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Abstract. With the help of (n+1) pseudovectors a prolonged co-
variant differentiation in an affinely connected space without a torsion
An is introduced. It is proved that the prolonged covariant differen-
tiation preserves the law for the parallelly translation of the fields of
directions along lines and that this law does not depend on the choice
of the normaliser. Derivative equations for the fields of directions are
written, relations between their coefficients are found and applications
are made.

The characteristics by the normaliser and the coefficients for equiaffine
spaces are obtained.

Affinely connected spaces without a torsion in which there exist n
compositions of base manyfolds Xn−1 and X1 are studied. Characteris-
tics of these spaces when the compositions are geodesic, chebishevian or
cartesian are found.
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1. Introduction

Generalizing the notion net in two dimentional space X2 Norden reachs to
the notion composition [4]. Norden and Timofeev introduce the special com-
positions in affinely connected spaces A2 [2]. The prolonged covariant differen-
tiation, introduced in A2 [3], in Wn [5] and in A2n [6], reduce the difficulties in
the investigations of the pseudoquantities. The purpose of the present paper
is the introduction of the prolonged covariant differentiation in n−dimensional
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affinelly connected spaces An without a torsion. The choice of the covector
fields

α
vi corresponding to the fields of directions v

α

i as well as the new choice of
the normalizer allow considerations in arbitrary dimensional affinelly connected
spaces without a torsion.

The connection between nets and compositions in An is shown in [8]. There
the composition is defined with the help of an affinor connected with a net. Us-
ing this affinor it is made an application of the introduced prolonged covariant
differentiation in the present paper.

2. Preliminary

Let the pseudo-vectors v
α

i(α = 1, 2, . . . , n+1), satisfying the condition

[6], [7]

(1)
n+1∑
α=1

v
α

i = 0

be given in the affinely connected space without a torsion An.
We suppose that any n pseudo-vectors from v

α

i(α = 1, 2, . . . , n+1) are line-

arly independent. From (1) it follows that the renormalization of the pseudo-
vectors v

α

i(α = 1, 2, . . . , n + 1) is defined to with in a common non-zero factor
σ where σ is a function of the point.

The covector fields
α
vi are defined by the conditions

(2)
α
viv

β

i = δα
β ⇐⇒ α

viv
α

s = δs
i , (α, β = 1, 2, . . . , n),

(3)
n+1
v i = −

n∑
α=1

α
vi.

From (1), (2), (3) it follows

(4)
n+1
v i v

α

i = −1, v
n+1

i α
vi = −1, (α = 1, 2, . . . , n), v

n+1

i n+1
v i = n.

According to [1] the field of directions vi is parallelly translating along the lines
(w) if and only if

(5) ∇kviwk = λvi,
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where λ is an arbitrary function. We have noticed with ∇ the covariant deriva-
tive defined by the coefficients of the connectedness Γk

is of the space An.
Pseudo-quantities A which after a renormalization of v

α

i are transformed

by the law Ă = σkA are called satellites of v
α

i of weight {k} [3] .

From (2) it follows that
α
vi (α = 1, 2, . . . , n) are satellites of the v

α

i of weight

{−1}, i.e.
ᾰ
vi = σ−1α

vi.
A normalizer is called any covector admitting a transformation of the

form [3]

(6) Ťi = Ti + ∂ilnλ .

According to [3] a prolonged covariant derivative of pseudoquantities with
weight {k} is called the object

(7)
•
∇sA = ∇sA− kTsA .

Let notice by (v
α
) the lines determined from the pseudo-vectors v

α

i, (α=1, 2, . . . , n)

and by (v
1
, v
2
, . . . v

n
) the net determined from the pseudo-vectors v

α

i, (α=1, 2, . . . , n)

and by (v
1
, v
2
, . . . v

n+1
) the n+1-web determined from the pseudo-vectors v

α

i,

(α = 1, 2, . . . , n + 1).
The following affinor

(8) aβ
α =

m

Σ
i=1

v
i

β i
vα −

n

Σ
i=m+1

v
i

β i
vα

uniquely determinated from the net(v
1
, v
2
, . . . v

n
) is introduced in [8]. Since aβ

α aσ
β =

δσ
α , according to [4] the affinor (8) defines a composition Xm ×Xn−m in An.

According to [2], [4] the following definitions can be write:

The composition (Xm × Xn−m) ∈ An is called cartesian if the positions
P (Xm) and P (Xn−m) are parallelly translated along any line in the space .

The composition (Xm × Xn−m) ∈ An is called geodesic if the positions
P (Xm) and P (Xn−m) are parallelly translated along any line of Xm and Xn−m

respectively .

The composition (Xm×Xn−m) ∈ An is called chebyshevian if the positions
P (Xm) and P (Xn−m) are parallelly translated along any line of Xn−m and Xm

respectively.
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3. Prolonged covariant differentiation in An

Consider the covector

(9) Tk =
1
n

n+1
v s ∇k v

n+1

s .

After renormalization of the pseudo-vectors v
α

i, (α = 1, 2, . . . , n + 1) for Tk we
can write

T̆ k =
1
n

σ−1n+1
v s∇k(σ v

n+1

s) =
1
n

σ−1σk
n+1
v s v

n+1

s +
1
n

σ−1σ
n+1
v s∇k v

n+1

s,

from where taking into account (2), (4), (9) we find T̆ k = ∂klnσ +Tk. Then we
can choose the covector (9) as a normalizer [3]. The existence of this normalizer
allows us to introduce the prolonged covariant differentiation of the satellites
of the pseudo-vectors v

α

i with weight {k} by the formula (7).

Lemma 1. The pseudo-vector vi is parallelly translated along the lines

(w) if and only if
•
∇sv

i ws = λvi , where λ is an arbitrary function. This law
of the parallelly translating does not depend on the choice of the normalizer.

Proof. Let vi has a weight {k} and let notice by 1
•
∇s the prolonged

covariant differentiation introduced with the help of an arbitrary normalizer

Qk which is different from Tk. According to (7) we have
•
∇sv

i = ∇sv
i−kTsv

i ,

1
•
∇sv

i = ∇sv
i − kQsv

i. If we accept the notations Tsw
s = µ, Qsw

s = ν, we

obtain
•
∇sv

iws = ∇sv
iws − kµvi, 1

•
∇sv

iws = ∇sv
iws − kνvi. Now it is easy

to see that the equalities ∇sv
i ws = λvi ,

•
∇sv

i ws = ρvi, 1
•
∇sv

i ws = τvi ,
where λ, ρ, τ are arbitrary functions, are equivalent. ¤

4. Derivative equations

The prolonged covariant derivative of the field of directions v
α

i, (α =

1, 2, . . . , n) can be presented in the following way

(10)
•
∇kv

α

i =
σ

T
α

k v
σ

i , (α = 1, 2, . . . , n) ,

because v
α

i, (α = 1, 2, . . . , n) are independent pseudo-vectors.
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From (2) and (10) it follows

(11)
•
∇k

α
vi = −

α

T
σ

k
σ
vi , (α = 1, 2, . . . , n) .

The equalities (10) and (11) are called derivative equations. Obviously the

coefficients
α

T
σ

k from the derivative equations have weights {0}.
With the help of (1), (3) , (10) and (11) we find

(12)
•
∇s v

n+1

i = −
n∑

α=1

σ

T
α

k v
σ

i ,
•
∇s

n+1
v i =

n∑
α=1

α

T
σ

k
σ
vi .

Lemma 2. The coefficients
α

T
σ

k from the derivative equations satisfy the

following condition
n∑

α=1

n∑
β=1

α

T
β

k = 0 .

Proof. According to (7) and (12) we have
•
∇s v

n+1

i = −
n∑

α=1

σ

T
α

k v
σ

i =

∇k v
n+1

i−Tk v
n+1

i, from where after contraction by
n+1
v i and taking into account

(4) and (9) we establish the validity of Lemma 2. ¤
Theorem 1. The affinely connected space An is equiaffine if and only if

the normalizer Tk and the coefficients
σ

T
α

k from the derivative equations satisfy

the equality n∇[sTk] +∇[s

α

T
α

k] = 0.

Proof. After the covariant differentiation of (10) and taking into account

the equalities
•
∇sv

α

i = ∇kv
α

i − Tkv
α

i =
σ

T
α

k v
σ

i we obtain ∇s∇kv
α

i − ∇sTkv
α

i −

Tk(Tsv
α

i +
σ

T
α

sv
σ

i) = ∇s

σ

T
α

kv
σ

i +
σ

T
α

k(Tsv
σ

i +
β

T
σ

sv
β

i). Now let apply the integrability

condition. So we find
1
2
Rskm

i
. v

α

m = ∇[sTk]v
α

i+ ∇[s

σ

T
α

k] v
σ

i+
σ

T
α

[k

β

T
σ

s]v
β

i, where

Rskm
i
. is the tensor of the curvature of the space An.

According to (2) after contraction with
α
vj we find

1
2
Rskj

i
. = ∇[sTk]δ

i
j +

∇[s

σ

T
α

k]v
σ

i α
vj +

σ

T
α

[k

β

T
σ

s]v
β

i α
vj , from where it follows

1
2
Rski

i
. = n∇[sTk]+ ∇[s

α

T
α

k].

But it is known that the affinely connected space An is equiaffine if and only
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if Rski
i
. = 0. So we obtain the affinely connected space An is equiaffine if and

only if n∇[sTk] +∇[s

α

T
α

k] = 0 ¤

5. Application of the prolonged covariant differentiation

Consider n affinors (8) defined by the net (v
1
, v
2
, . . . , v

n
) ∈ An [8] when

m = n−1.

(13)

a
1

s
i = −v

1

s 1
vi + v

2

s 2
vi + v

3

s 3
vi + · · ·+ v

n

s n
vi,

a
2

s
i = v

1

s 1
vi − v

2

s 2
vi + v

3

s 3
vi + · · ·+ v

n

s n
vi,

...........................................................

a
n

s
i = v

1

s 1
vi + v

2

s 2
vi + v

3

s 3
vi + · · · − v

n

s n
vi.

Because of a
α

s
i aα

k
s = δk

i , (α = 1, 2, ..., n), [2] and [4] it follows that the affinely

connected space An with the affinors a
α

s
i (α = 1, 2, ..., n) is a space of com-

positions of two base manifolds Xn−1 and X1 . For any α = 1, 2, ..., n two
positions P (Xn−1) and P (X1) of the base manifolds Xn−1 and X1 respectively
pass through any point of the space An [2], [4].

Here using the definitions about special compositions [2], [4] we can write:

The composition (Xn−1 × X1) ∈ An is called cartesian if the positions
P (Xn−1) and P (X1) are parallelly translated along any line in the space .

The composition (Xn−1 × X1) ∈ An is called geodesic if the positions
P (Xn−1) and P (X1) are parallelly translated along any line of Xn−1 and X1

respectively .

The composition (Xn−1×X1) ∈ An is called chebyshevian if the positions
P (Xn−1) and P (X1) are parallelly translated along any line of X1 and Xn−1

respectively .

When all affinors (13) define in An cartesian or geodesic or chebyshevian
compositions then the space An will be notice cAn or gAn or chAn, respectively.

Since the affinors (13) have weghts {0} then

(14) ∇k a
α

s
i =

•
∇k a

α

s
i , α = 1, 2, ..., n.
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5.1. Geodesic compositions in An

Theorem 2. The space An is the space gAn if and only if

(15)
β

T
α

i =
β

λ
β

β
vi , α, β = 1, 2, ..., n;α 6= β ,

where
β

λ
β

are functions of the point.

Proof. Let the affinors (13) define geodesic compositions in An. Accord-
ing to [2] the affinors a

α

s
i define geodesic compositions in An, if and only if a

α

s
i∇k

a
α

j
s+ a

α

s
k∇s a

α

j
i = 0. Because of (14) the last equality accepts the form

(16) a
α

s
i

•
∇ka

α

j
s + a

α

s
k

•
∇sa

α

j
i = 0

From (10), (11), (13) it follows that (16) can be written in the form

a
α

s
i

•
∇k a

α

j
s+ a

α

s
k

•
∇s a

α

j
i = 2(

α

T
1

k + a
α

s
k

α

T
1

s) v
α

j 1
vi + · · ·+

2(
α

T
α−1

k + a
α

s
k

α

T
α−1

s) v
α

j α−1
v i+ 2(

α

T
α+1

k + a
α

s
k

α

T
α+1

s) v
α

j α+1
v i + · · ·+

2(
α

T
n

k + a
α

s
k

α

T
n

s) v
α

j n
vi+ 2[(

1

T
α

k − a
α

s
k

1

T
α

s) v
1

j + · · ·+ (
α−1

T
α

k − a
α

s
k

α−1

T
α

s) v
α−1

j + · · ·+

(
α+1

T
α

k − a
α

s
k

α+1

T
α

s) v
α+1

j + · · ·+ (
n

T
α

k − a
α

s
k

n

T
α

s) v
n

j ]
α
vi = 0.

From the independence of the fields of directions v
α

i and
α
vi (α = 1, 2, . . . n)

it follows that the equality will be fulfilled if and only if
α

T
β

k + a
α

s
k

α

T
β

s = 0 and

β

T
α

k−a
α

s
k

β

T
α

s = 0. But
β

T
α

k−a
α

s
k

β

T
α

s = 0 ⇔ (
β

T
α

k−a
α

s
k

β

T
α

s)v
α

k = 0, from where taking

into account (2) and (13) we obtain
β

T
α

kv
α

k = 0. Thus we find the following
presentation of the coefficients of the derivative equations

(17)
β

T
α

k =
α−1∑

i=1

β

λ
i

i
vk +

n∑

i=α+1

β

λ
i

i
vk .

Now after substitution of
β

T
α

k from (17) and a
α

s
k from (13) in

α

T
β

k +a
α

s
k

α

T
β

s = 0

we establish
β

T
α

k −
β

λ
β

β
vk = 0, which means that

β

λ
α

= o for any α 6= β. ¤
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Theorem 3. If the net (v
1
, v
2
, . . . , v

n
) ∈ An is chosen as a coordinate one,

then the space An is the space gAn if and only if Γk
is = 0 for any k 6= i, k 6= s.

Proof. Let the net (v
1
, v
2
, . . . , v

n
) ∈ An be chosen as a coordinate one.

According to (2) the conditions (15) are equivalent to the following conditions

(18)
β

T
α

iv
σ

i = 0 for any α 6= β, β 6= σ.

With the help of (2), (7), (10) we obtain the following presentation for the
coefficients from the derivative equations

(19)
σ

T
α

i =
σ
vs(∂iv

α

s + Γs
ipv

α

p − Tiv
α

s).

Because of (2) , (18) and (19) for the coefficients of the connectedness and the
fields of directions of the net (v

1
, v
2
, . . . , v

n
) ∈ An we find Γs

ip v
α

p σ
vs v

β

i = 0, for

any α 6= β, β 6= σ. Since the net (v
1
, v
2
, . . . , v

n
) ∈ An is coordinate then the last

equality is fulfilled if and only if Γk
is = 0 for any k 6= i, k 6= s. ¤

5.2. Chebyshevian compositions in An

Theorem 4. The space An is the space chAn if and only if

(20)
β

T
α

i =
β

λ
α
vi , α, β = 1, 2, ..., n; α 6= β ,

where
β

λ are functions of the point.

Proof. Let the affinors a
α

s
i (α = 1, 2, ..., n) define chebyshevian composi-

tions in An. According to [2] the affinors a
α

s
i define chebyshevian compositions

in An, if and only if ∇[ia
α

k
s] = 0. Because of (14) the last equality accepts the

form

(21)
•
∇[i a

α
s]

k = 0.

From (10), (11), (13) it follows
•
∇[i a

α

k
s] = −2

1

T
α

[i
α
vs]v

1

k − 2
2

T
α

[i
α
vs]v

2

k − · · · − 2
α−1

T
α

[i
α
vs] v

α−1

k − 2
α+1

T
α

[i
α
vs] v

α+1

k − . . .

−2
n

T
α

[i
α
vs]v

n

k + 2(
1

T
α

[i
α
vs] +

2

T
α

[i
α
vs] + · · ·+

α−1

T
α

[i
α
vs] +

α+1

T
α

[i
α
vs] + · · ·+

n

T
α

[i
α
vs])v

α

k
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From the independence of the fields of directions v
α

i and
α
vi (α = 1, 2, . . . n)

it follows that the right-hand side of the last equality is equal to zero if and

only if
β

T
α

[i
α
vs] = 0 for any α, β = 1, 2, . . . n; α 6= β. But it is obviously that the

last conditions are equivalent to the conditions (20). ¤
Theorem 5. If the net (v

1
, v
2
, . . . , v

n
) ∈ An is chosen as a coordinate one,

then the space An is the space chAn if and only if Γk
is = 0 for any i 6= s, k 6= s.

Proof. According to (2) and (19) for the coefficients of the connectedness
and the fields of directions of the net (v

1
, v
2
, . . . , v

n
) ∈ An we find Γk

is v
α

s σ
vk v

β

i = 0,

for any α 6= σ, β 6= σ. Since the net (v
1
, v
2
, . . . , v

n
) ∈ An is coordinate then the

last equality is fulfilled if and only if Γk
is = 0 for any i 6= s, k 6= s. ¤

5.3. Cartesian compositions in An

Theorem 6. The space An is the space cAn if and only if

(22)
β

T
α

i = 0 , α, β = 1, 2, ..., n; α 6= β ,

Proof. Let the affinors a
α

k
s (α = 1, 2, ..., n) define cartesian compositions

in An. According to [2] the affinors a
α

k
s define cartesian compositions in An, if

and only if ∇ia
α

k
s = 0. Because of (14) the last equality accepts the form

(23)
•
∇i a

α
s
k = 0.

From (10), (11), (13) it follows

•
∇i a

α

k
s = −2

1

T
α

i
α
vs v

1

k − 2
2

T
α

i
α
vs v

2

k − . . . − 2
α−1

T
α

i
α
vs v

α−1

k − 2
α+1

T
α

i
α
vs v

α+1

k − . . .

−2
n

T
α

i
α
vs v

n

k + 2(
1

T
α

i
α
vs +

2

T
α

i
α
vs + · · ·+

α−1

T
α

i
α
vs +

α+1

T
α

i
α
vs + · · ·+

n

T
α

i
α
vs)v

α

k.

From the independence of the fields of directions v
α

i and
α
vi (α = 1, 2, . . . n)

it follows that the right-hand side of the last equality is equal to zero if and

only if
β

T
α

i
α
vs = 0 for any α, β = 1, 2, . . . n; α 6= β. Since

α
vs are independent,

then
β

T
α

i = 0. ¤
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From Theorems 2, 4 and 6 it follows

Corollary 1. If the affinors a
α

k
s (α = 1, 2, ..., n) define at the same time

geodesic and chebyshevian compositions in An then they define and cartesian
ones.

From Theorems 3, 5 and Corollary 1 it follow

Corollary 2. If the net (v
1
, v
2
, . . . , v

n
) ∈ An is chosen as a coordinate one,

then the space An is the space cAn if and only if Γk
is = 0 for any i 6= s, k 6= s,

k 6= i.

Corollary 3. If the affinors a
α

k
s (α = 1, 2, ..., n) define cartesian compo-

sitions in An then the coefficients from the derivative equations satisfy the

equality
α

T
α

i = 0.

Proof. Let An be the space cAn. According to Theorem 6 the derivative
equations accept the form

(24)
•
∇kv

α

i =
α

T
α

k v
α

i , (α = 1, 2, . . . , n).

Then using (1), (2), (3), (9), (7), (24) we find

Tk =
1
n

n+1
v i∇k v

n+1

i =
1
n

n+1
v i(

•
∇k v

n+1

i + Tk v
n+1

i) =
1
n

α

T
α

i + Tk,

from where it follows
α

T
α

i = 0. ¤

From Theorem 1 and Corollary 3 it follows

Corollary 4. The space cAn is equiaffine if and only if the normaliser is
gradient.
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ПРОДЪЛЖЕНО КОВАРИАНТНО ДИФЕРЕНЦИРАНЕ
В ПРОСТРАНСТВА С АФИННА СВЪРЗАНОСТ

Георги Златанов, Бистра Царева

Резюме. В пространства с афинна свързаност без торзия се въвежда
продължено ковариантно диференциране с помощта на (n + 1) псевдовек-
тори. Доказано е, че продълженото ковариантно диференциране запазва
закона за паралелното пренасяне на полетата от направления по линии и
че този закон не зависи от избора на нормализатора. Записани са дери-
вационните уравнения за полетата от направления, намерени са връзките
между техните коефициенти и са направени приложения.

Намерени са характеристики, съдържащи нормализатора и коефици-
ентите от деривационните уравнения, за еквиафинните пространства.

Изучават се пространства с афинна свързаност, в които съществуват n
композиции от базови многообразия Xn−1 и X1. Намерени са характерис-
тики на тези пространства, когато композициите са геодезични, чебишеви
или декартови.
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