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ANTISYMMETRICAL POLYNOMIALS
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Absract. In this paper we give a strict proof of the basic theorem for
antisymmetrical polynomials over an arbitrary field P . Any antisymmetrical
polynomial g(x1, . . . , xn) over a field P of characteristic different form 2 is
a product of the discriminant ∆(x1, . . . , xn) and a symmetrical polynomial
f(x1, . . . , xn) over P .
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The theory of the antisymmetrical polynomials although it is too interest-
ing for the application usually does not study in the universities courses of the
algebra. With a luck it will be apply for the solution of many problems of the
algebra [1].

Before we begin to discuss the antisymmetrical polynomials, we will explain
schematically some of the basic concepts in the theory of polnomials of n

variables x1, x2, . . . , xn and we will give one generalization of Bezout’s theorem
for polynomials of one unknown.

Lemma 1. If polynomials fi(x1, . . . , xn) over the field P , i = 1, . . . , k

are pairwise coprime and divide polynomial g(x1, . . . xn), then their product

divides g(x1, . . . xn).

Really, the proof of the lemma follows from the fact that P [x1, x2, . . . , xn]
is a factorial ring ([2], p.208).

Lemma 2. If x1, . . . , xn are different variables then polynomials xi − xj ,

j > i are pairwise coprime.
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Proof. The greatest common divisor (xi−xj , xk−xl) of polynomials xi−xj

and xk − xl is
(xi − xj , xk − xl) = 1, or xi − xj .

Assuming that the second case holds we have

xk − xl = c(xi − xj).

Therefore either (i) xk = cxi, or (ii) xk = −cxj .
(i) Let xk = cxi. Then k = i, c = 1 and l = j, i.e. xk−xl = xi−xj , which

is a contradicction.
(ii) Let xk = −cxj . Then k = j and c = −1. Therefore xl = xi, i.e. l = i

and for xk − xl we have k = j > i = l, i.e. k > l which is a contradiction.
Hence (xi − xj , xk − xl) = 1. The lemma is proved. ¤

The next statement shows, that the theorem for a division of polynomials
with a quotient and a remainder holds when the divident f(x) and the divisor
x− c are polynomials over an arbitrary ring R with identity.

Theorem 1. If f(x) is a polynomial over a ring R with identity and c ∈ R,

then there exists uniquely determinated polynomial q(x) over R, such that

(1) f(x) = (x− c)q(x) + r, r ∈ R

Proof. The existence and the uniqueness of the polynomial q(x) and the
element r ∈ R is proved as in the theorem for a division of polynomials with
a quotient and a remainder. Besides the existence of q(x) and r ∈ R may be
also proved by Horner’s scheme. ¤

The next theorem is a generalization of Bezout’s theorem for polynomials
over a numerical fields.

Theorem 2. An element c of the ring R with identity is a root of the

polynomial f(x) over R if and only if when x− c divides f(x).

For the proof, which is the same as Bezout’s theorem, we use Theorem 1
([3], p.34).

Definition 1. The polynomial g(x1, . . . xn) over field P is called antisym-
metrical if it changes only its sign by the change of the order of two arbitrary
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its variables, i.e.

(2) g(x1, . . . , xj , . . . , xi, . . . , xn) = −g(x1, . . . , xi, . . . , xj , . . . , xn).

If the charactaristic of the field P is 2 then the antisymmetrical polynomial
g(x1, . . . , xn) over P is a symmetrical polynomial, because in the equality (2)
it holds −g(x1, . . . , xn) = g(x1, . . . , xn), i.e. (2) is a definition of a symmetrical
polynomial g(x1, . . . , xn). That is why later on we will consider antisymmet-
rical polynomials only over a field P of charactaristic different from 2.

A simple example for antisymmetrical polynomial of two variables x and
y over P is ∆(x, y) = x−y. An antisymmetrical polynomial of three variables
x, y and z over P is the following

∆(x, y, z) = (x− y)(x− z)(y − z)

and of n variables:

∆(x1, . . . , xn) =
∏

i<j

(xi − xj) = (x1 − x2)(x1 − x3) . . . (x1 − xn) ×
×(x2 − x3) . . . (x2 − xn) ×

×(xn−1 − xn).

The polynomial ∆(x1, . . . , xn) is called discriminant of the variables x1, . . . , xn.
It is obviously that the square of every antisymmetrical polynomial is sym-

metrical polynomial.
If f(x1, . . . , xn) is a symmetrical polynomial over a field P , then

f(x1, . . . , xn).∆(x1, . . . , xn) is obviously an antisymmetrical polynomial,
because f(x1, . . . , xn) does not change by the transposition of arbitrary
unknowns and ∆(x1, . . . , xn) changes only its sign. Namely by this way we
get every antisymmetrical polynomial, i.e. it holds the following theorem.

Theorem 3. Any antisymmetrical polynomial g(x1, . . . , xn) over a field P

of charactaristic different from 2 is a product of the discriminant ∆(x1, . . . , xn)
and a symmetric polynomial f(x1, . . . , xn) over P i.e.

(3) g(x1, . . . , xn) = ∆(x1, . . . , xn)f(x1, . . . , xn).

Proof. The polynomial ϕ(xi) = g(x1, . . . , xi, . . . , xn), i < n examined like
a polynomial of xi over a ring A = P [x1, . . . , xi−1, xi+1, . . . , xn] have a root
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xj ∈ A for every j > i. Indeed, by (2) we obtain

ϕ(xj) = g(x1, . . . , xj , . . . , xj , . . . , xn) = −g(x1, . . . , xj , . . . , xj , . . . , xn).

Therefore 2g(x1, . . . , xj , . . . , xj , . . . , xn) = 0, i.e. 2ϕ(xj) = 0. Since the char-
actaristic of P is different from 2 then ϕ(xj) = 0. Therefore, by Theorem 2 it
holds ϕ(xi) = (xi− xj)ψ(xi), where the coefficients of ψ(xi) are from the ring
A, i.e. xi − xj divides g(x1, . . . , xn) for every j > i. Since, by Lemma 2 the
polynomials xi−xj , j > i are pairwise coprime and they divide g(x1, . . . , xn),
then by Lemma 1 their product divides g(x1, . . . , xn). Therefore, (3) is ful-
filled. The polynomial

(4) f(x1, . . . , xn) =
g(x1, . . . , xn)
∆(x1, . . . , xn)

is symmetrical, because by the transposition of two arbitrary unknowns xi and
xj , the numerator and the determinator simultaneously change their signs,
since they are antisymetrical polynomials.

The theorem is proved. ¤
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ANTISIMETRIQNI POLINOMI

I.G. Gradeva

Rez�me. V tazi stati� se dava strogo dokazatelstvo na osnovnata
teorema za antisimetriqni polinomi nad proizvolno pole P . Vseki anti-
simetriqen polinom g(x1, . . . , xn) nad pole P s harakteristika razliqna ot
2 e proizvedenie na diskriminantata ∆(x1, . . . , xn) i simetriqen polinom
f(x1, . . . , xn) nad P .
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