ПЛОВДИВСКИ УНИВЕРСИТЕТ "ПАИСИЙ ХИЛЕНДАРСКИ", БЪЛГАРИЯ НАУЧНИ ТРУДОВЕ, ТОМ 34, КН. 3, 2004 – MATEMATUKA PLOVDIV UNIVERSITY "PAISSII HILENDARSKI", BULGARIA SCIENTIFIC WORKS, VOL. 34, BOOK 3, 2004 – MATHEMATICS

L-PARALLEL NETS IN AN N-DIMENSIONAL SPACE OF WEYL

Ivan At. Badev

Abstract. Let in an *n*-dimensional space of Weyl W_n be given the net (v, v, \ldots, v) , defined by the independent fields of directions $v^i(\alpha = 1, 2, \ldots, n)$.

We note by L_{α} the lines with tangents fields of directions $v_1^k + \ldots + v_{\alpha-1}^k + v_{\alpha+1}^k + \ldots + v_n^k$. The net $(v_1, v_2, \ldots, v_n) \in W_n$ whose fields of directions $v_1^i(\alpha = 1, 2, \ldots, n)$ are transformed in parallel along the lines L_{α} is called an L-parallel one.

A net, allowing conforming transformation into an L-parallel one is called a conforming L-parallel.

By means of prolonged covariant differentiation characteristics of L-parallel nets, there have been found conforming L-parallel nets and spaces of Weyl, containing such nets.

Mathematics Subject Classifications 2000: 53A15, 53A60.

Key words: prolonged covariant differentiate, derivative equations, conforming transformation, transformed in parallel, coordinate net, chebyshevian net.

1. Preliminaries

Let in an *n*-dimensional space of Weyl $W_n(g_{is}, \omega_k)$ with fundamental tensor g_{is} and additional vector ω_k be given *n* independent fields of directions

 $v_{\alpha}^{i}(\alpha=1,2,\ldots,n)$. The net defined by fields of directions v_{α}^{i} will be noted by (v,v,\ldots,v) . The reciprocal co vectors v_{α}^{i} of v_{α}^{i} are defined by the equations:

(1)
$$v_{i}^{i\alpha}v_{k} = \delta_{k}^{i} \Leftrightarrow v_{i}^{i\beta}v_{i} = \delta_{\alpha}^{\beta}$$

In [2] the following derivative equations are worked out:

(2)
$$\dot{\nabla}_k v^i = \overset{\sigma}{T}_k v^i, \ \dot{\nabla}_k \overset{\alpha}{v}_i = \overset{\alpha}{T}_k \overset{\sigma}{v}_i, \ \sigma = 1, 2, \dots, n,$$

where $\overset{\cdot}{\nabla}$ is the prolonged covariant derivative. Following [2], the fundamental tensor g_{is} and its reciprocal tensor $g^{is}(g_{is}g^{ik}=\delta^i_k)$ satisfy the equations

$$\overset{\cdot}{\nabla}_k g_{is} = 0, \ \overset{\cdot}{\nabla}_k g^{is} = 0.$$

The reciprocally simple and differentiable correspondence between the points of two spaces, at which the fundamental tensors of these spaces coincide, is called conforming [1, p. 161]. The two spaces are called conforming. A well known property of the conforming spaces is that the angles between the corresponding directions are saved.

Let p is the conforming transformation of $W_n(g_{is}, \omega_k)$ into an $\overset{*}{W}_n(\overset{*}{g}_{is}, \overset{*}{\omega}_k)$ at which the net $(v_1, v_1, \dots, v_n) \in W_n$ is being transformed into $(v_1, v_2, \dots, v_n) \in \overset{*}{W}_n$. According to [1, p. 161] we have:

(4)
$$\overset{*}{g}_{is} = g_{is}, \overset{*}{g}^{is} = g^{is}, \overset{*}{v}_{i} = \overset{\alpha}{v}_{i}, \overset{*}{v}_{i}^{i} = \overset{v}{v}_{i}^{i}$$

The vector

$$(5) p_i = \omega_i - \overset{*}{\omega}_i,$$

is called a vector of conforming transformation [1].

Let the derivative equations (2) in the space $\overset{*}{W}_n$ be:

(6)
$$\dot{\nabla}_k v^i = \overset{\sigma}{P}_k v^i, \ \dot{\nabla}_k \overset{\alpha}{v}_i = -\overset{\alpha}{P}_k \overset{\sigma}{v}_i$$

In accordance with [3], between the coefficients of (2) and (6) the following equation is valid:

(7)
$$p_k^{\sigma} = T_k + p_s v_k v_{\alpha}^s - p_m g^{mi} v_i^{\sigma} g_{ks} v_{\alpha}^s$$

2. L-parallel nets in W_n .

Let the lines, defined by the field of directions $v_{\alpha}^{i}(\alpha = 1, 2, ..., n)$ be noted by (v_{α}) , and the lines, defined by the field of directions $v_{\alpha}^{k} + ... + v_{\alpha-1}^{k} + v_{\alpha+1}^{k} + ... + v_{\alpha}^{k}$ be marked with L_{α} .

Definition 1. The net $(v_1, v_2, \ldots, v_n) \in W_n$ will be called L-parallel, if the field of directions v_α^i is transformed in parallel along the lines defined by $L_\alpha(\alpha = 1, 2, \ldots, n)$.

Theorem 1. The net $(v_1, v_2, \ldots, v_n) \in W_n$ is L-parallel if and only if the following equations hold:

(8)
$$T_{\alpha}^{v}(v^{k} + \ldots + v^{k}_{\alpha-1} + v^{k}_{\alpha+1} + \ldots + v^{k}_{n}) = 0, \ v \neq \alpha; \ \alpha, v = 1, 2, \ldots, n.$$

Proof. Let the net $(v_1, v_2, \ldots, v_n) \in W_n$ be an L-parallel one. The field v_α^i is transformed in parallel along the lines L_α if and only if the equation [2] is valid:

(9)
$$(v_1^k + \ldots + v_{\alpha-1}^k + v_{\alpha+1}^k + \ldots + v_n^k) \dot{\nabla}_k v_\alpha^i = \lambda v_\alpha^i,$$

 λ is an arbitrary multiplier.

From (2) we have

$$\begin{aligned} &(v_1^k + \ldots + v_{\alpha-1}^k + v_{\alpha+1}^k + \ldots + v_n^k) \dot{\nabla}_k v_\alpha^i = \\ & \quad \frac{1}{T_a} k(v_1^k + \ldots + v_{\alpha-1}^k + v_{\alpha+1}^k + \ldots + v_n^k) v_1^i + \ldots + \sum_{\alpha=1}^{\alpha-1} k(v_1^k + \ldots + v_{\alpha-1}^k + v_{\alpha-1}^k + v_{\alpha+1}^k + \ldots + v_n^k) v_1^i + \ldots + v_{\alpha-1}^k v_1^k + \ldots + v_n^k v_n^k v_1^i + \ldots + v_n^k v_n^k v_n^i + \ldots + v_n^k v_n^i v_n^i v_n^i + \ldots + v_n^k v_n^i v_n^i + \ldots + v_n^i v_n^i + \ldots + v_n^i v_n^i v_n^i + \ldots + v_n^i v_n$$

From that, where according to (9) we obtain (8).

Conversely, let equations (8) hold for the net $(v, v, \ldots, v) \in W_n$. Taking into account (2), from the last equations we obtain (9). Consequently, (v, v, \ldots, v) is L-parallel.

The net $(v, v, \dots, v) \in W_n$ is a chebyshevian one of the first kind if and only if, conditions [2] are satisfied:

$$T_{\alpha}^{\sigma} v^{k} = 0, \ \alpha \neq \beta; \ \alpha, \beta, \sigma = 1, 2, \dots, n.$$

Consequently, any chebyshevian net of the first kind is at the same time an L-parallel net as well.

If with Γ_{is}^k we denote the coefficients of connection of the space $W_n(g_{is}, \omega_k)$, then the following theorem is valid.

Theorem 2. The coordinate net $(v, v, \dots, v) \in W_n$ is an L-parallel one if and only if the coefficients of connection Γ_{is}^k satisfy the equations:

(10)
$$\Gamma_{1\alpha}^{v} + \ldots + \Gamma_{\alpha-1,\alpha}^{v} + \Gamma_{\alpha+1,\alpha}^{v} + \ldots + \Gamma_{n\alpha}^{v} = 0, \ \alpha \neq v.$$

Proof. Let the *L*-parallel net $(v, v, \dots, v) \in W_n$ be a coordinate one. From (1) and (2) we obtain

$$v_i \dot{\nabla}_k v^i = T_k$$

According to [2], we have

(12)
$$\dot{\nabla}_k v^i = \nabla_k v^i + \omega_k v^i,$$

where ∇_k is the covariant derivative.

From (8), (9) and (12) for the *L*-parallel net $(v, v, \dots, v) \in W_n$ we find:

(13)
$$v_i(\nabla_k v_\alpha^i + \omega_k v_\alpha^i)(v_1^k + \dots + v_{\alpha-1}^k + v_{\alpha+1}^k + \dots + v_n^k) = 0, \ v \neq \alpha.$$

Since the net $(v, v, \dots, v) \in W_n$ is coordinate, from (8) and equation $\nabla_k v^i = \partial_k v^i + \Gamma^i_{ks} v^s$ follows:

$$\Gamma_{1\alpha}^v + \ldots + \Gamma_{\alpha-1,\alpha}^v + \Gamma_{\alpha+1,\alpha}^v + \ldots + \Gamma_{n\alpha}^v + \delta_{\alpha}^v (\omega_1 + \ldots + \omega_{\alpha-1} + \omega_{\alpha+1} + \ldots + \omega_n) = 0.$$

Taking into account that $\delta_{\alpha}^{v} = 0 (\alpha \neq v)$ from the last equation we obtain (10).

Conversely, let in the parameters of the net $(v_1, v_2, \ldots, v_n) \in W_n$ the coefficients of connection Γ_{is}^k satisfy condition (10). From that where, taking into consideration equations (11), (12) and (13), equation (8) follows, i.e., the coordinate net is an L-parallel one.

3. Conforming L-parallel nets in W_n .

Let the net $(v, v, \dots, v) \in W_n$ be transformed into an L-parallel one $(v, v, \dots, v) \in W_n$ by the conforming transformation.

If $\omega_{\alpha\beta}$ is the angle between the fields of directions v_{α}^{i} and v_{β}^{i} , then, following [3], we have

$$g_{is}v^iv^i = \cos \omega_{\alpha\beta}$$

Definition 2. Nets, allowing conforming transformation into L-parallel nets, are called conforming L-parallel nets.

Theorem 3. The orthogonal net $(v, v, \dots, v) \in W_n$ is a conforming L-parallel net if and only if the equations below are satisfied:

$$(15) \qquad (\overset{\sigma}{T}_{k} - \overset{v}{T}_{k})(v^{k} + \ldots + \overset{v}{v^{k}} + \overset{k}{v^{k}} + \ldots + \overset{v}{v^{k}}) = 0, \ v \neq \alpha, \ \sigma \neq \alpha.$$

Proof. Let the orthogonal net $(v_1, v_2, \ldots, v_n) \in W_n$ be transformed by conforming transformation into the *L*-parallel net $(v_1, v_2, \ldots, v_n) \in W_n$. In accordance with (6) and Theorem 1, the net $(v_1, v_2, \ldots, v_n) \in W_n$ is *L*-parallel if and only if the equations are satisfied:

(16)
$$P_{\alpha}^{v}(v_1^k + \dots + v_{\alpha-1}^k + v_{\alpha+1}^k + \dots + v_n^k) = 0, \quad v \neq \alpha; \quad v, \alpha = 1, 2, \dots, n.$$

Taking into account (7), and from the last equations we find:

$$(17) \quad (T_{\alpha}^{v} + p_{s} v_{\alpha}^{s} v_{k}^{v} - p_{m} g^{mi} v_{i}^{v} g_{ks} v_{\alpha}^{s}) (v_{1}^{k} + \dots + v_{\alpha-1}^{k} + v_{\alpha+1}^{k} + \dots + v_{n}^{k}) = 0,$$

$$v \neq \alpha; \ v, \alpha = 1, 2, \dots, n.$$

Since the net (v, v, \dots, v) is orthogonal, it follows that

(18)
$$g_{is}v_{\alpha}^{i}v_{\beta}^{s} = 0, \ \alpha \neq \beta.$$

Then (17) takes the form

(19)
$$T_{\alpha}^{v}(v_1^k + \ldots + v_{\alpha-1}^k + v_{\alpha+1}^k + \ldots + v_n^k) + p_s v_{\alpha}^s = 0, \ v = 1, 2, \dots, n.$$

The system (19) has one and only solution of the vector of conforming transformation p_s if and only if condition (15) is satisfied.

Let the net $(v_1, v_1, \dots, v_n) \in W_n$ be a conforming L-parallel net. We introduce the denotations

(20)
$$Q = T_{\alpha}^{v}(v_{1}^{k} + \dots + v_{\alpha-1}^{k} + v_{\alpha+1}^{k} + \dots + v_{n}^{k}), \ \alpha \neq v.$$

Hence (19) takes the form:

$$p_s v^s = Q,$$

from where for the vector of conforming transformation we find

$$p_s = Q_v^{\alpha}$$
.

Theorem 4. The coordinate net $(v, v, \dots, v) \in W_n$ is a conforming L-parallel net if and only if the coefficients of connection Γ_{is}^k satisfy the equation

(21)
$$\Gamma_{1\alpha}^{\sigma} - \Gamma_{1\alpha}^{v} + \Gamma_{2\alpha}^{\sigma} - \Gamma_{2\alpha}^{v} + \dots + \Gamma_{\alpha-1,\alpha}^{\sigma} - \Gamma_{\alpha-1,\alpha}^{v} + \dots + \Gamma_{\alpha+1,\alpha}^{\sigma} - \Gamma_{\alpha+1,\alpha}^{v} + \dots + \Gamma_{n\alpha}^{\sigma} - \Gamma_{n\alpha}^{v} = 0, \quad \sigma \neq \alpha, \ v \neq \alpha.$$

Proof. Let the coordinate net $(v, v, \dots, v) \in W_n$ be a conforming L-parallel one. From (15), taking into account equations (11) and (12), we obtain (21).

Conversely, let the net $(v, v, \dots, v) \in W_n$ be a coordinate one and equation (21) is satisfied. From equations (11), (12) and (21) there it follows (15). Consequently, the net (v, v, \dots, v) is a conforming L-parallel net.

References

- [1] Norden A. P., Affinaly Connected Spaces, Izd GRFML, Moscow 1976, (in Russian).
- [2] Zlatanov G., Nets in n-dimensional space of Weyl. Comptes rendus de l'Academie Bulgare des Scienties t.41, No 10, 1988, 29–32.
- [3] Zlatanov G.Z., About conforming geometry of nets in a n-dimensional space of Weyl., Izv. Vyssh. Uchebn. Zaved. Mathem., No 8, 1991, p.19–26 (in Russian).

Technical college "J. Atanasov" Plovdiv 4000 Blv. Bucston 71A tel. 032/823475 e-mail: ivanbadev@abv.bg Received June 2003

L-ПАРАЛЕЛНИ МРЕЖИ В N-МЕРНО ПРОСТРАНСТВО НА ВАЙЛ

Иван Ат. Бадев

Резюме. Нека в n-мерно вайлово пространство W_n е зададена мрежата $(v,v,\dots,v),$ определена от независимите полета от направления $v^i(\alpha=1,2,\dots,n).$

Линиите на които допирателните полета от направления са $v^k + \ldots + v^k + v^k + \cdots + v^k$, означаваме с L_α . Мрежа (v, v, \ldots, v) , на която полетата от направления $v^i(\alpha = 1, 2, \ldots, n)$ се пренасят паралелно по линиите L_α , наричаме L-паралелна.

В работата с помощта на продълженото ковариантно диференциране са намерени характеристики на L-паралелни мрежи, на конформно L-паралелни мрежи и на вайлови пространства, които съдържат такива мрежи.