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SYLVESTER’S POLYNOMIALS

Ivanka Kasandrova, Margarita Kostova

Abstract. In this paper we give some results on the distribution of the
zeros of the polynomials of the type S(f;z) = > p_o f*)(2), where f(z) is a
polynomial of degree n with real coefficients. For example, we prove that if
the polynomial S(f;z) has only real and simple zeros, then the polynomial
f(2) has also only real and simple zeros and the zeros of f(z) separate the
zeros of S(f;z).
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Let f(z) be a polynomial of degree n with real coefficients. Then the
polynomial

n

(1) S(fiz)=>_ f¥(z)

k=0

will be called (Bojorov’s idea) Sylvester’s polynomial. If f(z) = %, then we

get the polynomial

z 22 "

for which the following result of Sylvester is known ([1], p.17): the polynomial
S(z) has no more than one real zero. Obviously, if S(z) has a real zero, it is
a negative one. From (1) we can easily get the equation

(3) S(f;2) =8 (f;2) + f(2)
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or the more general equation
(4) SUV(f:2) = SV(f:2) + [0 D(2), p=12,..m
Bojorov has stated without a proof the following unpublished theorem.

Theorem 1. Every zero of the polynomial S(f;z) of order r is a zero of
the polynomial f(z) of order r — 1.

Proof. Let z = a be a zero of the polynomial S(f;z) of order r. This

means
S(f;a)=S(fia)=...= 8"V (f;0) =0, SU(f;a)#0.
From (4) when p=1,2,...,7 we obtain
fla)y=f(a)=...= f"a)=0, frV(a)=-5"(f;a)#0,
i.g. the point z = a is a zero of the polynomial f(z) of order r — 1. 0

Corrolary 1. The simple zeros of the polynomial S(f;z) are not zeros of
the polynomial f(z).

Theorem 2. In every open interval, not containing zeros of f(z), the
polynomial S(f;z) can have no more than one zero.

Proof. Suppose that the polynomial f(z) has no zeros in the interval
(a,b). Assume that the polynomial S(f;z) has more than one zero in the
interval (a,b) and let « and [ be two consecutive zeros of S(f;z) such that
a < a< B <b. The zeros a and [ are simple zeros of the polynomial
S(f; z). Otherwise, according to Theorem 1, they would be zeros of the poly-
nomial f(z), but as we know f(z) does not have any zeros in the interval
(a,b). From (3) we obtain

S'(f;a)=—f(a), S(f;8) =—-1(B)
and then
S'(fF;)8 (f:8) = f(a)F(B).
(z

Since the polynomial f(z) does not have zeros in the interval (a,b), the

numbers f(«) and f(3) have the same sign. Therefore,
S (f0) S (138 > 0,
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from which we conclude that S’ (f; z) has an even number of zeros in the inter-
val (a, ). On the other hand, according to Roll’s theorem, the polynomial
S(f;z) has an odd number of zeros in the interval (o, 3), which gives the
desired contradiction. Thus, the Sylvester’s polynomial S(f;z) can have no
more than one zero in the interval (a,b). Moreover, if the polynomial S(f;z)

has a zero in this interval, it is a simple one. O

Corrolary 2. If the polynomial f(z) does not have real zeros, then the
polynomial S(f;z) does not have real zeros either.

Theorem 3. If the real zeros of the polynomial S(f;z) are simple, then

(5) Zr(5(f;2)) < Zr(f(2)),

where Zpr(f(z)) denotes the number of real zeros of the polynomial f(z),
counting multiplicities.

Proof. Let Zr(f(z)) =m (m <n) and let z1,x9,...,z, be the distinct
real zeros of the polynomial f(z) (r < m) and mj, ma, ..., m,—their orders
respectively, Y ;_,mg =m. A real zero of the polynomial f(z) cannot be a
zero of the polynomial S(f;z), because all the real zeros of S(f;z) are simple
by Corollary 1. In each of the intervals

(—OO,I']_), (:ET)+OO)7 (xkaxk—l-l)a k:1727"')r_17
the polynomial S(f;z) can have no more than one real (simple) zero. Thus,
Zr(S(f;2z)) <r+1<m+1.

If degf(z) is an even number, then m is also an even number and therefore
we cannot have Zr(S(f;z)) = m+ 1, because degS(f;z) is an even number
as well. If degf(z) is an odd number, then m is also an odd number and
then Zr(S(f;2)) =m+1 is again impossible, because degS(f;z) is an odd
number. Therefore, Zr(S(f;z)) <m. O

Theorem 4. If the polynomial S(f;z)) has only real and simple zeros,
then the polynomial f(z) has also only real and simple zeros and the zeros of
f(z) separate the zeros of S(f;z).
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Proof. Suppose that the polynomial S(f;z) has only real and simple
Zeros, say xi,Tg,...,T, with 1 < x9 < ... < x,. From (5) we have
Zr(f(z)) > n and since degf(z) = n, it follows that Zr(f(z)) = n, ig.
the polynomial f(z) has only real zeros. According to Corollary 1, the zeros
of the polynomial f(z) are different from the zeros of the polynomial S(f;z).
Consider either of the intervals (xg,zk11), k=1,2,...,n —1. We have

S(fran) = S(fap1) =0, S (fran) #0, S (fiznsr) #0.

According to Roll’s theorem, the polynomial S'(f;z) has an odd number of
zeros in the interval (zj,xrs1) and then

(6) S'(f;21)S (fs241) < 0.

From (3) we conclude that

(7) flaw) = =8 (fian),  flzre) = =8 (f;2001) .

Now from (6) and (7) we get that f(xg)f(zx+1) < 0. Therefore the polynomial
f(2) has an odd number of zeros in the interval (x,zx+1). Thus in each of
the intervals (xg,zry1), k=1,2,...,n—1, the polynomial f(z) has at least
one zero. In fact it has at least n—1 real zeros. Since degf(z) = n, it follows
that in each of the intervals (xg,zxry1), &k = 1,2,...,n — 1, the polynomial
f(2) has exactly one zero and one zero in the interval (—oo,z1), or in the

interval (x,,+00). This completes the proof of the theorem. O

Now, using the theorems we have proven so far, we state the following
result about the zeros of the polynomials of the type

®) fon) =3 (FT) 0, v=ona,
k=0

where
fi(z) = S(f;2), fa(z) = S(f1;2),....

Corrolary 3. If the polynomial f(z) does not have real zeros, then none
of the polynomials (8) has real zeros.
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Finally, considering the polynomials

" n — 14 Zk
(9) ﬁﬂ@%:§:< AH_>M, v=0,1,2,...,

14
k=0

where ) .
ﬁ@=1+%+%+m+%n
Ja(2) = S(f1:2), f3(2) = S(f2:2),...,

we also establish the following statement.

Corrolary 4. Each of the polynomials (9) can have at most one real zero.
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IIOJIMHOMWM HA CUJIBECT'LP

NBanka Kacamnoposa, Maprapura KocroBa

Pe3roMme. B paborara ca TOSydeHN HAKOM PE3yJNTATH 33 Pa3lNpeIeeHneTo
Ha Hyiure Ha moiusomumte ot Buma S(f;z) = D0 f®(2), kpmero f(z) e
HOJIMHOM OT CTENleH 7. ¢ peajHy KoepumueHTn. JOKa3aHO €, ue aKo MOJIMHOMDLT
S(f;z) mma camo peasHM M OPOCTHU HYJH, TO NOJUMHOMDBT f(2) MMa CbIIO camo

peasnnu u npoctu Hyau u Hyaure Ha f(z) pasmenar mynute Ha S(f;z).
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