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Abstract. Let K ∗G be a crossed product of the group G over the central
simple F -algebra K of characteristic p ≥ 0. Suppose that the kernel Gker of
K ∗G has no p-elements when p > 0 and let P be the minimal subfield of F

which contains the factor set of the natural twisted group subring F ∗ Gker.
If either F is not an algebraic extension of P , or |F | > |H| for all finitely
generated subgroups H of Gker, then we prove that K ∗G is a semiprimitive
ring.
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Let K ∗G = Kσ
ρ G be a crossed product [5, 13] of the multiplicative group

G over the associative ring K with respect to the factor set

ρ = {ρ(g, h) ∈ K∗ | g, h ∈ G}

and the mapping σ : G → AutK, where K∗ is the multiplicative group of K

and AutK is the automorphism group of K. Then K ∗G is simultaneously an
associative ring and a free right K-module with a basis

G = {ḡ ∈ K ∗G | g ∈ G}.

The elements of G satisfy the conditions

ḡh̄ = ghρ(g, h), αḡ = ḡαgσ (g, h ∈ G, α ∈ K),
∗This research was supported by PU-03-M-43.

19



where αgσ is the image of α ∈ K under the action of the automorphism
gσ ∈ AutK. Thus each element a ∈ K ∗G is uniquely a finite sum

a =
∑

g∈G

ḡαg (αg ∈ K)

and Supp a = {g ∈ G | αg 6= 0} is the support of a. Since f̄(ḡh̄) = (f̄ ḡ)h̄ and
(αḡ)h̄ = α(ḡh̄), we have

(1)
ρ(f, gh)ρ(g, h) = ρ(fg, h)ρ(f, g)hσ,

αgσ.hσ = ρ(g, h)−1α(gh)σρ(g, h)

for all f, g, h ∈ G and α ∈ K.
Certain special cases of crossed products have their own names [13]. If

σ = 1, that is gσ is the identity automorphism of K for all g ∈ G, then
K ∗G = KρG is a twisted group ring. If ρ = 1, i.e. ρ(g, h) = 1 for all g, h ∈ G,
then K ∗ G = KσG is a skew group ring. Finally, if there is no action and
twisting, i.e. σ = 1 and ρ = 1, then K ∗G = KG is the ordinary group ring.
The conditions for associativity (1) show that for every twisted group ring
KρG the factor set ρ is central, i.e. ρ(g, h) is a central element of K for all
g, h ∈ G.

Let Inn K be the group of the inner automorphisms of K. If K ∗G is any
crossed product, then the kernel

Gker = {g ∈ G | gσ ∈ Inn K}

of K ∗G is a normal subgroup of G [5]. If H is any subgroup of G, then it is
clear that

K ∗H = {a ∈ K ∗G | Supp a ⊆ H}
is a subring of K ∗ G and Hker = H ∩ Gker. By analogy, if S ≤ K, then we
put

S ∗G =

{∑

g∈G

ḡαg | αg ∈ S

}
.

Unlike the group rings, the crossed products do not have natural bases.
Indeed, if θ : G → K∗ is an arbitrary mapping, then G̃ = {g̃ = ḡθ(g) | g ∈ G}
yields an alternate K-basis for K ∗ G which still exhibits the basic crossed
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product structure. The basis G̃ is said to be diagonally equivalent of G [13].
Every crossed product K ∗ G with a basis G has a diagonally equivalent
K-basis G̃, such that 1̃ (1 ∈ G) is the identity element of K ∗ G and the
subring K ∗Gker with basis G̃ker is a twisted group ring [7, 9]. Then we call
that the basis G̃ is normalized. Therefore we can and we shall assume that
the basis G of K ∗G is normalized.

Let K be a central simple F -algebra, that is K is a simple ring with
center F . Some results of [8, 9] assert that if Gker has no p-elements when
char F = p > 0 and Gker has a finite subnormal series, such that all factors
of this series are either locally finite, or locally solvable, then K ∗ G is a
semiprimitive ring, that is J (K ∗G) = O, where J (K ∗G) if the Jacobson’s
radical of the ring K ∗ G. Here we show that for some fields F the second
condition for Gker is not necessary.

Namely, if F (Gker) is the minimal subfield of F which contains the factor
set of the normalized twisted group ring K ∗Gker, then we have the following

Theorem 1. Let K ∗G be any crossed product of a multiplicative group

G over a central simple F -algebra K of characteristic p ≥ 0. If Gker has no

p-elements when p > 0 and either F is not an algebraic extension of F (Gker),
or |F | > |H| for all finitely generated subgroups H of Gker, then J (K∗G) = O.

The formulated theorem is a crossed product analog of well known results
of Amitsur [2] and Passman [11] for semiprimitive group ring KG, where K

is a field. In effect, if K ∗G = KG is a group ring, then Gker = G, ρ = 1 and
F (Gker) is the prime subfield of K. Thus the results of Amitsur and Passman
follow from Theorem 1.

The proof of Theorem 1 uses the methods of Amitsur and Passman and a
recent result of Dimitrova [6, 7]. So we commence with following

Lemma 2. Let K ∗ G be a crossed product of a group G over a central

simple F -algebra K of characteristic p ≥ 0.

(i). If J (K ∗G) 6= O, then J (F ∗Gker) 6= O;

(ii). If Gker has no p-elements when p > 0, then K ∗G has no nil ideals.

Proof. Since K is a prime ring without nil ideals and Gker = Ginn [5, 13],
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in view of [7, Lemma 2.2 (ii)] we obtain that

I = J (K ∗G) ∩ F ∗Gker

is a nonzero ideal of F ∗Gker. Thus it suffices to show that I is a quasiregular
ideal of F ∗Gker.

Indeed, by [12, Lemma 7.1.5] we have

I = J (K ∗G) ∩ F ∗Gker ⊆ J (K ∗G) ∩K ∗Gker ⊆ J (K ∗Gker).

Therefore every nonzero element a ∈ I has a quasi-inverse element
b ∈ K ∗Gker, such that a + b + ab = 0.

Since K is a linear space over F , we write K = F ⊕ V as direct sum of
F -modules, where V is a complementary F -subspace of K. Now write
b = b0 + b1 with b0 ∈ F ∗Gker and b1 ∈ V ∗Gker. Then

0 = a + b + ab = (a + b0 + ab0) + (b1 + ab1),

where a+b0+ab0 ∈ F∗Gker and b1+ab1 ∈ V ∗Gker. Thus we conclude that both
of these summands must be zero. In particular, the element b0 ∈ F ∗ Gker is
also quasi-inverse for a ∈ I. Hence I is a nonzero quasiregular ideal of F ∗Gker

and J (F ∗ Gker) 6= O. Since the part (ii) follows from [6, Theorem A], the
lemma is proved. ¤

Let A be an F -algebra over the field F . Then the algebra A is said to
be separable [12, p.284] if for all fields L ≥ F the algebra AL = L ⊗F A is
semiprimitive, i.e. J (AL) = O. Recall that A is a nilpotent free F -algebra
if for all fields L ≥ F the algebra AL has no nilpotent ideals [12, p.285].
It is known [12, Theorem 7.3.6] that if A is a nilpotent free F -algebra and
J (A) = O, then A is separable. Thus by preceding lemma we obtain the
following

Corollary 3. Let FρG be a twisted group ring of a group G over a field F

of characteristic p ≥ 0. If G has no p-elements when p > 0 and J (FρG) = O,

then FρG is a separable F -algebra.

Proof. Let L be any field extension of F . Then

(FρG)L = L⊗F (FρG) = LρG
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is a twisted group ring of G over L with factor set ρ. Since char L = char F , by
Lemma 2 (ii) we conclude that LρG has no nilpotent ideals. Therefore FρG is
a nilpotent free F -algebra and the statement follows from [12, Theorem 7.3.6].

¤

Proof of Theorem 1. Assume by way of contradiction that
J (K ∗ G) 6= O. Then by Lemma 2 (i) we see that J (F ∗ Gker) 6= O. Since
F ∗ Gker = FρGker is a twisted group ring [7, Lemma 2.1 (ii)] and the factor
set ρ is central, it follows that F ∗Gker is an F -algebra.

First, assume that |F | > |H| for all finitely generated subgroups H of
Gker. If 0 6= a ∈ J (F ∗Gker), then the supporting subgroup H = 〈Supp a〉 is
finitely generated and therefore |F | > |H|. Since |H| = |H| we conclude that
the K-basis of F ∗H satisfies the condition |F | > |H|. Then applying a well
known theorem of Amitsur [1] or [12, Lemma 7.1.2], we receive that J (F ∗H)
is a nil ideal. But this contradicts Lemma 2 (ii), since by [9, Lemma 2.2 (ii)]
we have

a ∈ J (F ∗Gker) ∩ F ∗H ⊆ J (F ∗H).

In the second place, if F is not an algebraic extension of the subfield
P = F (Gker), then there exists an element α ∈ F such that L = P (α) is a
purely transcendental extension of the field P . Now we put

LρGker = L⊗P (PρGker)

and by a theorem of Amitsur [1], or [12, Theorem 7.3.4] we have

J (LρGker) = L⊗P I,

where I = J (LρGker) ∩ (PρGker) is a nil ideal of PρGker. Hence by Lemma 2
(ii) we obtain that I = O and therefore J (LρGker) = O. Thus by Corollary 3
we see that LρGker is a separable L-algebra. Finally, since FρGker =
F⊗L(LρGker), where F is semiprimitive and LρGker is separable, by a theorem
of Bourbaki [4, p.223] or [12, Theorem 7.3.9] we obtain that J (FρGker) = O,
which again is a contradiction. Therefore J (K ∗ G) = O and the theorem is
proved. ¤

As an immediate consequence of Theorem 1 we obtain
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Corollary 4. Let K ∗ G be a crossed product over a central simple

F -algebra K of characteristic p ≥ 0. If Gker has no p-elements when p > 0
and either F is nondenumerable, or F is infinite and Gker is locally finite, then

J (K ∗G) = O.

Indeed, let H be a finitely generated subgroup of Gker. If Gker is a locally
finite group, then |H| < ∞ and |F | > |H|. If Gker is not locally finite and
H is infinite, then H is a denumerable group and |F | > |H|, because F is a
nondenumerable field. Thus the statement follows from Theorem 1.

For skew group rings we have the following

Corollary 5. Let F σG be a skew group ring of the group G over the field

F of characteristic p ≥ 0. If Gker has no p-elements when p > 0 and either

F is nondenumerable, or F is not algebraic over the prime subfield of F , then

F σG is a semiprimitive ring.

Really, F σGker is a group ring and F (Gker) = F . Hence, as above the
assertion follows again from Theorem 1.

It is clear that if σ = 1, then Corollary 5 gives well known results of [2],
[3] and [12] (see also [13, Lemma 7.1.6, Theorem 7.3.13 and Theorem 7.3.14]).

We close this paper with an application of [9, Theorem 3.6].
Let

G = G0 ⊇ G1 ⊇ · · · ⊇ Gα ⊇ · · ·
be the commutator series of the group G, that is G1 = G′ = [G, G] is the
commutator subgroup of G. Gα+1 = [Gα, Gα] for every ordinal number α

and Gα =
⋂

β<α

Gβ for limite ordinal numbers α. Then there exists an ordinal

number τ such that Gτ = Gα for all α ≥ τ [10, p.89]. It is clear that H = Gτ

is a normal subgroup of G and H = H ′ = [H, H]. This normal subgroup
H = H(G) we shall call hypercommutant of G. Thus we have the following

Theorem 6. Let K ∗ G be a crossed product over a central simple

F -algebra K with char F = 0. If H = H(Gker) is the hypercommutant of

Gker and F is not an algebraic extension of F (H), then J (K ∗G) = O.

Proof. Recall that F (H) is the minimal subfield of F which contains the
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factor set of the normalized twisted group ring F ∗H ⊆ K ∗G.
Suppose that J (K∗G) 6= O. Then Lemma 2 (i) yields J (F∗Gker) 6= O. By

[9, Theorem 3.6] we receive J (F ∗Gker) ⊆ J (F ∗H)F ∗Gker. But Theorem
1 shows that J (F ∗ H) = O. Hence J (F ∗ Gker) = O and we obtain a
contradiction. The theorem is proved. ¤

It is well known that if A is a finitely generated commutative algebra over
a field F , then J (A) is a nil ideal. The question here is whether the commu-
tativity condition can be eliminated [12, p.291]. An affirmative answer proves
that then J (FρG) is a nil ideal in general. Thus if G has no p-elements when
char F = p > 0, it would prove that always J (FρG) = O. But Theorem 1
shows that in this case FρG is always a subring of a semiprimitive twisted
group ring. Indeed, if L is a purely transcendental or nondenumerable ex-
tension of F , then FρG is a subring of the semiprimitive twisted group ring
LρG = L⊗F (FρG).
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V_RHU POLUPRIMITIVNOSTTA NA KR_STOSANI
PROIZVEDENI� NA GRUPI I PROSTI PR_STENI

�.M. Dimitrova, S.V. Mihovski

Rez�me. Neka K ∗ G e kr�stosano proizvedenie na grupata G nad
centralno prostata F -algebra K s harakteristika p. Da predpolo�im, qe
�droto Gker na K ∗G ne s�d�r�a p-elementi, kogato p > 0 i neka P e mini-
malnoto podpole na F , koeto s�d�r�a sistemata ot faktori na kr�stosani�
grupov pr�sten F ∗Gker ⊆ K ∗G. Ako F ne e algebriqno razxirenie na P

ili |F | > |H| za vs�ka kra�no porodena podgrupa H na grupata Gker, toga-
va dokazvame, qe K ∗ G e poluprimitiven pr�sten, t.e. negovi�t radikal
na D�ek�bs�n e nulev.
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