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STRIPED NETS IN A THREE-DIMENSIONAL SPACE OF

WEYL

Ivan At. Badev

Abstract. Striped nets in a two-dimensional Riemannian space are in-
troduced and studied by Stauber [3] and Komisaruk [1]. Properties of some
special striped nets are found in [2]. B. Tsareva in [4] and [5] defines and
studies striped nets in a two-dimensional space of Weyl.

Striped nets in a three-dimensional space of Weyl are defined and studied
in this paper.
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1. Preliminaries

Let in a three-dimensional space of Weyl W3(gis, Tk) with a fundamental
tensor gis and an additional vector Tk, be given three independent fields of
directions v

α

i. There is a net (v
1
, v
2
, v
3
) ∈ W3, defined by the independent fields

of directions v
α

i for α = 1, 2, 3. The reciprocal covectors
α
vi of v

α

i are defined by
the equations:

(1) v
α

iαvk = δi
k ⇔ v

α

iβvi = δβ
α

We standardize the fields of directions v
α

i by equation [6]

(2) gisv
α

iv
α

s = 1.
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If ω
αβ

is the angle between the fields of directions v
α

i and v
β

i, then following

[6] we have

(3) gisv
α

iv
α

s = cos ω
αβ

.

In [6] there is introduced the prolonged covariant differentiate of the satellites
of the fundamental tensor gis with weight {k}. From [6] we have

(4)
·
∇kgis = 0,

·
∇kg

is = 0.

There
·
∇ is the symbol of the prolonged covariant derivative, and gis is the

reciprocal tensor of gis. In [6], the following derivative equations are worked
out:

(5)
·
∇kv

α

i =
σ
T
α

kv
σ

i,
·
∇k

α
vi = −

α
T
σ

k
σ
vi, σ = 1, 2, 3.

From (1) and (3) we have gikv
α

i =
β
vk cos ω

αβ
. From (4) and the last equation

after the prolonged covariant derivative and contracting by v
β

v we obtain

(6)
σ
T
α

j cos ω
σv

+
σ
T
v

j cos ω
σα

=
(

cos ω
αv

)
j

.

2. Striped nets in W3

2.1. Striped nets of first kind

Definition 1. The net (v
1
, v
2
, v
3
) ∈ W3 will be called a striped net of first

kind if

(7) ω
αβ

j = λ
α
vj + µ

α
vj ,

where α 6= β and α, β = 1, 2, 3.

From the definition it follows that the gradient of the net angle ω
αβ

j belongs

to the platform, defined by the covectors
α
vj and

α
vj .
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Proposition 1. The net (v
1
, v
2
, v
3
) ∈ W3 is striped of first kind if and only

if:

(8)
(σ
T
α

j cos ω
σβ

+
σ
T
β

j cos ω
σα

)
v
γ

j = 0, (α, β, γ) = (1, 2, 3), (2, 3, 1), (3, 1, 2).

Proof. Let (v
1
, v
2
, v
3
) ∈ W3 be a striped net of first kind. From (6) and (7)

we obtain

(9)
σ
T
α

j cos ω
σβ

+
σ
T
β

j cos ω
σα

= λ
(α)

(α)
v j + µ

α

β
vj , (α, β) = (1, 2), (2, 3), (3, 1).

From here, after contracting by v
γ

k we obtain the equations (8).

(The branched indexes are not to be summed.)
Conversely, let equations (8) be satisfied for a net (v

1
, v
2
, v
3
) ∈ W3, then

equations (9) follow easily which shows that the net (v
1
, v
2
, v
3
) is a striped net

one of first kind. ¤

2.2. Striped Nets of second kind

Definition 2. The net (v
1
, v
2
, v
3
) ∈ W3 will be called a striped one of second

kind if:

(10) ω
αβ

j = λ
α
(
α
vj +

β
vj) + µ

α

γ
vj , (α, β, γ) = (1, 2, 3), (2, 3, 1), (3, 2, 1).

Proposition 2. The net (v
1
, v
2
, v
3
) ∈ W3 be striped of second kind if and

only if:

(11)

(
σ
T
1

j cos ω
σ2

+
σ
T
2

j cos ω
σ1

)(
v
1

j − v
2

j

)
= 0,

(α, β, γ) = (1, 2, 3), (2, 3, 1), (3, 2, 1).

Proof. Let the net (v
1
, v
2
, v
3
) ∈ W3 be a striped of second kind. From (6)

and (10) we obtain:

(12)

σ
T
α

j cos ω
σβ

+
σ
T
β

j cos ω
σα

= λ
(α)

(
(α)
v j +

β
vj

)
+ µ

α

γ
vj ,

(α, β, γ) = (1, 2, 3), (2, 3, 1), (3, 2, 1).
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From here, after contracting by v
1

j − v
2

j , v
2

j − v
3

j and v
3

j − v
1

j respectively we

obtain (11).
Conversely, let equations (11) be valid for the net (v

1
, v
2
, v
3
) ∈ W3. From (6)

and (11) we obtain (10), i.e. the net (v
1
, v
2
, v
3
) is a striped one of second kind.

¤
3.1. Striped Nets

Definition 3. The net (v
1
, v
2
, v
3
) ∈ W3 will be called striped, if it is a striped

net of first and second kind.

From Proposition 1 and Proposition 2 it follows:

Proposition 3. The net (v
1
, v
2
, v
3
) ∈ W3 is striped if and only if:

(13)

(
σ
T
α

j cos ω
σβ

+
σ
T
β

j cos ω
σα

)(
v
α

j − v
β

j + v
γ

j

)
= 0,

(α, β, γ) = (1, 2, 3), (2, 3, 1), (3, 2, 1).

Corollary 1. The striped net (v
1
, v
2
, v
3
) ∈ W3 is a geodesic net if and only

if

(14)

σ
T
α

kv
σ

k = 0, α 6= σ,

σ
T
α

k cos ω
σβ

(v
γ

k − v
φ

k) +
σ
T
β

k cos ω
σε

(v
1

k − v
γ

k) = 0,

(α, β, γ) = (1, 2, 3), (2, 3, 1), (3, 2, 1).

Proof. Following [6], we have

(15)
σ
T
α

kv
σ

k = 0, α 6= σ.

From (15) and (13) we obtain (14). The converse is also true. If (14) is valid
for the striped net (v

1
, v
2
, v
3
), the is a geodesic one. ¤

Corollary 2. The striped net (v
1
, v
2
, v
3
) ∈ W3 is chebyshevian of first kind

if and only if:

(16)
σ
T
α

kv
σ

k = 0,
σ
T
α

kv
α

k cos ω
σβ
−

σ
T
β

kv
β

k cos ω
σα

= 0, α 6= β; α, β = 1, 2, 3.
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Proof. Chebyshevian nets of second kind are characterized by equations
[6]:

(17)
σ
T
α

kv
β

k = 0, α 6= σ; α, β = 1, 2, 3

From (17) and (13) we obtain (16). The converse is also true. If (16) is valid
for the striped net (v

1
, v
2
, v
3
), the net is a chebishevian one of second kind. ¤
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IVIQNI MRE�I V TRIMERNOTO PROSTRANSTVO
NA VA�L

Ivan At. Badev

Rez�me. V rabotata sa definirani i izsledvani iviqni mre�i v
trimerno va�lovo prostranstvo W3. Poluqeni sa harakteristiki na tezi
mre�i, koito se izraz�vat s zavisimosti me�du poletata ot napravleni� na
mre�ata, koeficientite na derivacionnite uravneni� na mre�ata i �g�la
me�du poletata ot napravleni�. Namereni sa neobhodimi i dostat�qni
uslovi� dadena iviqna mre�a da e geodeziqna ili qebixeva ot vtori rod.
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