = By = oo. Let Y be an arbitrary infinite
dimensional subspace of do(w, M). According to [9] Y has a subspace Z, which
is almost isometrically equivalent either to ¢y or to hy for some function v €
Cyr. If Z is almost isometrically equivalent to ¢g, then there is an isomorphic
copy of ¢g in Y. Let suppose that Z is not almost isometrically equivalent to
co, then Z is almost isometrically equivalent to hy for some function i € Cy.
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It is easy to see that ay = 0o, because Cpy € Ciy,1 and for every ¢ € Cyy1 it
is easy to show, that [ay,, B,] C [anr, Bar]. Consequently co — hy — Y. O
The next Lemma will be needed in the sequel in order to apply Theorem 3.
Lemma 4.1. Let M be an Orlicz function. If sup M < o0, for
0<u,v<1 UPM(U)
some p > 1, then the Orlicz—Lorentz sequence spaces do(w, M) has an upper
p—estimate.

M (uv)
Proof. Let su —_—
0<u,£)§1 uP M (v)

Cy > 1. Let {Ag}r_,, Ay € N, A; N Ap = 0, for every j # k. Denote by
ap = |Ag]and S = >} _, ay. If ap = 400 for some k = 1,...,n, then S = +oo.
Let ug = > ;e 4, i€is k=1,...,n. Let {z},;}:E, be a decreasing rearrangement

< (7 < co. WLOG we may assume that

of the sequence {|z;|}ica,, for every k = 1,2,...,n and {z}}7_, be a decreasing
rearrangement of the sequence {{|x;|}ica, }1_;-
By the definition of the Luxemburg norm in dgo(w, M) we have

n S %

x:
g w;|| =inf{ A >0: g w M|+ <1 and
i=1 { i=1 ( A ) }

. 2k €Ty
lugl = mf{)\ >0: szM (/(”) < 1}

i=1

for every kK = 1,2,...,n. Therefore by the chain of the inequalities

|~

S * n  ag :L'*”uk”
> i 1 <S> wn b
=1

?(Sialwle)” ) == el (S i)

=

n ag ag

T lusll ) . — " el ) —
S e Yl
i=1 i=1

we get that ||Y 0wl <C (kL [ui|[?)"/?, where C' = cir O
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Proposition 4.2. The Orlicz—Lorentz sequence space do(w, M) is sepa-
rable.

Proof. Indeed according to Proposition 2.1 the unit vectors {e;}$2; is
a Schauder basis in do(w, M) and therefore the set M = {31 pe; : p; € Q,
n € N} is a countable dense set in do(w, M). O

5. Proof of Main Result

Proof. If do(w, M) is isomorphically polyhedral, then according to The-
orem 2 and Proposition 4.2 it admits an equivalent analytic norm.

Let now M ¢ Ag(0) and let there exists an equivalent analytic norm
in do(w,M). According to [9] £, — do(w,M) iff p € [am,Sum], therefore
apyr = By = +00. By Lemma 4.1 do(w, M) has an upper p—estimate for every
p > 1 and finally according to Theorem 3 we get that do(w, M) is isomorphically
polyhedral. O

Remark: A natural question arises to characterize the Orlicz—Lorentz
sequence spaces do(w, M), which admit an equivalent analytic norm as like
as it was done in [8]. Let us mention that if M € Ay(0) and there exists
an equivalent analytic norm in do(w, M), then according to [9] we get that
ay = Py € {2n}neN U {—‘rOO}

6. A class of Orlicz—Lorentz sequence spaces do(w, M),
that admit an equivalent analytic norm

Proposition 6.1. Let M be a non—degenerate Orlicz function, such that
there exists a finite number \ > 1 satisfying

M(A)
@) )

Then do(w, M) is isomorphically polyhedral.
Proof. For all k € N let define:

, M(At) . 1
=infq ——~: <M — ;.
et {0 << (g )
By (2) and the fact that limg_.o. W(k) = oo it follows that {bx}32, is an

increasing sequence and limy_, o, by = co. Thus there exists a sequence {nx }3
such that n, \, 1 and n; > 1_%

bt
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For x = {x,}52 € do(w, M) define a norm ||| - ||| in do(w, M) by
(3) I{zn [l = Sl;pnk”(wy{vx;v' 5 25,0,0,. )]
where || - || is the Luxemburg’s norm in do(w, M).

Claim 6.1. The norm ||| - ||| is an equivalent to the Luxemburg norm in
do(w,M).

PRrOOF OF CLAIM 6.1: The proof follows by the inequalities:

[I{en [l = supnell(21, ., 22,0, 0,.. ) < mll{zn}]

and
[[[{zn HI| =Sl;pnkl\(w’f7-~-,w27070,---)II > Sl;pl\(x’ﬂ-~-,$Z,070,---)|| > [{zn -

O

Claim 6.2. The unit vector basis {e;}$2, is a monotone basis in do(w, M)
with respect to ||| - ||.

PROOF OF CLAIM 6.2: Let {z,}22; be an arbitrary real sequence and
k € N be an arbitrary chosen. We need to show that
k+1

k
g Ti€q E €Ti€;
i=1 i=1

Let denote by {a;}¥_, the decreasing rearrangement of the set {|z;|}%_, and
by {b;}7*! the decreasing rearrangement of the set {|z;|}**!. Tt is easy to see
that b; > a; for every i =1,...,k. Thus

k
E Ti€q
i=1

<

= sup nifl(ar,...,a;,0..)] < supkmll(bl,---,bi,O---)ll
=1,...,

=1,k i
k41
< sup m||(b1,...,bi,0...)||: inei
i=1,...,k+1 Py
O
To finish the proof of the theorem it suffices to show that ||| - ||| satisfies

the condition b) in Theorem 1.
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Claim 6.3. For any positive decreasing sequence x = {z;}32, € do(w, M)
there is k € N such that

(4) 1] < nell(z1, 22, .., 2£,0,0,...)].

PROOF OF CLAIM 6.3: Assume otherwise i.e. for any k& € N the inequality
(4) does not hold. WLOG we may assume that ||z|| = 1. Then

k

(6) > wiM(nr;) < 1

i=1

holds for every k € N. Notice that by the fact that {z;}3°, is a decreasing se-
quence and 7y, > 1 it follows from inequality (6) that ), € [0, M~ (1/W (k))].

By the fact that {e;}$°, is a basis in do(w, M) it follows that there exists
m € N such that [|(0,...,0,Zm, Timi1,-. )| < 1/Aie. S0 wiM(Azmpio1) <
1.

M(Az;
For any i € N, ¢ > m the inequality 1\4(( x)) > b,, holds. Now we can
x
write the chain of inequalities:
00 m—1 o)
i=1 i=1 i=m
1 m—1 1 0o
< ; Z wi M (N —174) + . Z w; M (Az;)
m=l oy ™ i—m
1 e
S + — wlM()\meﬂ,l)
MNm—1 bm i—1
1 1
< + — <1
nm—l bm
which is a contradiction. Hence (4) holds for some k € N. O

Now for a general element = = {z;}2, € do(w, M), choose m € N such
that

”{'xl}ll = ||{$;k}|| < nmu(xiv"'7x:n70707"')||'
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Since limg_00 k|| (27, ..., 2%,0,0,...)|| = [[{z:}|| by Claim 6.3 the supremum
in (3) is attained at some j € N. Choose i € N so that {z7,...,27} C
{lz1],- -, |xs|}, then

|||(x1,...7.’L‘¢70,0,...)H‘ > nj”(l'xl(v""x;vo’o"“)H = |||{xn}|||
Since the reverse inequality ||{zn}]|| > |||(z1,--.,2:,0,0,...)||| is obvious it
follows that
zn Il = [ll(z1s s 246,0,0, -
O

Corollary 6.1. Let M be a non—degenerate Orlicz function, such that
there exists a finite number X > 1 satisfying

M(\t)
0 M(1)

Then do(w, M) admits an equivalent analytic norm, it is co—saturated and it
has a separable dual.

Proposition 6.2. Let M be a non-degenerate Orlicz function. Suppose

there exists a sequence {t,}52 , decreasing to 0 such that

oup MUEL)
nEII\)I M(tn)

for all K < oo. Then do(w, M) is not isomorphically polyhedral.

Proof. Suppose the contrary i.e. do(w, M) is isomorphically polyhedral.
According to Theorem 1 one can obtain an equivalent norm ||| - ||| on do(w, M)
as prescribed by part b). Fix a > 0 so that |||z||| < a implies ||z|| < 1. Choose
an arbitrary sequence n; \, 1. Let

n1 = min{n € N : ni|||tne1]|] < a}.
‘Zz‘:l t’ﬂjej
i=1,2,...,k, then by nr11 < ng it follows that 741 H‘Zle tnjejm < o.

Hence {n > Nt Nt H’Zle tn, €5 + tn@k—&-lm < a} #0.
Now define

If ny < ng < ... < nyg are chosen so that n;

‘ < a, for every

k

(M) Npr1 = Min ¢ 1 > Nk & N1 Ztn].ej + tneral|| < a
i=1
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This inductively defines a nondecreasing sequence of naturals {ng}%2,, such
that

k
(8) M ||| tnyes]|| < @
j=1

for every k € N, fulfilling the minimality condition (7). In particular
H‘Zle t"jejw < «. Therefore HZ?:l tnjejH <1, ie. Z§=1 wiM(t,,) <1

holds for every k € N.
For any A < oo and for any k& € N the chain of inequalities

k k
> wsMO,) =Y WWM@M) <

holds. Hence z = 3 2% t,,, e; € do(w, M). Clearly

k
lzll] = lim 11> to,e5 (] < o
j=1

Claim 6.4. |||z||| = a.
PRrROOF OF CLAIM 6.4: Suppose otherwise i.e. |||z]|| = 8 < a for some g.
Since {e,, }52; is a monotone basis with respect to |||-||| we get ‘Z?:l tn;€; ‘ ’ ’ <

B < a for every k € N.

By =z = Z;; tn;e5 € do(w, M) it follows that t,, \, 0. We can choose
io € N such that [[|t,, e;]|| < a — § holds for every j € N. Then by the
minimality condition (7) and the inequalities:

10 0
Ztnjej +lngy Cigr1 ||| = anjej + [[tn, €iot1lll S B+a—-B=a
j=1 =1

it follows that n;,41 = n;,. Similarly n; = n;, for all 7 > iy which contradicts
with the convergence of x = 3272, 1, ¢; € do(w, M). O
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Now by Claim 6.4 and (8) the inequalities

k k
el = 2 e |||ty s | > |[|35 e
j=1

=1

hold for every k € N, which is a contradiction with the choice of the norm
[T 11]- O

Remark: Using the construction of Orlicz functions from [11] (Proposi-

tion 7, Theorem 8) we get that there exists an Orlicz—Lorentz sequence space
do(w, M), with generating Orlicz function M ¢ A5(0), which is not isomorphi-
cally polyhedral and therefore without any equivalent analytic norm.
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BBbPXY EKBUBAJIEHTHU AHAJINTNYHN HOPMU B
PEJNYHU ITPOCTPAHCTBA HA OPJINY-JIOPEHI]

B. 3maranos

Pesrome. [lokaziu cme, ye ako nopaxkjamara yHkmus #Ha Opsma M
HE yJIOBJIETBOPsABa Ag—yCJIOBHETO B HyJIaTa, TOraBa ChIIECTBYBAHETO Ha €KBHU-
BAJICHTHA AHAJMTHYIHA HOPMA B PEIUIHOTO IpocTpancTso Ha Oprma—Jlopen
do(w, M) e ekBusasenTuo ua ToBa do(w, M) na e u30MOPGHO LOJIUEIPATHO.

; M) _
ITokazanu cme, ge ako lim;_q M(py — OO 3a HiKoe A > 1, ToraBa peauIHOTO

upocrpanctso uHa Opima—Jlopenn do(w, M) e uzomopdHo nosmeapanno Gana-
XOBO IIPOCTPAHCTBO U CJIEJOBATEHO B HEIO CHINECTBYBA €KBUBAJCHTHA aHAJIM-
TWYHA HOPMA, TO € HACUTEHO C ¢y M CIPErHATOTO My IPOCTPAHCTEO € Cernapa-
6esro. Hampasuim cMme I'bJiHA XapaKTepu3alys Ha PEJIUIHATE TPOCTPAHCTBA
Ha Opsma—JIopeHIr, KOUTO ca HACUTEHH C Cg.
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