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Abstract. Let K *G be a crossed product of the group G over the central
simple F-algebra K of characteristic p > 0. Suppose that the kernel G, of
K % G has no p-elements when p > 0 and let P be the minimal subfield of F
which contains the factor set of the natural twisted group subring F' x Gge,.
If either F' is not an algebraic extension of P, or |F| > |H| for all finitely
generated subgroups H of G, then we prove that K x GG is a semiprimitive
ring.
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Let K «G = K,‘JG be a crossed product [5, 13] of the multiplicative group
G over the associative ring K with respect to the factor set

p=1{p(g,h) € K" | g,h € G}

and the mapping 0 : G — AutK, where K* is the multiplicative group of K
and AutK is the automorphism group of K. Then K * G is simultaneously an
associative ring and a free right K-module with a basis

G={ge K*xG|geG}
The elements of G satisfy the conditions

gh = ghp(g.h), ag=ga’ (g9,h€G, a€K),
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where a9 is the image of @ € K under the action of the automorphism
go € Aut K. Thus each element a € K * (G is uniquely a finite sum

a = Zgag (ag € K)
geG
and Suppa = {g € G | g # 0} is the support of a. Since f(gh) = (fg)h and
(ag)h = a(gh), we have

(1) P(fagh)p(g,h) :p(fg’h) (f’g hU’
adoho — p(g7 h)fla(gh)ap(g’ h)

for all f,g,h € G and o € K.

Certain special cases of crossed products have their own names [13]. If
o = 1, that is go is the identity automorphism of K for all ¢ € G, then
K *G = K,G is a twisted group ring. If p =1, i.e. p(g,h) =1 for all g,h € G,
then K « G = K°G is a skew group ring. Finally, if there is no action and
twisting, i.e. 0 =1 and p =1, then K x G = KG is the ordinary group ring.
The conditions for associativity (1) show that for every twisted group ring
K,G the factor set p is central, i.e. p(g,h) is a central element of K for all
g,h € G.

Let Inn K be the group of the inner automorphisms of K. If K x G is any
crossed product, then the kernel

Grer ={9€G|go € InnK}

of K % G is a normal subgroup of G [5]. If H is any subgroup of G, then it is
clear that
KxH={a€ K«xG|Suppa C H}

is a subring of K *x G and Hg., = H N Gier. By analogy, if S < K, then we
put

S*G:{Zgag\ageS}.
geG

Unlike the group rings, the crossed products do not have natural bases.
Indeed, if § : G — K* is an arbitrary mapping, then G = {g = g0(g) | g € G}
yields an alternate K-basis for K % G which still exhibits the basic crossed
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product structure. The basis G is said to be diagonally equivalent of G [13].
Every crossed product K * G with a basis G has a diagonally equivalent
K-basis G, such that 1 (1 € G) is the identity element of K % G and the
subring K * G, with basis Ghrer is a twisted group ring [7, 9]. Then we call
that the basis G is normalized. Therefore we can and we shall assume that
the basis G of K * G is normalized.

Let K be a central simple F-algebra, that is K is a simple ring with
center F. Some results of [8, 9] assert that if Gp., has no p-elements when
char F = p > 0 and G, has a finite subnormal series, such that all factors
of this series are either locally finite, or locally solvable, then K * G is a
semiprimitive ring, that is J(K * G) = O, where J (K * G) if the Jacobson’s
radical of the ring K * G. Here we show that for some fields F' the second
condition for G, is not necessary.

Namely, if F'(Ger) is the minimal subfield of F' which contains the factor
set of the normalized twisted group ring K * Gpe,, then we have the following

Theorem 1. Let K x G be any crossed product of a multiplicative group
G over a central simple F-algebra K of characteristic p > 0. If G, has no
p-elements when p > 0 and either F' is not an algebraic extension of F(Gyer),
or|F| > |H| for all finitely generated subgroups H of Gy, then J (K+G) = O.

The formulated theorem is a crossed product analog of well known results
of Amitsur [2] and Passman [11] for semiprimitive group ring KG, where K
is a field. In effect, if K « G = KG is a group ring, then Gge, = G, p =1 and
F(Gger) is the prime subfield of K. Thus the results of Amitsur and Passman
follow from Theorem 1.

The proof of Theorem 1 uses the methods of Amitsur and Passman and a
recent result of Dimitrova [6, 7]. So we commence with following

Lemma 2. Let K x G be a crossed product of a group G over a central
simple F-algebra K of characteristic p > 0.

(i). If J(K % G) # O, then J(F * Gper) # O;

(ii). If Gyer has no p-elements when p > 0, then K % G has no nil ideals.

Proof. Since K is a prime ring without nil ideals and Gger = Ginn [5, 13],
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in view of [7, Lemma 2.2 (ii)] we obtain that
I=J(Kx«G)NF *Gpe

is a nonzero ideal of F'* G.,. Thus it suffices to show that I is a quasiregular
ideal of F' % Gep.
Indeed, by [12, Lemma 7.1.5] we have

I=J(K«G)NF*Grer CT(K*G)NK *Grer € T(K * Grer)-

Therefore every nonzero element a € I has a quasi-inverse element
b € K * Gyep, such that a + b+ ab = 0.

Since K is a linear space over F, we write K = F & V as direct sum of
F-modules, where V is a complementary F-subspace of K. Now write
b=1bg+ by with by € F * G, and by € V % Giep. Then

O0=a+0b+ab= (a+by+aby)+ (b1 + aby),

where a+by+aby € F+Gper and by+aby € V+Gpe,.. Thus we conclude that both
of these summands must be zero. In particular, the element by € F * Gy is
also quasi-inverse for a € I. Hence [ is a nonzero quasiregular ideal of F'* G,
and J(F * Gger) # O. Since the part (ii) follows from [6, Theorem A], the
lemma is proved. O

Let A be an F-algebra over the field F. Then the algebra A is said to
be separable [12, p.284] if for all fields L > F the algebra A¥ = L @p A is
semiprimitive, i.e. J(AY) = O. Recall that A is a nilpotent free F-algebra
if for all fields L > F the algebra A" has no nilpotent ideals [12, p.285].
It is known [12, Theorem 7.3.6] that if A is a nilpotent free F-algebra and
J(A) = O, then A is separable. Thus by preceding lemma we obtain the
following

Corollary 3. Let F,G be a twisted group ring of a group G over a field I’
of characteristic p > 0. If G has no p-elements when p > 0 and J(F,G) = O,
then F,G is a separable F-algebra.

Proof. Let L be any field extension of F. Then

(F,G)' = Lor (F,G) = L,G
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is a twisted group ring of G over L with factor set p. Since char L = char F, by
Lemma 2 (ii) we conclude that L,G has no nilpotent ideals. Therefore F,G is

a nilpotent free F-algebra and the statement follows from [12, Theorem 7.3.6].
|

Proof of Theorem 1. Assume by way of contradiction that
J(K *G) # O. Then by Lemma 2 (i) we see that J(F * Gier) # O. Since
F % Grer = F)Gher is a twisted group ring [7, Lemma 2.1 (ii)] and the factor
set p is central, it follows that F' x G, is an F-algebra.

First, assume that |F'| > |H| for all finitely generated subgroups H of
Gier- If 0 # a € J(F * Gper), then the supporting subgroup H = (Suppa) is
finitely generated and therefore |F| > |H|. Since |H| = |H| we conclude that
the K-basis of I H satisfies the condition |F| > [H|. Then applying a well
known theorem of Amitsur [1] or [12, Lemma 7.1.2], we receive that J(F * H)
is a nil ideal. But this contradicts Lemma 2 (ii), since by [9, Lemma 2.2 (ii)]
we have

a€ J(F*Grer)N FxHC J(Fx*H).

In the second place, if I’ is not an algebraic extension of the subfield
P = F(Gker), then there exists an element o € F such that L = P(«a) is a
purely transcendental extension of the field P. Now we put

Lkaer =L®p (Pkaer)
and by a theorem of Amitsur [1], or [12, Theorem 7.3.4] we have
j(LPerr) =L Xp I,

where I = J(L,Gjer) N (PyGier) is a nil ideal of PyGje,. Hence by Lemma 2
(ii) we obtain that I = O and therefore J(L,Gger) = O. Thus by Corollary 3
we see that L,Gpe is a separable L-algebra. Finally, since F,Gpe, =
F®r(L,Gger), where F is semiprimitive and L,Gy., is separable, by a theorem
of Bourbaki [4, p.223] or [12, Theorem 7.3.9] we obtain that J (F,Gjer) = O,
which again is a contradiction. Therefore J(K * G) = O and the theorem is
proved. U

As an immediate consequence of Theorem 1 we obtain
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Corollary 4. Let K * G be a crossed product over a central simple
F-algebra K of characteristic p > 0. If G, has no p-elements when p > 0
and either F' is nondenumerable, or F' is infinite and Gy, is locally finite, then

J(K+xG)=0.

Indeed, let H be a finitely generated subgroup of Gpe,. If G, is a locally
finite group, then |H| < oo and |F| > |H|. If Gger is not locally finite and
H is infinite, then H is a denumerable group and |F| > |H|, because F is a
nondenumerable field. Thus the statement follows from Theorem 1.

For skew group rings we have the following

Corollary 5. Let F°G be a skew group ring of the group G over the field
F of characteristic p > 0. If G has no p-elements when p > 0 and either
F' is nondenumerable, or F' is not algebraic over the prime subfield of F', then

F?(G is a semiprimitive ring.

Really, F7Gper is a group ring and F(Gger) = F. Hence, as above the
assertion follows again from Theorem 1.

It is clear that if o = 1, then Corollary 5 gives well known results of [2],
[3] and [12] (see also [13, Lemma 7.1.6, Theorem 7.3.13 and Theorem 7.3.14]).
We close this paper with an application of [9, Theorem 3.6].
Let
G=GyDG 2D DGyD--

be the commutator series of the group G, that is G; = G’ = [G,G] is the
commutator subgroup of G. Ga+1 = [Ga, Gl for every ordinal number «
and G, = ﬂ G for limite ordinal numbers o. Then there exists an ordinal

[B<a
number 7 such that G, = G, for all & > 7 [10, p.89]. It is clear that H = G-

is a normal subgroup of G and H = H' = [H, H|. This normal subgroup
H = H(G) we shall call hypercommutant of G. Thus we have the following

Theorem 6. Let K x G be a crossed product over a central simple
F-algebra K with char F = 0. If H = H(Gge,) Is the hypercommutant of
Gier and F' is not an algebraic extension of F(H), then J(K x G) = O.

Proof. Recall that F'(H) is the minimal subfield of F' which contains the
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factor set of the normalized twisted group ring '« H C K x G.

Suppose that J(K*G) # O. Then Lemma 2 (i) yields J (F*Gper) # O. By
[9, Theorem 3.6] we receive J(F * Gier) C J(F % H)F * Gger. But Theorem
1 shows that J(F « H) = O. Hence J(F * Gger) = O and we obtain a
contradiction. The theorem is proved. O

It is well known that if A is a finitely generated commutative algebra over
a field F, then J(A) is a nil ideal. The question here is whether the commu-
tativity condition can be eliminated [12, p.291]. An affirmative answer proves
that then J(F,G) is a nil ideal in general. Thus if G has no p-elements when
char F' = p > 0, it would prove that always J(F,G) = O. But Theorem 1
shows that in this case F,G is always a subring of a semiprimitive twisted
group ring. Indeed, if L is a purely transcendental or nondenumerable ex-
tension of F', then F,G is a subring of the semiprimitive twisted group ring
L,G = L®r (F,G).
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BbBPXY ITIOJNIYIIPUMUTUBHOCTTA HA KP LCTOCAHUM
ITPON3BEJIEHNA HA I'PYIIN N IIPOCTU ITP'LCTEHUN

K. M. Humurposa, C. B. MuxoBcku

Pestome. Hera K * (G e KpbcTocano mpousBenenue Ha rpynata G Hanm
nenTpasHo npocrata F-anrebpa K ¢ xapakrepucTtura p. la Ipeanoo&uM, de
anpoto Gier Ha K %G He cbabpika p-edemenTu, xkorato p > 0 u meka P e MunM-
MaJHOTO moanose Ha F', koeto cbabpika cucremaTa OT PAKTOPU HA KPLCTOCAHUS
rpynos npberer F ok Grer € K % G. Axo F me e anre6puuno pasmuperue Ha P
unu |F| > |H| 3a Beaka kpaiino noponena noarpyna H wa rpynata Giep, Tora-
Ba nokassame, ye K * (G e MOJNYyOIpUMUTUBEH IPLCTEH, T.e. HETOBUAT PaIUKAJ

Ha J[xexbOCBHH e HyIeB.
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