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Abstract. We prove that if the generating Orlicz function M has not
∆2–condition at zero, then the existence of an equivalent analytic norm
in the orlicz–Lorentz sequence space d0(w, M) is equivalent to d0(w, M)

to be isomorphically polyhedral. We show that if limt→0
M(λt)
M(t)

= ∞ for

some λ > 1 then the Orlicz–Lorentz sequence space d0(w, M) is isomor-
phic to a polyhedral Banach space and therefore it admits an equivalent
analytic norm, it is c0–saturated and it has a separable dual. We char-
acterize all the c0–saturated Orlicz–Lorentz sequence spaces.
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1. Introduction

The notion of polyhedral Banach spaces was introduced in [10]. A Ba-
nach space is called polyhedral if the unit ball of each of its finite dimensional
subspaces is a polyhedron, i.e. it has finitely many extreme points. A Banach
space is called isomorphically polyhedral if it is isomorphic to a polyhedral Ba-
nach space. Fundamental results about polyhedral Banach spaces can be found
in [3] and [5]. Isomorphically polyhedral Banach spaces are c0 [6], the spaces
C(α) for any ordinal α [4]. The Orlicz sequence space hM is isomorphically
polyhedral if limt→0

M(λt)
M(t) = ∞ for some λ > 1 [11]. The Musielak–Orlicz

1Research is partially supported by National Fund for Scientific Research of the Bulgarian
Ministry of Education and Science, Contract MM-1401/04.
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sequence spaces hΦ is isomorphically polyhedral if hΦ is stabilized asymptotic
`∞ with respect to the unit vector basis [2].

Recall that a Banach space is c0–saturated if every closed infinite dimen-
sional subspace contains a subspace which is isomorphic to c0. It is shown
[4] that any separable isomorphically polyhedral Banach space is c0–saturated
and has a separable dual. Thus the Orlicz and Musielak–Orlicz sequence spaces
mentioned above are c0–saturated.

Using the ideas of [11] we find a sufficient condition for the Orlicz–Lorentz
sequence spaces d0(w, M) to be isomorphically polyhedral and we characterize
all the c0–saturated Orlicz–Lorentz sequence spaces.

It is well known that any separable, isomorphically polyhedral Banach
space admits an equivalent analytic norm [1]. A general result for a Banach
space with an equivalent analytic norm to be isomorphically polyhedral is ob-
tained in [8]. This result is applied in the same article to show that for a wide
class of Orlicz spaces hM the existence of an equivalent analytic norm is equiv-
alent to hM to be isomorphically polyhedral. It turns out that this general
result can be applied in Orlicz–Lorentz sequence spaces to investigate the same
problem as well.

2. Preliminaries

A standard Banach space terminology can be found in [12].
Let us recall that an Orlicz function M is an even, continuous, nondecreas-

ing, convex function defined for t ≥ 0 such that M(0) = 0 and limt→∞M(t) =
∞. We say that M is non–degenerate Orlicz function if M(t) > 0 for every
t > 0.

The Orlicz function M is said to have the property ∆2 at zero if there is a
constant C > 0 such that M(2t) ≤ CM(t) for every t ∈ [0, t0] for some t0 > 0
and we write M ∈ ∆2(0).

To every Orlicz function M the following numbers are associated ([12],
p.143):

αM = sup
{

p > 0 : sup
0<u,v≤1

M(uv)
M(u)vp

< ∞
}

,

βM = inf
{

q > 0 : inf
0<u,v≤1

M(uv)
M(u)vq

> 0
}

.

It is easy to see that 1 ≤ αM ≤ βM ≤ ∞. A well known fact is that M ∈ ∆2(0)
iff βM < ∞.
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For a given Orlicz function M and a ∈ (0,+∞), let Ma be the function M

scaled at a, defined by Ma =
M(at)
M(a)

. The following sets of functions mapping

[0,+∞) into [0,+∞)

E0
M,A = {Ma : 0 < a < A}, CM,A = convE0

M,A, CM = ∩A>0CM,A

will be needed in the sequel [9], [12].
The Orlicz sequence space `M , generated by an Orlicz function M is the

set of all real sequences x = {xi}∞i=1 such that
∑∞

i=1 M(λxi) < ∞ for some
λ > 0. The Luxemburg norm is defined by

‖x‖M = inf

{
λ > 0 :

∞∑

i=1

M
(xi

λ

)
≤ 1

}
.

We denote by hM the closed linear subspace of `M , generated by all x ∈ `M ,
such that

∑∞
i=1 M(λxi) < ∞ for every λ > 0. If M(t) = tp, p ≥ 1 we get the

space `p.
An extensive study of Orlicz spaces can be found in [12].
Let w = {wi}∞i=1 be a positive decreasing sequence such that w1 = 1,

limi→∞ wi = 0 and limn→∞W (n) = ∞, where W (n) =
∑n

i=1 wi for every
n ∈ N. The Orlicz–Lorentz sequence space d(w,M) consists of all bounded
real sequences x = {xi}∞i=1 such that for some λ > 0 holds I(λx) < ∞, where

I(x) =
∞∑

i=1

wiM(x∗i ) = sup

{ ∞∑

i=1

wiM(xπ(i)) : π is an injection N→ N
}

,

and x∗ = {x∗i }∞i=1 is the decreasing rearrangement of |x| = {|xn|}∞n=1. The
space d(w,M) equipped with the Luxemburg norm

(1) ‖x‖d(w,M) = inf{λ > 0 : I(x/λ) ≤ 1}

is a Banach space [9].
Notice that the assumption limn→∞W (n) = ∞ yields that d(w,M) ↪→ c0,

where by Y ↪→ X we will denote that Y is isomorphic to a subspace of X.
We denote by d0(w, M) the closure of all finitely supported sequences in

d(w, M).
The next proposition from [9] shows that the space d(w, M) has much in

common with `M .
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Proposition 2.1. ([9]) I) The subspace d0(w,M) coincides with the set
of all sequences x = {xi}∞i=1 such that for every λ > 0 holds I(λx) < ∞.
Moreover, the sequence of the unit vectors {ei}∞i=1 is a symmetric basis in
d0(w, M).
II) The following assertions are equivalent:
i) The Orlicz function M satisfies the ∆2–condition;
ii) the unit vectors {ei}∞i=1 form a boundedly complete basis in d0(w,M);
iii) d0(w,M) = d(w, M);
iv) d0(w, M) does not contain a closed subspace isomorphic to c0.

If M(t) = tp, 1 ≤ p < ∞, then d(w,M) = d(w, p) is the Lorentz sequence
space. If wi = 1 for every i ∈ N, then d(w, M) is the Orlicz sequence space `M

and hM = d0(w,M).
The symbol ei will stand for the unit vectors in d0(w, M).
We say that two basic sequences {xi}∞i=1 and {yi}∞i=1 in the Banach spaces

(X, ‖ · ‖X) and (Y, ‖ · ‖Y ) respectively are C–equivalent, whenever for any real
sequence {ai}∞i=1 we have

1
C

∥∥∥∥∥
∞∑

i=1

aixi

∥∥∥∥∥
X

≤
∥∥∥∥∥
∞∑

i=1

aiyi

∥∥∥∥∥
Y

≤ C

∥∥∥∥∥
∞∑

i=1

aixi

∥∥∥∥∥
X

.

The basic sequences {xi}∞i=1 and {yi}∞i=1 are said to be almost isometrically
equivalent if for all k ∈ N the tails {xi}∞i=k and {yi}∞i=k are (1+εk)–equivalent,
for some positive sequence{εk}∞k=1, such that limk→∞ εk = 0.

Deep results concerning the embedding of `p spaces into Orlicz–Lorentz
sequence spaces are obtained in [9]. It is shown there that in any infinite
dimensional subspace X of d0(w,M) there is an almost isometrically equivalent
copy either of c0 or to some Orlicz sequence space hψ, for some ψ ∈ CM .
Moreover it is shown in [9] that the same result as like as for Orlicz sequence
spaces hold for the embedding of the `p spaces i.e. `p ↪→ d0(w,M) iff p ∈
[αM , βM ].

If {vn}∞n=1 is a basis of a Banach space (X, ‖ · ‖), and ||| · ||| is a norm
equivalent to the given norm ‖ · ‖. We say that {vn}∞n=1 is monotone with
respect to ||| · ||| if ∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
k∑

n=1

anvn

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
k+1∑
n=1

anvn

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

for every real sequence a = {an}∞n=1 and for all k ∈ N.
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Theorem 1. ([11]) Let {vn}∞n=1 be a shrinking basis of a Banach space
(X, ‖ · ‖). The following are equivalent:
a) X is isomorphically polyhedral.
b) There exists an equivalent norm |||·||| on X such that {vn}∞n=1 is a monotone
basis with respect to ||| · |||, and for all

∑∞
n=1 anvn ∈ X, there exists m ∈ N

such that ∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∞∑

n=1

anvn

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ =

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
m∑

n=1

anvn

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ .

By the Remark following Theorem 1 in [11] it follows that Theorem 1 holds
also if the shrinking basis is replaced by an unconditional one.

According to a result from [1] we have the following

Theorem 2. ([1]) Every separable isomorphically polyhedral Banach space
X admits an equivalent analytic norm.

Definition 2.1. Let U be an open, convex and bounded subset of a Banach
space X, f be a real function on U . We say that f is weakly sequentially
continuous (wsc) if it maps weakly Cauchy sequences from U into convergent
ones.

The next theorem, obtained in [8] gives a sufficient condition so that Ba-
nach spaces with an equivalent analytic norm to be isomorphically polyhedral.

Theorem 3. ([8]) Let (X, ‖·‖) be a Banach space, where ‖·‖ is an analytic
norm. If all polynomials on X are wsc, then X is separable and isomorphically
polyhedral.

Let us recall that a Banach space X with an unconditional basis is said to
satisfy an upper p–estimate, p > 1, if for some constant C > 0 holds

∥∥∥∥∥
n∑

i=1

ui

∥∥∥∥∥ ≤ C

(
n∑

i=1

‖ui‖p

)1/p

,

whenever ui are disjointly supported in X.
We finish the preliminaries with the following

Lemma 2.1. ([7], [8]) Let X be a Banach space with an unconditional
basis satisfying an upper p–estimate. Then all polynomials of degree n < p on
X are wsc.
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3. Main Result

Theorem 4. Let M be an Orlicz function without ∆2–condition at zero.
Then the Orlicz–Lorentz sequence spaces d0(w,M) admits an equivalent ana-
lytic norm iff it is isomorphically polyhedral.

4. Auxiliary Results

The next Proposition shows that results as like as the results obtained in
[11] hold for characterizing the c0–saturated Orlicz–Lorentz sequence spaces.

Proposition 4.1. Let M be a non-degenerate Orlicz function, then the
following are equivalent:
a) d0(w,M) is c0–saturated;
b) d0(w, M) does not contain an isomorphic copy of `p for any p ∈ [1,∞);
c) for all q ∈ [1, +∞) holds

sup
0<u,v≤1

M(uv)
M(u)vq

< ∞.

Proof. Clearly a) implies b).
Let now b) holds, but a) fails, then there exists an infinite dimensional

closed subspace Y of d0(w,M), which contains no isomorphic copy of c0. Ac-
cording to [9] Y has a subspace Z, which is almost isometrically equivalent
either to c0 or to hψ for some ψ ∈ CM . As Y does not contain an isomorphic
copy of c0, the Z is almost isometrically equivalent to hψ. By the assumption
that Y has no an isomorphic copy of c0 and by [12](Theorem 4.a.9) it follows
that hψ contains an isomorphic copy of `p for some p ∈ [1,∞), which is a
contradiction.

Let now b) holds i.e. there is no isomorphic copy of `p in d0(w, M) for
any p ∈ [1,∞). According to [9] `p ↪→ d0(w,M) iff p ∈ [αM , βM ]. Therefore
αM = ∞ and thus for any q ∈ [1,∞) the inequality sup0<u,v≤1

M(uv)
M(u)vq < ∞

holds.
Let c) holds. Then αM = βM = ∞. Let Y be an arbitrary infinite

dimensional subspace of d0(w,M). According to [9] Y has a subspace Z, which
is almost isometrically equivalent either to c0 or to hψ for some function ψ ∈
CM . If Z is almost isometrically equivalent to c0, then there is an isomorphic
copy of c0 in Y . Let suppose that Z is not almost isometrically equivalent to
c0, then Z is almost isometrically equivalent to hψ for some function ψ ∈ CM .
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It is easy to see that αψ = ∞, because CM ⊆ CM,1 and for every ϕ ∈ CM,1 it
is easy to show, that [αϕ, βϕ] ⊆ [αM , βM ]. Consequently c0 ↪→ hψ ↪→ Y . ¤

The next Lemma will be needed in the sequel in order to apply Theorem 3.

Lemma 4.1. Let M be an Orlicz function. If sup
0<u,v≤1

M(uv)
upM(v)

< ∞, for

some p > 1, then the Orlicz–Lorentz sequence spaces d0(w, M) has an upper
p–estimate.

Proof. Let sup
0<u,v≤1

M(uv)
upM(v)

≤ C1 < ∞. WLOG we may assume that

C1 > 1. Let {Ak}n
k=1, Ak ⊂ N, Aj ∩ Ak = ∅, for every j 6= k. Denote by

ak = |Ak| and S =
∑n

k=1 ak. If ak = +∞ for some k = 1, . . . , n, then S = +∞.
Let uk =

∑
i∈Ak

xiei, k = 1, . . . , n. Let {x∗ki}ak
i=1 be a decreasing rearrangement

of the sequence {|xi|}i∈Ak
, for every k = 1, 2, . . . , n and {x∗i }S

i=1 be a decreasing
rearrangement of the sequence {{|xi|}i∈Ak

}n
k=1.

By the definition of the Luxemburg norm in d0(w, M) we have
∥∥∥∥∥

n∑

i=1

ui

∥∥∥∥∥ = inf

{
λ > 0 :

S∑

i=1

wiM

(
x∗i
λ

)
≤ 1

}
and

‖uk‖ = inf

{
λ > 0 :

ak∑

i=1

wiM

(
x∗ki

λ

)
≤ 1

}

for every k = 1, 2, . . . , n. Therefore by the chain of the inequalities

S∑

i=1

wiM


 x∗i

C
1/p
1

(∑n
j=1 ‖uj‖p

) 1
p


 ≤

n∑

k=1

ak∑

i=1

wiM


 x∗ki‖uk‖

C
1/p
1

(∑n
j=1 ‖uj‖p

) 1
p ‖uk‖




≤
n∑

k=1

ak∑

i=1

wi
‖uk‖p

n∑

i=1

‖ui‖p

M

(
x∗ki

‖uk‖
)

=
n∑

k=1

‖uk‖p

n∑

i=1

‖ui‖p

ak∑

i=1

wiM

(
x∗ki

‖uk‖
)
≤ 1

we get that ‖∑n
i=1 ui‖ ≤ C (

∑n
i=1 ‖ui‖p)1/p, where C = C

1/p
1 . ¤
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Proposition 4.2. The Orlicz–Lorentz sequence space d0(w,M) is sepa-
rable.

Proof. Indeed according to Proposition 2.1 the unit vectors {ei}∞i=1 is
a Schauder basis in d0(w, M) and therefore the set M =

{∑n
i=1 piei : pi ∈Q ,

n ∈ N}
is a countable dense set in d0(w, M). ¤

5. Proof of Main Result

Proof. If d0(w, M) is isomorphically polyhedral, then according to The-
orem 2 and Proposition 4.2 it admits an equivalent analytic norm.

Let now M 6∈ ∆2(0) and let there exists an equivalent analytic norm
in d0(w,M). According to [9] `p ↪→ d0(w, M) iff p ∈ [αM , βM ], therefore
αM = βM = +∞. By Lemma 4.1 d0(w, M) has an upper p–estimate for every
p > 1 and finally according to Theorem 3 we get that d0(w, M) is isomorphically
polyhedral. ¤

Remark: A natural question arises to characterize the Orlicz–Lorentz
sequence spaces d0(w,M), which admit an equivalent analytic norm as like
as it was done in [8]. Let us mention that if M ∈ ∆2(0) and there exists
an equivalent analytic norm in d0(w,M), then according to [9] we get that
αM = βM ∈ {2n}n∈N ∪ {+∞}.

6. A class of Orlicz–Lorentz sequence spaces d0(w, M),
that admit an equivalent analytic norm

Proposition 6.1. Let M be a non–degenerate Orlicz function, such that
there exists a finite number λ > 1 satisfying

(2) lim
t→0

M(λt)
M(t)

= ∞.

Then d0(w, M) is isomorphically polyhedral.

Proof. For all k ∈ N let define:

bk = inf
{

M(λt)
M(t)

: 0 < t ≤ M−1

(
1

W (k)

)}
.

By (2) and the fact that limk→∞W (k) = ∞ it follows that {bk}∞k=1 is an
increasing sequence and limk→∞ bk = ∞. Thus there exists a sequence {ηk}∞k=1

such that ηk ↘ 1 and ηk > 1
1− 1

bk+1

.
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For x = {xn}∞n=1 ∈ d0(w, M) define a norm ||| · ||| in d0(w,M) by

(3) |||{xn}||| = sup
k

ηk‖(x∗1, x∗2, . . . , x∗k, 0, 0, . . . )‖,

where ‖ · ‖ is the Luxemburg’s norm in d0(w, M).

Claim 6.1. The norm ||| · ||| is an equivalent to the Luxemburg norm in
d0(w, M).

Proof of Claim 6.1: The proof follows by the inequalities:

|||{xn}||| = sup
k

ηk‖(x∗1, . . . , x∗k, 0, 0, . . . )‖ ≤ η1‖{xn}‖

and

|||{xn}||| = sup
k

ηk‖(x∗1, . . . , x∗k, 0, 0, . . . )‖ ≥ sup
k
‖(x∗1, . . . , x∗k, 0, 0, . . . )‖ ≥ ‖{xn}‖.

¤
Claim 6.2. The unit vector basis {ei}∞i=1 is a monotone basis in d0(w, M)

with respect to ||| · |||.
Proof of Claim 6.2: Let {xn}∞n=1 be an arbitrary real sequence and

k ∈ N be an arbitrary chosen. We need to show that
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
k∑

i=1

xiei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
k+1∑

i=1

xiei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ .

Let denote by {ai}k
i=1 the decreasing rearrangement of the set {|xi|}k

i=1 and
by {bi}k+1

i=1 the decreasing rearrangement of the set {|xi|}k+1
i=1 . It is easy to see

that bi ≥ ai for every i = 1, . . . , k. Thus
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
k∑

i=1

xiei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ = sup
i=1,...,k

ηi‖(a1, . . . , ai, 0 . . . )‖ ≤ sup
i=1,...,k

ηi‖(b1, . . . , bi, 0 . . . )‖

≤ sup
i=1,...,k+1

ηi‖(b1, . . . , bi, 0 . . . )‖ =

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
k+1∑

i=1

xiei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ .

¤
To finish the proof of the theorem it suffices to show that ||| · ||| satisfies

the condition b) in Theorem 1.
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Claim 6.3. For any positive decreasing sequence x = {xi}∞i=1 ∈ d0(w, M)
there is k ∈ N such that

(4) ‖x‖ ≤ ηk‖(x1, x2, . . . , xk, 0, 0, . . . )‖.

Proof of Claim 6.3: Assume otherwise i.e. for any k ∈ N the inequality
(4) does not hold. WLOG we may assume that ‖x‖ = 1. Then

(5)
∞∑

i=1

wiM(xi) = 1

and

(6)
k∑

i=1

wiM(ηkxi) ≤ 1

holds for every k ∈ N. Notice that by the fact that {xi}∞i=1 is a decreasing se-
quence and ηk ≥ 1 it follows from inequality (6) that xk ∈

[
0,M−1 (1/W (k))

]
.

By the fact that {ei}∞i=1 is a basis in d0(w, M) it follows that there exists
m ∈ N such that ‖(0, . . . , 0, xm, xm+1, . . . )‖ ≤ 1/λ i.e.

∑∞
i=1 wiM(λxm+i−1) ≤

1.

For any i ∈ N, i ≥ m the inequality
M(λxi)
M(xi)

≥ bm holds. Now we can

write the chain of inequalities:

1 =
∞∑

i=1

wiM(xi) =
m−1∑

i=1

wiM(xi) +
∞∑

i=m

wiM(xi)

≤ 1
ηm−1

m−1∑

i=1

wiM(ηm−1xi) +
1

bm

∞∑

i=m

wiM(λxi)

≤ 1
ηm−1

+
1

bm

∞∑

i=1

wiM(λxm+i−1)

≤ 1
ηm−1

+
1

bm
< 1

which is a contradiction. Hence (4) holds for some k ∈ N. ¤
Now for a general element x = {xi}∞i=1 ∈ d0(w, M), choose m ∈ N such

that
‖{xi}‖ = ‖{x∗i }‖ ≤ ηm‖(x∗1, . . . , x∗m, 0, 0, . . . )‖.
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Since limk→∞ ηk‖(x∗1, . . . , x∗k, 0, 0, . . . )‖ = ‖{xi}‖ by Claim 6.3 the supremum
in (3) is attained at some j ∈ N. Choose i ∈ N so that {x∗1, . . . , x∗j} ⊂
{|x1|, . . . , |xi|}, then

|||(x1, . . . , xi, 0, 0, . . . )||| ≥ ηj‖(x∗1, . . . , x∗j , 0, 0, . . . )‖ = |||{xn}|||.
Since the reverse inequality |||{xn}||| ≥ |||(x1, . . . , xi, 0, 0, . . . )||| is obvious it
follows that

|||{xn}||| = |||(x1, . . . , xi, 0, 0, . . . )|||.
¤

Corollary 6.1. Let M be a non–degenerate Orlicz function, such that
there exists a finite number λ > 1 satisfying

lim
t→0

M(λt)
M(t)

= ∞.

Then d0(w, M) admits an equivalent analytic norm, it is c0–saturated and it
has a separable dual.

Proposition 6.2. Let M be a non-degenerate Orlicz function. Suppose
there exists a sequence {tn}∞n=1 decreasing to 0 such that

sup
n∈N

M(Ktn)
M(tn)

< ∞

for all K < ∞. Then d0(w,M) is not isomorphically polyhedral.

Proof. Suppose the contrary i.e. d0(w, M) is isomorphically polyhedral.
According to Theorem 1 one can obtain an equivalent norm ||| · ||| on d0(w, M)
as prescribed by part b). Fix α > 0 so that |||x||| ≤ α implies ‖x‖ ≤ 1. Choose
an arbitrary sequence ηk ↘ 1. Let

n1 = min{n ∈ N : η1|||tne1||| ≤ α}.

If n1 ≤ n2 ≤ . . . ≤ nk are chosen so that ηi

∣∣∣
∣∣∣
∣∣∣∑i

j=1 tnj ej

∣∣∣
∣∣∣
∣∣∣ ≤ α, for every

i = 1, 2, . . . , k, then by ηk+1 < ηk it follows that ηk+1

∣∣∣
∣∣∣
∣∣∣∑k

j=1 tnj ej

∣∣∣
∣∣∣
∣∣∣ < α.

Hence
{

n ≥ nk : ηk+1

∣∣∣
∣∣∣
∣∣∣∑k

j=1 tnj ej + tnek+1

∣∣∣
∣∣∣
∣∣∣ < α

}
6= ∅.

Now define

(7) nk+1 = min



n ≥ nk : ηk+1

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

j=1

tnj ej + tnek+1

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ α



 .
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This inductively defines a nondecreasing sequence of naturals {nk}∞k=1, such
that

(8) ηk

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

j=1

tnj ej

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ α

for every k ∈ N, fulfilling the minimality condition (7). In particular∣∣∣
∣∣∣
∣∣∣∑k

j=1 tnj
ej

∣∣∣
∣∣∣
∣∣∣ ≤ α. Therefore

∥∥∥∑k
j=1 tnj

ej

∥∥∥ ≤ 1, i.e.
∑k

j=1 wjM(tnj
) ≤ 1

holds for every k ∈ N.
For any λ < ∞ and for any k ∈ N the chain of inequalities

k∑

j=1

wjM(λtnj
) =

k∑

j=1

wj

M(λtnj
)

M(tnj
)

M(tnj
) ≤

≤ sup
m∈N

M(λtm)
M(tm)

k∑

j=1

wjM(tnj
) ≤ sup

m∈N

M(λtm)
M(tm)

< ∞

holds. Hence x =
∑∞

j=1 tnj ej ∈ d0(w, M). Clearly

|||x||| = lim
k→∞

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

j=1

tnj ej

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ α.

Claim 6.4. |||x||| = α.

Proof of Claim 6.4: Suppose otherwise i.e. |||x||| = β < α for some β.
Since {en}∞n=1 is a monotone basis with respect to |||·||| we get

∣∣∣
∣∣∣
∣∣∣∑k

j=1 tnj ej

∣∣∣
∣∣∣
∣∣∣ ≤

β < α for every k ∈ N.
By x =

∑∞
j=1 tnj ej ∈ d0(w, M) it follows that tnj ↘ 0. We can choose

i0 ∈ N such that |||tni0
ej ||| ≤ α − β holds for every j ∈ N. Then by the

minimality condition (7) and the inequalities:
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

i0∑

j=1

tnj ej + tni0
ei0+1

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

i0∑

j=1

tnj ej

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
+ |||tni0

ei0+1||| ≤ β + α− β = α

it follows that ni0+1 = ni0 . Similarly nj = ni0 for all j ≥ i0 which contradicts
with the convergence of x =

∑∞
j=1 tnj ej ∈ d0(w, M). ¤
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Now by Claim 6.4 and (8) the inequalities

|||x||| = α ≥ ηk

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

j=1

tnj
ej

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
>

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

j=1

tnj ej

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

hold for every k ∈ N, which is a contradiction with the choice of the norm
||| · |||. ¤

Remark: Using the construction of Orlicz functions from [11] (Proposi-
tion 7, Theorem 8) we get that there exists an Orlicz–Lorentz sequence space
d0(w, M), with generating Orlicz function M 6∈ ∆2(0), which is not isomorphi-
cally polyhedral and therefore without any equivalent analytic norm.
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ВЪРХУ ЕКВИВАЛЕНТНИ АНАЛИТИЧНИ НОРМИ В
РЕДИЧНИ ПРОСТРАНСТВА НА ОРЛИЧ–ЛОРЕНЦ

Б. Златанов

Резюме. Доказли сме, че ако пораждащата функция на Орлич M
не удовлетворява ∆2–условието в нулата, тогава съществуването на екви-
валентна аналитична норма в редичното пространство на Орлич–Лоренц
d0(w, M) е еквивалентно на това d0(w, M) да е изоморфно полиедрално.
Показали сме, че ако limt→0

M(λt)
M(t) = ∞ за някое λ > 1, тогава редичното

пространство на Орлич–Лоренц d0(w, M) е изоморфно полиедрално бана-
хово пространство и следователно в него съществува еквивалентна анали-
тична норма, то е наситено с c0 и спрегнатото му пространство е сепара-
белно. Направили сме пълна характеризация на редичните пространства
на Орлич–Лоренц, които са наситени с c0.
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