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Abstract. Special compositions, generated by a net in a space with a
symmetric linear connection are considered in [2], [3] and [5]. In this paper,
the special compositions generated by a net in the 3-dimensional Weyl space
are characterized in terms of the prolonged covariant differentiation. Some
equations and applications of the curvature tensor and the Ricci tensor on a
3-dimensional Weyl space are given.
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1. Preliminaries

Let W3 be a 3-dimensional Weyl space with metric tensor gik and its inverse
tensor gkj , i.e. gikg

kj = δj
i , i, j, k = 1, 2, 3.

There is known [6], the Weyl connection ∇ with components Γk
ij is deter-

mined by the equation

(1) Γk
ij =

{
k
ij

}
−

(
ωiδ

k
j + ωjδ

k
i − gijg

ksωs

)
,

where ωk is the complementary vector of W3 and
{

k
ij

}
are the Cristoffel

symbols, determined by gij . There are valid the equations

(2) ∇kgij = 2ωkgij , ∇kg
ij = −2ωkg

ij .
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Let us consider a composition W3(X2×X1) in W3, where X2(dimX2 = 2),
X1(dimX1 = 1) are the fundamental manifolds. There exists a unique position
of each of the fundamental manifolds X2 and X1 at every point p ∈ W3, which
is denoted by P (X2) and P (X1), respectively.

According to [9], W3 is the space of the composition W3(X2×X1), if there
exists a tensor field aj

i of type (1,1) determined by the equations

(3) aj
ia

k
j = δk

i ,

(4) Nk
ij = as

i∇sa
k
j − as

j∇sa
k
i − ak

s(∇ia
s
j −∇ja

s
i ) = 0,

where Nk
ij is the Nijenhuis tensor of the structure aj

i .

The projecting tensors
n
ak

i and
m
ak

i have the form

(5)
n
ak

i =
1
2
(δk

i + ak
i ),

m
ak

i =
1
2
(δk

i − ak
i ),

where, because of (3), it follows the properties

n
ak

i
n
as

k =
n
as

i ,
m
ak

i
m
as

k =
m
as

i ,
n
ak

i
m
as

k =
m
ak

i
n
as

k = 0.

Following [7] and [9], the composition W3(X2 × X1) is called geodesic-
Chebyshevian, if the tangent section of P (X2) and the tangent vector of P (X1)
are translated parallelly in the direction of every curve of P (X2). The char-
acteristic of the geodesic-Chebyshevian composition is

(6)
n
ak

i∇k
n
as

j = 0.

A composition W3(X2 × X1) is called Chebyshevian-geodesic, if the tan-
gent section of P (X2) is translated parallelly in the curve P (X1) and the curve
P (X1) is geodesic. The characteristic of the Chebyshevian-geodesic composi-
tion is

(7)
m
ak

i∇k
m
as

j = 0.

Let (v
1
, v
2
, v
3
) be a net in W3, determined by independent tangent vector

fields v
k

i of the curve of the net (k = 1, 2, 3). We determine the inverse covectors
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k
vi of v

k

i (k = 1, 2, 3), respectively, by the equations

(8) v
i

k s
vk = δs

i ⇔ v
i

k i
vs = δk

s .

According to [5], the prolonged covariant differentiation
◦
∇ of the satellite

A with weight {p} in the Weyl space is defined by

(9)
◦
∇iA = ∇iA− pωiA.

Having in mind that the weights on the affinor aj
i , the vector v

s

j and the

covector
s
vj are {0}, {−1} and {+1}, respectively, and using (9), we obtain

◦
∇ka

j
i = ∇ka

j
i ;(10)

◦
∇kv

s

j = ∇kv
s

j + ωkv
s

j ;(11)
◦
∇k

s
vj = ∇k

s
vj − ωk

s
vj .(12)

In [5] there are found the derivative equations of the directional vectors of the
net (v

1
, v
2
, v
3
):

(13)
◦
∇iv

k

s =
r
T
k

iv
r

s,
◦
∇i

k
vs = −

k
T
r

i
r
vs, k = 1, 2, 3.

In [2] is given the form of the curvature tensor on a 3-dimensional Weyl space,
i.e.

(14) Rs
ijk =

1
3

{(
gjkSil − gikSjl

)
gls + Sjkδ

s
i − Sikδ

s
j +

(
Sji − Sij

)
δs
k

}
,

where Sjk = 2Rjk + Rkj − 3R
4 gjk and R = gijRij is the scalar curvature.

According to (1) and the identity for the curvature tensor of a Weyl space [6],
we have the following equality for n = 3:

(15) ∇jωi −∇iωj =
Rji −Rij

3
.
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2. Some special compositions in W3

In this section we give geometric characteristics for the geodesic-Cheby-
shevian and the Chebyshevian-geodesic compositions.

In [2] there is defined the affinor ak
i of the composition in the Weyl space.

It is determined uniquely by the net (v
1
, v
2
, v
3
) and it has the following form in

W3:

(16) ak
i = v

1

k 1
vi + v

2

k 2
vi − v

3

k 3
vi.

There follows immediately that ak
i satisfies (3) and the conditions

(17) as
kv

1

k = v
1

s, as
kv

2

k = v
2

s, as
kv

3

k = −v
3

s.

According to (5) and (16), for the projecting tensors we have

(18)
n
ak

i = v
1

k 1
vi + v

2

k 2
vi,

m
ak

i = v
3

k 3
vi.

The composition W3(X2×X1) is determined by ak
i , if the affinor satisfies (4).

The composition W3(X2 ×X1) is called associated to the net (v
1
, v
2
, v
3
).

Theorem 1. The composition W3(X2×X1) associated to the net (v
1
, v
2
, v
3
) is

geodesic-Chebyshevian if and only if the coefficients of the derivative equations
1
T
3

k,
2
T
3

k,
3
T
1

k,
3
T
2

k belong to P (X1), i.e.

(19)
1
T
3

k = a
k
v3,

2
T
3

k = b
k
v3,

3
T
1

k = c
k
v3,

3
T
2

k = d
k
v3, a, b, c, d,∈ R

Proof. According to (10), the condition (6) has the form
n
ak

j

◦
∇k

n
as

i =

0. Having in mind (13), (18) and the linear independence of the vectors
v
1

k, v
2

k, v
3

k, we obtain the system

(20)

n
ak

j

(
−

1
T
l
k

l
vi +

1
T
1

k
1
vi +

1
T
2

k
2
vi

)
= 0,

n
ak

j

(
−

2
T
l
k

l
vi +

2
T
1

k
1
vi +

2
T
2

k
2
vi

)
= 0,

n
ak

j

( 3
T
1

k
1
vi +

3
T
2

k
2
vi

)
= 0,
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Using (18), we receive the following equality by contracting the last equation
of (20) with v

1

i and v
2

i:

1
vj

3
T
1

kv
1

k +
2
vj

3
T
1

kv
2

k = 0,
1
vj

3
T
2

kv
1

k +
2
vj

3
T
2

kv
2

k = 0.

Then, because of the linear independence of the covectors
1
vj and

2
vj , we have

(21)
3
T
1

kv
1

k =
3
T
1

kv
2

k =
3
T
2

kv
1

k =
3
T
2

kv
2

k = 0.

The equations (21) mean that the covectors
3
T
1

k and
3
T
2

k belong to the position

P (X1), i.e. they are collinear to the covector
3
vk. Having in mind the first and

the second equations of (20), using the linear independence of the covectors
1
vj and

2
vj , we find

(22)
2
T
3

kv
1

k =
2
T
3

kv
2

k =
1
T
3

kv
1

k =
1
T
3

kv
2

k = 0.

The equations (22) imply that the covectors
1
T
3

k and
2
T
3

k are collinear to the

covector
3
vk, i.e. they belong to the position P (X1). Hence, (21) and (22)

imply (19). ¤

Let the composition W3(X2×X1) be geodesic-Chebyshevian and the curves
v
1

and v
2

are geodesic. According to [4], we have the conditions

(23) v
1

k∇kv
1

s = v
2

k∇kv
2

s = 0,

where ∇ is the Weyl connection. In this case, we verify immediately that an
arbitrary vector of the section (v

1

k, v
2

k) is translated parallelly of an arbitrary

curve of P (X2). Since v
3

s is translated parallelly in the direction of every curve

of P (X2) then v
3

s is translated parallelly of the curves v
1

and v
2
. Then we have:

(24) v
1

k∇kv
3

s = v
2

k∇kv
3

s = 0.
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Having in mind (11), (13) and (19), we find

(25) ∇kv
3

j =
3
vk

(
av

1

j + bv
2

j
)

+
( 3
T
3

k − ωk

)
v
3

j .

After the contracting of (25) consecutively by the vectors v
1

k and v
2

k, because

of the condition (24), we receive

(26)
3
T
3

k − ωk = e
3
vk, e ∈ R.

By analogy, using (12), (13), (19) and (23), we find

(27)

1
T
1

k − ωk = a1
2
vk + b1

3
vk,

2
T
2

k − ωk = a4
1
vk + b4

3
vk,

2
T
1

k = a2
2
vk + b2

3
vk,

1
T
2

k = a3
1
vk + b3

3
vk.

Hence the following proposition is valid:

Theorem 2. Let the composition W3(X2×X1) be geodesic-Chebyshevian

and the curves v
1

and v
2

on the position P (X2) be geodesics. Then all coefficients

of the derivative equations (13) are determined by the equalities (19), (26) and

(27).

Corollary 1. Let the composition W3(X2×X1) be geodesic-Chebyshevian

and the curves v
1

and v
2

on P (X2) be geodesics. Then the derivative equations

with respect to the Weyl connection have the form:

(28)

∇kv
3

j =
3
vk

(
av

1

j + bv
2

j + ev
3

j
)
, ∇k

3
vj = −3

vk

(
c
1
vj + d

2
vj + e

3
vj

)
,

∇kv
1

j =
3
vk

(
b1v

1

j + b2v
2

j + cv
3

j
)

+
2
vk

(
a1v

1

j + a2v
2

j
)
,

∇k
1
vj = −3

vk

(
b1

1
vj + b3

2
vj + a

3
vj

)
− a3

2
vj

1
vk − a1

1
vj

2
vk,

∇kv
2

j =
3
vk

(
b3v

1

j + b4v
2

j + dv
3

j
)

+
1
vk

(
a3v

1

j + a4v
2

j
)
,

∇k
2
vj = −3

vk

(
b2

1
vj + b4

2
vj + b

3
vj

)
− a4

2
vj

1
vk − a2

1
vj

2
vk.
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Theorem 3. The composition W3(X2×X1) associated to the net (v
1
, v
2
, v
3
) is

Chebyshevian-geodesic if and only if the coefficients of the derivative equations
1
T
3

k,
2
T
3

k,
3
T
1

k,
3
T
2

k belong to P (X2), i.e. they are a linear combination of the

covectors
1
vk and

2
vk.

Proof. According to (10), condition (7) for the Chebyshevian-geodesic

composition has the form
m
ak

j

◦
∇k

m
as

i = 0. Having in mind (13), (18) and the

linear independence of the vectors v
1

k, v
2

k, v
3

k, by analogy of the proof of
Theorem 1, we obtain the system:

(29)
1
T
3

kv
3

k =
2
T
3

kv
3

k =
3
T
1

kv
3

k =
3
T
2

kv
3

k = 0.

whence the coefficients
1
T
3

k,
2
T
3

k,
3
T
1

k and
3
T
2

k are a linear combination of the

covectors
1
vk and

2
vk. ¤

Theorem 4. Let the composition W3(X2×X1) be Chebyshevian-geodesic.

Then the coefficients of the derivative equations
1
T
1

k,
2
T
2

k,
3
T
3

k,
1
T
2

k and
2
T
1

k are

determined by the equations:

(30)

1
T
1

k − ωk = a2
1
vk + b2

2
vk,

2
T
2

k − ωk = a5
1
vk + b5

2
vk,

2
T
1

k = a3
1
vk + b3

2
vk,

3
T
3

k − ωk = a1
1
vk + b1

2
vk,

1
T
2

k = a4
1
vk + b4

2
vk,

where ωk is the complementary vector of W3.

Proof. Since the curve P (X1) is geodesic, according to [4], we have:

(31) v
3

k∇kv
3

s = 0.

According to Theorem 3, for the coefficients
1
T
3

k,
2
T
3

k,
3
T
1

k and
3
T
2

k we have:

(32)
1
T
3

k = a
1
vk + b

2
vk,

2
T
3

k = c
1
vk + d

2
vk,

3
T
1

k = l
1
vk + h

2
vk,

3
T
2

k = e
1
vk + f

2
vk.
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Using (12), (13), (32) and condition (31) we find

(33)
3
T
3

k − ωk = a1
1
vk + b1

2
vk.

Since the position P (X2) is Chebyshevian then an arbitrary vector on (v
1

k, v
2

k)

is translated parallelly in the direction of a vector v
3

k. The following conditions

are valid for the symmetric Weyl connection ∇ and the vectors v
1

s and v
2

s [4]:

(34) v
3

k∇kv
1

s = v
3

k∇kv
2

s = 0.

Then using (11), (13), (32) and condition (34), we obtain the rest of the
qualities in (30). ¤

3. The curvature properties of W3

There is known [2], the curvature tensor is expressed by the Ricci tensor
and the metric tensor for every 3-dimensional Weyl space, i.e. equation (14)
is valid.

In this section we give complementary conditions for the curvature tensor
and the Ricci tensor on W3.

Theorem 5. Let W3 be a 3-dimensional Weyl space and ∇ be the Weyl

connection on W3. Then the Ricci tensor Rjk, the complementary vector ωk

and the scalar curvature R has the following properties:

(35) 2gks[∇s(2Rik + Rki)] = 3(∂iR + 2Rωi),

where ∂iR = ∂R
∂xi .

Proof. Since the Weyl connection∇ is symmetric, then the second Bianchi
identity holds, i.e. ∇mRs

ijk +∇iR
s
jmk +∇jR

s
mik = 0. By contracting of index

m and s, according to the first Bianchi identity, it follows:

(36) ∇iRjk −∇jRik = ∇sR
s
ijk.

Using (2) and (14), we find the covariant derivative of Rs
ijk. Then after con-

tracting on (36) by gjk, we obtain (35). ¤
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There is known [6], the Weyl space W3 is Riemannian V3 if and only if
∇iωj = ∇jωi. In this case, according to (15), the Ricci tensor is symmetric.
If the Ricci tensor on W3 is skew-symmetric, then W3 is not Riemannian. We
consider a 3-dimensional Weyl space when the Ricci tensor is skew-symmetric,
i.e.

(37) Rjk = −Rkj .

Theorem 6. Let W3 be a 3-dimensional Weyl space with skew-symmetric

Ricci tensor. Then the following relations hold for the curvature tensor and

the Ricci tensor:

2Rjk = 3(∇jωk −∇kωj),(38)

Rs
ijk =

1
3
{(gjkRil − gikRjl)gls + Rjkδ

s
i −Rikδ

s
j + 2Rjiδ

s
k},(39)

gsk∇sRik = 0.(40)

Proof. The equality (15) and (37) imply (38). From (37) we receive:
R = gjkRjk = −gjkRkj = 0 and ∂iR = 0. Then, because Sjk = Rjk, we
obtain (39). In this case equation (35) has the form (40). ¤

Theorem 7. Let W3 be a 3-dimensional Weyl space with skew-symmetric

Ricci tensor. Then the following relations hold for the Ricci tensor:

(41) ∇iRjk +∇jRki +∇kRij = 0.

Proof. Using (38), we find the covariant derivative of Rjk, i.e.

(42)
2
3
∇iRjk = ∇i∇jωk −∇i∇kωj .

From (42) we obtain the cyclic sum with respect to i, j, k:

(43)
2
3
(∇iRjk +∇jRki +∇kRij) =

= ∇i∇jωk −∇j∇iωk +∇k∇iωj −∇i∇kωj +∇j∇kωi −∇k∇jωi.

There is known [6], the integrablity conditions for the covector ωk have the
form:

(44) ∇i∇jωk −∇j∇iωk = −Rs
ijkωs.
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Using (44) in the right side of (43), we obtain:

2
3
(∇iRjk +∇jRki +∇kRij) = −(Rs

ijk + Rs
kij + Rs

jki)ωs.

According to the first Bianchi identity, it follows (41). ¤

Theorem 8. Let the composition W3(X2×X1) be geodesic-Chebyshevian

and the curves v
1

and v
2

be geodesic. If the covector
3
T
3

k from (26) is a gradient,

then the following relations hold for the Ricci tensor on W3:

(45) Rjk −Rkj = 3e

[
3
vj

(
c
1
vk + d

2
vk

)
− 3

vk

(
c
1
vj + d

2
vj

)]
, c, d, e ∈ R

Proof. Using the second equality of (28), after covariant differentiation of
(26), we have:

∇j

3
T
3

k = ∇jωk − e
3
vj

(
c
1
vk + d

2
vk + e

3
vk

)
.

Since ∇j

3
T
3

k = ∇k

3
T
3

j , then using (15) and the alternation of the last equation,

we find (45). ¤

In the case when the Ricci tensor is skew-symmetric (45) imply:

(46) 2Rjk = 3e

[
3
vj

(
c
1
vk + d

2
vk

)
− 3

vk

(
c
1
vj + d

2
vj

)]
.
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V_RHU N�KOI SPECIALNI KOMPOZICII I
KRIVINNI SVO�STVA NA TRIMERNO VA�LOVO

PROSTRANSTVO

Dobrinka Kostadinova Gribaqeva

Rez�me. Specialni kompozicii, porodeni ot mre�a v prostranstvo
s�s simetriqna line�na sv�rzanost se izuqavat v [2], [3] i [5]. V tazi
rabota s pomowta na prod�l�enoto kovariantno diferencirane se harak-
terizirat specialni kompozicii, porodeni ot mre�a v trimerno Va�lovo
prostranstvo. Namereni sa uravneni� za tenzora na krivina i tenzora na
Riqi na trimerno Va�lovo prostranstvo i sa dadeni n�koi prilo�eni�.
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