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Abstract. Special compositions, generated by a net in a space with a
symmetric linear connection are considered in [2], [3] and [5]. In this paper,
the special compositions generated by a net in the 3-dimensional Weyl space
are characterized in terms of the prolonged covariant differentiation. Some
equations and applications of the curvature tensor and the Ricci tensor on a
3-dimensional Weyl space are given.
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1. Preliminaries

Let W3 be a 3-dimensional Weyl space with metric tensor g;; and its inverse
tensor ¢g", ie. gig™ = (55, 1,5,k =1,2,3.

There is known [6], the Weyl connection V with components Ffj is deter-
mined by the equation

k s
1) rly = {5} = (vt st - i)

. k .
where wy is the complementary vector of W3 and {Z]} are the Cristoffel

symbols, determined by g;;. There are valid the equations

(2) Vigi; = 2wibij, Vig? = —2wig”.
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Let us consider a composition W3(Xs x X7) in W3, where Xo(dim X9 = 2),
X1 (dim Xy = 1) are the fundamental manifolds. There exists a unique position
of each of the fundamental manifolds X9 and X; at every point p € W3, which
is denoted by P(X2) and P(X}), respectively.

According to [9], W3 is the space of the composition W3(X2 x X7), if there
exists a tensor field ag of type (1,1) determined by the equations

(3) alal = of

(4) Nz-kj = asta§ —aVgak — af(Viaj- —V,ai) =0,

7 % %

J

where Ni];- is the Nijenhuis tensor of the structure a;.

The projecting tensors 3;“ and T&Lf have the form
ng Lo oy ome Loy
(5) ai:§(5i+ai)7 az‘:§(5¢_az’)a
where, because of (3), it follows the properties
afa, = af, afaj, = af, afa}, = afa = 0.

Following [7] and [9], the composition W5(X2 x X7) is called geodesic-
Chebyshevian, if the tangent section of P(X32) and the tangent vector of P(X1)
are translated parallelly in the direction of every curve of P(X3). The char-
acteristic of the geodesic-Chebyshevian composition is

() B9, =

A composition W3(Xg x X7) is called Chebyshevian-geodesic, if the tan-
gent section of P(X>) is translated parallelly in the curve P(X;) and the curve
P(X1) is geodesic. The characteristic of the Chebyshevian-geodesic composi-
tion is

m

(7) afVias = 0.

Let (111,121,231) be a net in W3, determined by independent tangent vector

fields zl of the curve of the net (k = 1,2, 3). We determine the inverse covectors
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k . .
v; of 1}5 (k =1,2,3), respectively, by the equations
(8) V0 = 03 < vFo, = oF.

According to [5], the prolonged covariant differentiation V of the satellite
A with weight {p} in the Weyl space is defined by

9) %iA = V;A — pw;A.

Having in mind that the weights on the affinor ag , the vector v/ and the

s

covector 0 are {0}, {—1} and {41}, respectively, and using (9), we obtain

(10) Vkag = Vkag;

(11) Viv) = V! + wpv’;
S S S

(12) Vkﬂs)] = ka}] - wkis)j.

In [5] there are found the derivative equations of the directional vectors of the

net (v,,):

o o k
(13) Vi = Tiv®, Vits = —Titg, k=1,2,3.
T T

>N

In [2] is given the form of the curvature tensor on a 3-dimensional Weyl space,

i.e.
(14) ik = é{ (gjksil — giijz)gls + Sjd; — Sikd; + (Sj‘ — Sij)éz},

where Sji, = 2R, + Ryj — %gﬂg and R = ginij is the scalar curvature.
According to (1) and the identity for the curvature tensor of a Weyl space [6],
we have the following equality for n = 3:

Rji — Rij

(15) Vijw; — Viwj = 3
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2. Some special compositions in W3

In this section we give geometric characteristics for the geodesic-Cheby-
shevian and the Chebyshevian-geodesic compositions.

In [2] there is defined the affinor af of the composition in the Weyl space.
It is determined uniquely by the net (111, v, g) and it has the following form in
Wi

k

1 2 3
(16) af = g)kvi + A gkvi.

There follows immediately that a¥ satisfies (3) and the conditions

k

= 1218, ajvk = —v®.

17 aivf =0 afv
(17) k3 17 kg 3 3

According to (5) and (16), for the projecting tensors we have

n 1 2 m
(18) ak = zljkvi + gkvi, ak = ’gkvi.

The composition W3(X5 x X1) is determined by af, if the affinor satisfies (4).
The composition W3(X2 x X1) is called associated to the net (11), v, g)

Theorem 1. The composition W3(Xax X1 ) associated to the net (111, v, g) is

geodesic-Chebyshevian if and only if the coefficients of the derivative equations
1 2 3 3
€k7€k7?k, gk belong to P(X1), i.e.

1 ko2 ko3 ko3 k
(19) j?:k = avs, %“k = bus, Il“k = cv3, 1;;C =dvs, a,b,c,d, € R

Proof. According to (10), the condition (6) has the form vakgf =

0. Having in mind (13), (18) and the linear independence of the vectors
71)k, gk, gk, we obtain the system

1
T
2
2 2 2

(20) al <—1l—‘k;vi + 7;/#1)1 + gk%z) =0,



Using (18), we receive the following equality by contracting the last equation
of (20) with 11)7’ and 1211

1 3 k 2 3 k 1 3 k 2 3 k
Vv +v;Tpv” =0, v;TEv" + v, TEpv" = 0.
Ik I3 kg AL Ik
. ) 1 2
Then, because of the linear independence of the covectors v; and v;, we have
3 3 3 3
21 Tio* = Tk = Tpo* = Tk = 0.
(21) %1 172 kb1 2k9

3 3
The equations (21) mean that the covectors 7;1@ and 7; . belong to the position

. . 3 . . .
P(X}), i.e. they are collinear to the covector vg. Having in mind the first and
the second equations of (20), using the linear independence of the covectors

1 2
v; and v;, we find

2 2 1 1
(22) ey =Twy" =Twv" =Ty =0

1 2
The equations (22) imply that the covectors fgk and ng are collinear to the

covector %k, i.e. they belong to the position P(X;). Hence, (21) and (22)
imply (19). O

Let the composition W3(X2x X1) be geodesic-Chebyshevian and the curves
v and U are geodesic. According to [4], we have the conditions

k s _ k s __
(23) VIV = 0" Vge® = 0,

where V is the Weyl connection. In this case, we verify immediately that an

arbitrary vector of the section (zlzk , 12)]‘3) is translated parallelly of an arbitrary

curve of P(X3). Since gs is translated parallelly in the direction of every curve

of P(X3) then gs is translated parallelly of the curves v and 0. Then we have:

4 k s,k 5 0.
2 AL B L
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Having in mind (11), (13) and (19), we find
25 Viwh = (@ + bod) + (T j
25 o = oy +07) + (T =)y
After the contracting of (25) consecutively by the vectors 11)’“ and gk , because

of the condition (24), we receive

3
(26) 73% — W = 613)k, e €R.

By analogy, using (12), (13), (19) and (23), we find

1 2 3 2 1 3
?k — wy, = a1, + byvg, Y;k — Wy, = aqvy, + byvy,

2 2 3
(27) 7;1{ = agVy, + bavy,

1 1 3

'_Z;k = agvg + b3vg.

Hence the following proposition is valid:

Theorem 2. Let the composition W3(Xs x X7) be geodesic-Chebyshevian
and the curves v and von the position P(X2) be geodesics. Then all coefficients
of the derivative equations (13) are determined by the equalities (19), (26) and

(27).

Corollary 1. Let the composition W3 (X x X1) be geodesic-Chebyshevian
and the curves v and v on P(X3) be geodesics. Then the derivative equations

with respect to the Weyl connection have the form:
ngj = %k (aquj + b12)j + eg]), Vk%j = —%k (c11)j + d'IQ)j + e%j),
Vk'll)j = (bﬂl)j + bzgj + cgj) + ok (aﬂl}j + azgj )
(28) quljj = —%k (blzlzj + b372)j + a%j) - angjjék — a171)j72)ku
ngj = 131k <b371)j + b4121j + dgj> + llik (asilij + (14121j)7
2 12

3 1 2 3 21
Vkvj = —Vg (bg?)j + b41)j + ij) — (40U — A2V V.

38



Theorem 3. The composition W3(Xex X1) associated to the net (111, v, g) is

Chebyshevian-geodesic if and only if the coefficients of the derivative equations
1 2 3 3
gk’gk’?k’gk belong to P(X3), i.e. they are a linear combination of the

1 2
covectors vy, and vy,.

Proof. According to (10), condition (7) for the Chebyshevian-geodesic

composition has the form ’Zlkaﬁlg‘ = 0. Having in mind (13), (18) and the

k k

linear independence of the vectors vt v gk, by analogy of the proof of

Theorem 1, we obtain the system:
1 2 3 3
29 Tyo* = Tyo* = Tyt = Tyt = 0.

1 2 3 3
whence the coefficients gk" %” ks 7;14 and Z;k are a linear combination of the

1 2
covectors v and vg. O

Theorem 4. Let the composition W3(X2 x X;) be Chebyshevian-geodesic.
1 2 3 1 2
Then the coefficients of the derivative equations ?k, I;k, 13“;{, 1;k and 111’“ are

determined by the equations:

1 1 2 2 1 2
7;k — Wy, = agVy, + bavy, J;k — wg, = asvy, + bsvy,
2 1 2 3 1 2

(30) ?k = agvy, + bavy, gk — wy, = a1, + b1vg,

1 1 2
T;k = a4V + bavy,

where wy, is the complementary vector of Wj.

Proof. Since the curve P(X;) is geodesic, according to [4], we have:
k s __
(31) Y ng =0.

1 2 3 3
According to Theorem 3, for the coefficients 73” ks ’_gk, ’.{’ g and 12“ ¢ we have:

1 1 2 2 1 2 3 1 2 3 1 2
(32) %—‘k = avg + b’Uk, %—'k = cv + d’Uk, ’_Zl—'k = lvg, + hvg, J;k = evg + ka.
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Using (12), (13), (32) and condition (31) we find
3 1 2
(33) gk — W = a1V + b1V
Since the position P(X3) is Chebyshevian then an arbitrary vector on (zlzk, 12)k)
is translated parallelly in the direction of a vector gk The following conditions

are valid for the symmetric Weyl connection V and the vectors 11;3 and 1215 [4]:
34 "Vt = 0"Vt =0.
(34) v Vk?lf v ng

Then using (11), (13), (32) and condition (34), we obtain the rest of the
qualities in (30). O

3. The curvature properties of

There is known [2], the curvature tensor is expressed by the Ricci tensor
and the metric tensor for every 3-dimensional Weyl space, i.e. equation (14)
is valid.

In this section we give complementary conditions for the curvature tensor
and the Ricci tensor on Wj.

Theorem 5. Let W3 be a 3-dimensional Weyl space and V be the Weyl
connection on W3. Then the Ricci tensor Rj, the complementary vector wy,
and the scalar curvature R has the following properties:

(35) 26" [V (2R + Ryi)] = 3(0;R + 2Rw;),

OR
where O; R = -

Proof. Since the Weyl connection V is symmetric, then the second Bianchi

identity holds, i.e. Vmejk + ViRj-mk +V,;R; . = 0. By contracting of index

mik
m and s, according to the first Bianchi identity, it follows:

(36) ViRji — VjRix = VsRjjy.

Using (2) and (14), we find the covariant derivative of R, . Then after con-
tracting on (36) by g’*, we obtain (35). O
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There is known [6], the Weyl space W3 is Riemannian V3 if and only if
Viw; = Vjw;. In this case, according to (15), the Ricci tensor is symmetric.
If the Ricci tensor on Wy is skew-symmetric, then W3 is not Riemannian. We
consider a 3-dimensional Weyl space when the Ricci tensor is skew-symmetric,

ie.
(37) Rji = —Ry;.
Theorem 6. Let W3 be a 3-dimensional Weyl space with skew-symmetric

Ricci tensor. Then the following relations hold for the curvature tensor and
the Ricci tensor:

(38) 2Rjk = B(ijk - kaj),

1
(39) ik = g{(gjk:Riz — gieRj1)g" + Rjndi — RixdS + 2R;i04 },
(40) ¢**VRy, = 0.

Proof. The equality (15) and (37) imply (38). From (37) we receive:
R = gijjk = —gijkj = 0 and 9;R = 0. Then, because Sj, = R, we
obtain (39). In this case equation (35) has the form (40). O

Theorem 7. Let W3 be a 3-dimensional Weyl space with skew-symmetric
Ricci tensor. Then the following relations hold for the Ricci tensor:

(41) ViRjk + VR + Vi R;; = 0.

Proof. Using (38), we find the covariant derivative of Rj, i.e.
2
3

From (42) we obtain the cyclic sum with respect to 4, j, k:

(42) VZ‘Rjk =V;Vwp — V;Viwj.

2
(43) g(ViRjk + VR + ViRij) =
= Viijk — Vjviwk + VkV,wj — Vz‘vkwj‘ + Vjvkwi — Vkvj'wi.

There is known [6], the integrablity conditions for the covector wj have the

form:

(44) VNjwk — Vjvz‘wk = _Rfjkws‘
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Using (44) in the right side of (43), we obtain:
2

According to the first Bianchi identity, it follows (41). O

Theorem 8. Let the composition W3(Xa x X7) be geodesic-Chebyshevian

3
and the curves v and v be geodesic. If the covector gk from (26) is a gradient,

then the following relations hold for the Ricci tensor on Ws:
(45) Rji — Ry; = 3e |:%J (Cll)k + dl%k) — %k <6211j + d%j>:| , ¢,d,e € R
Proof. Using the second equality of (28), after covariant differentiation of

(26), we have:
3 3 (1 2 3
Vﬂ;k = V,w, — ev;| cog + dvg + evy, |.

3 3
Since Vﬂ;k = V;ﬂ;j, then using (15) and the alternation of the last equation,
we find (45). O

In the case when the Ricci tensor is skew-symmetric (45) imply:

(46) 2Rjk = 3e [53 (mlfk + df%k) — (C?lfj + d'12)j>] .
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BHPXY HAKOW CIIEIINAJIHM KOMIIO3IINU AN
KPVBMHHU CBOMCTBA HA TPMUMEPHO BAMJIOBO
ITPOCTPAHCTBO

Iloopunka Kocramuuosa I'pubaueBa

Pe3rome. Crenmansn KOMIO3UIUY, TIOPOAEHU OT MpEKa B IPOCTPAHCTBO
CbLC CUMETPHUYHA JIMHEHHA CBbLp3aHOCT ce m3ydasar B [2], [3] u [5]. B Tasm
paboTa ¢ mOMOMTA HA MPOALIIKEHOTO KOBAPUAHTHO NU(EPEHIUPAHE Ce XapaK-
TEpU3UPAT CIENUATHA KOMIO3UIUY, IOPOLEHN OT MpeXa B TPUMepHO Baitnoso
npocTpaHcTBo. HamepeHu ca ypaBHEHUs 3a TEH30Pa Ha KPUBMHA U TEH30pa HA

Pyun va Tpumepro BaiimoBo mpocTpaHCTBO 1 ca nameHN HAKOU IPUIIOKEHUA.
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