ANTISYMMETRICAL POLYNOMIALS

I. G. Gradeva

Absract. In this paper we give a strict proof of the basic theorem for antisymmetrical polynomials over an arbitrary field P. Any antisymmetrical polynomial $g(x_1, \ldots, x_n)$ over a field P of characteristic different form 2 is a product of the discriminant $\Delta(x_1, \ldots, x_n)$ and a symmetrical polynomial $f(x_1, \ldots, x_n)$ over P.

Mathematics Subject Classifications 2000: 12E10.

Key words: Antisymmetrical polynomials

The theory of the antisymmetrical polynomials although it is too interesting for the application usually does not study in the universities courses of the algebra. With a luck it will be apply for the solution of many problems of the algebra [1].

Before we begin to discuss the antisymmetrical polynomials, we will explain schematically some of the basic concepts in the theory of polnomials of n variables x_1, x_2, \ldots, x_n and we will give one generalization of Bezout's theorem for polynomials of one unknown.

Lemma 1. If polynomials $f_i(x_1,...,x_n)$ over the field P, i=1,...,k are pairwise coprime and divide polynomial $g(x_1,...x_n)$, then their product divides $g(x_1,...x_n)$.

Really, the proof of the lemma follows from the fact that $P[x_1, x_2, ..., x_n]$ is a factorial ring ([2], p.208).

Lemma 2. If x_1, \ldots, x_n are different variables then polynomials $x_i - x_j$, j > i are pairwise coprime.

Proof. The greatest common divisor (x_i-x_j, x_k-x_l) of polynomials x_i-x_j and x_k-x_l is

$$(x_i - x_j, x_k - x_l) = 1$$
, or $x_i - x_j$.

Assuming that the second case holds we have

$$x_k - x_l = c(x_i - x_j).$$

Therefore either (i) $x_k = cx_i$, or (ii) $x_k = -cx_j$.

- (i) Let $x_k = cx_i$. Then k = i, c = 1 and l = j, i.e. $x_k x_l = x_i x_j$, which is a contradiction.
- (ii) Let $x_k = -cx_j$. Then k = j and c = -1. Therefore $x_l = x_i$, i.e. l = i and for $x_k x_l$ we have k = j > i = l, i.e. k > l which is a contradiction. Hence $(x_i x_j, x_k x_l) = 1$. The lemma is proved.

The next statement shows, that the theorem for a division of polynomials with a quotient and a remainder holds when the divident f(x) and the divisor x - c are polynomials over an arbitrary ring R with identity.

Theorem 1. If f(x) is a polynomial over a ring R with identity and $c \in R$, then there exists uniquely determinated polynomial g(x) over R, such that

(1)
$$f(x) = (x - c)q(x) + r, \quad r \in R$$

Proof. The existence and the uniqueness of the polynomial q(x) and the element $r \in R$ is proved as in the theorem for a division of polynomials with a quotient and a remainder. Besides the existence of q(x) and $r \in R$ may be also proved by Horner's scheme.

The next theorem is a generalization of Bezout's theorem for polynomials over a numerical fields.

Theorem 2. An element c of the ring R with identity is a root of the polynomial f(x) over R if and only if when x - c divides f(x).

For the proof, which is the same as Bezout's theorem, we use Theorem 1 ([3], p.34).

Definition 1. The polynomial $g(x_1, ... x_n)$ over field P is called antisymmetrical if it changes only its sign by the change of the order of two arbitrary

its variables, i.e.

(2)
$$g(x_1, \ldots, x_j, \ldots, x_i, \ldots, x_n) = -g(x_1, \ldots, x_i, \ldots, x_j, \ldots, x_n).$$

If the characteristic of the field P is 2 then the antisymmetrical polynomial $g(x_1, \ldots, x_n)$ over P is a symmetrical polynomial, because in the equality (2) it holds $-g(x_1, \ldots, x_n) = g(x_1, \ldots, x_n)$, i.e. (2) is a definition of a symmetrical polynomial $g(x_1, \ldots, x_n)$. That is why later on we will consider antisymmetrical polynomials only over a field P of characteristic different from 2.

A simple example for antisymmetrical polynomial of two variables x and y over P is $\Delta(x,y) = x - y$. An antisymmetrical polynomial of three variables x, y and z over P is the following

$$\Delta(x, y, z) = (x - y)(x - z)(y - z)$$

and of n variables:

$$\Delta(x_1, \dots, x_n) = \prod_{i < j} (x_i - x_j) = (x_1 - x_2)(x_1 - x_3) \dots (x_1 - x_n) \times (x_2 - x_3) \dots (x_2 - x_n) \times (x_{n-1} - x_n).$$

The polynomial $\Delta(x_1, \ldots, x_n)$ is called discriminant of the variables x_1, \ldots, x_n . It is obviously that the square of every antisymmetrical polynomial is symmetrical polynomial.

If $f(x_1, ..., x_n)$ is a symmetrical polynomial over a field P, then $f(x_1, ..., x_n) \cdot \Delta(x_1, ..., x_n)$ is obviously an antisymmetrical polynomial, because $f(x_1, ..., x_n)$ does not change by the transposition of arbitrary unknowns and $\Delta(x_1, ..., x_n)$ changes only its sign. Namely by this way we get every antisymmetrical polynomial, i.e. it holds the following theorem.

Theorem 3. Any antisymmetrical polynomial $g(x_1, ..., x_n)$ over a field P of characteristic different from 2 is a product of the discriminant $\Delta(x_1, ..., x_n)$ and a symmetric polynomial $f(x_1, ..., x_n)$ over P i.e.

(3)
$$q(x_1, ..., x_n) = \Delta(x_1, ..., x_n) f(x_1, ..., x_n).$$

Proof. The polynomial $\varphi(x_i) = g(x_1, \dots, x_i, \dots, x_n), i < n$ examined like a polynomial of x_i over a ring $A = P[x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$ have a root

 $x_j \in A$ for every j > i. Indeed, by (2) we obtain

$$\varphi(x_j) = g(x_1, \dots, x_j, \dots, x_j, \dots, x_n) = -g(x_1, \dots, x_j, \dots, x_j, \dots, x_n).$$

Therefore $2g(x_1, \ldots, x_j, \ldots, x_j, \ldots, x_n) = 0$, i.e. $2\varphi(x_j) = 0$. Since the characteristic of P is different from 2 then $\varphi(x_j) = 0$. Therefore, by Theorem 2 it holds $\varphi(x_i) = (x_i - x_j)\psi(x_i)$, where the coefficients of $\psi(x_i)$ are from the ring A, i.e. $x_i - x_j$ divides $g(x_1, \ldots, x_n)$ for every j > i. Since, by Lemma 2 the polynomials $x_i - x_j$, j > i are pairwise coprime and they divide $g(x_1, \ldots, x_n)$, then by Lemma 1 their product divides $g(x_1, \ldots, x_n)$. Therefore, (3) is fulfilled. The polynomial

(4)
$$f(x_1, \dots, x_n) = \frac{g(x_1, \dots, x_n)}{\Delta(x_1, \dots, x_n)}$$

is symmetrical, because by the transposition of two arbitrary unknowns x_i and x_j , the numerator and the determinator simultaneously change their signs, since they are antisymetrical polynomials.

The theorem is proved.

References

- [1] BAYCHEV I. A Symmetry in the Algebra, *Mathematics and Physics*, **6**, (1967), 1–13 (in Bulgarian).
- [2] Fadeev D.K. Lectures on Algebra, "Nauka", Moskow, 1984 (in Russian).
- [3] Genov G.K., Mihovski S.V., Mollov T.Zh. Algebra with Theory of Numbers, "Nauka i Izkustvo", Sofia, 1981 (in Bulgarian).
- [4] Obreshkov N. Higher Algebra, "Nauka i Izkustvo", Sofia, 1962 (in Bulgarian).

Department of Mathematics and Informatics Plovdiv University, 24 "Tzar Assen" Str. Plovdiv, 4000 Bulgaria Received June 2003

АНТИСИМЕТРИЧНИ ПОЛИНОМИ

И. Г. Градева

Резюме. В тази статия се дава строго доказателство на основната теорема за антисиметрични полиноми над произволно поле P. Всеки антисиметричен полином $g(x_1,\ldots,x_n)$ над поле P с характеристика различна от 2 е произведение на дискриминантата $\Delta(x_1,\ldots,x_n)$ и симетричен полином $f(x_1,\ldots,x_n)$ над P.