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Abstract. In this paper we give some results on the distribution of the
zeros of the polynomials of the type S(f ; z) =

∑n
k=0 f (k)(z) , where f(z) is a

polynomial of degree n with real coefficients. For example, we prove that if
the polynomial S(f ; z) has only real and simple zeros, then the polynomial
f(z) has also only real and simple zeros and the zeros of f(z) separate the
zeros of S(f ; z) .
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Let f(z) be a polynomial of degree n with real coefficients. Then the
polynomial

(1) S(f ; z) =
n∑

k=0

f (k)(z)

will be called (Bojorov’s idea) Sylvester’s polynomial. If f(z) = zn

n! , then we
get the polynomial

(2) S(z) = 1 +
z

1!
+

z2

2!
+ . . . +

zn

n!
,

for which the following result of Sylvester is known ([1], p.17): the polynomial
S(z) has no more than one real zero. Obviously, if S(z) has a real zero, it is
a negative one. From (1) we can easily get the equation

(3) S(f ; z) = S
′
(f ; z) + f(z)
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or the more general equation

(4) S(p−1)(f ; z) = S(p)(f ; z) + f (p−1)(z), p = 1, 2, . . . , n.

Bojorov has stated without a proof the following unpublished theorem.

Theorem 1. Every zero of the polynomial S(f ; z) of order r is a zero of

the polynomial f(z) of order r − 1 .

Proof. Let z = α be a zero of the polynomial S(f ; z) of order r . This
means

S(f ;α) = S
′
(f ;α) = . . . = S(r−1)(f ;α) = 0 , S(r)(f ; α) 6= 0 .

From (4) when p = 1, 2, . . . , r we obtain

f(α) = f
′
(α) = . . . = f (r−2)(α) = 0 , f (r−1)(α) = −S(r)(f ;α) 6= 0 ,

i.g. the point z = α is a zero of the polynomial f(z) of order r − 1 . ¤

Corrolary 1. The simple zeros of the polynomial S(f ; z) are not zeros of

the polynomial f(z) .

Theorem 2. In every open interval, not containing zeros of f(z) , the

polynomial S(f ; z) can have no more than one zero.

Proof. Suppose that the polynomial f(z) has no zeros in the interval
(a, b) . Assume that the polynomial S(f ; z) has more than one zero in the
interval (a, b) and let α and β be two consecutive zeros of S(f ; z) such that
a < α < β < b . The zeros α and β are simple zeros of the polynomial
S(f ; z) . Otherwise, according to Theorem 1, they would be zeros of the poly-
nomial f(z) , but as we know f(z) does not have any zeros in the interval
(a, b) . From (3) we obtain

S
′
(f ; α) = −f(α) , S

′
(f ; β) = −f(β)

and then
S
′
(f ; α)S

′
(f ; β) = f(α)f(β).

Since the polynomial f(z) does not have zeros in the interval (a, b) , the
numbers f(α) and f(β) have the same sign. Therefore,

S
′
(f ; α) S

′
(f ; β) > 0,
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from which we conclude that S
′
(f ; z) has an even number of zeros in the inter-

val (α, β) . On the other hand, according to Roll’s theorem, the polynomial
S(f ; z) has an odd number of zeros in the interval (α, β) , which gives the
desired contradiction. Thus, the Sylvester’s polynomial S(f ; z) can have no
more than one zero in the interval (a, b) . Moreover, if the polynomial S(f ; z)
has a zero in this interval, it is a simple one. ¤

Corrolary 2. If the polynomial f(z) does not have real zeros, then the

polynomial S(f ; z) does not have real zeros either.

Theorem 3. If the real zeros of the polynomial S(f ; z) are simple, then

(5) ZR(S(f ; z)) ≤ ZR(f(z)) ,

where ZR(f(z)) denotes the number of real zeros of the polynomial f(z) ,

counting multiplicities.

Proof. Let ZR(f(z)) = m ( m ≤ n ) and let x1, x2, . . . , xr be the distinct
real zeros of the polynomial f(z) ( r ≤ m ) and m1,m2, . . . ,mr—their orders
respectively,

∑r
k=0 mk = m . A real zero of the polynomial f(z) cannot be a

zero of the polynomial S(f ; z) , because all the real zeros of S(f ; z) are simple
by Corollary 1. In each of the intervals

(−∞, x1), (xr, +∞), (xk, xk+1), k = 1, 2, . . . , r − 1 ,

the polynomial S(f ; z) can have no more than one real (simple) zero. Thus,

ZR(S(f ; z)) ≤ r + 1 ≤ m + 1 .

If degf(z) is an even number, then m is also an even number and therefore
we cannot have ZR(S(f ; z)) = m + 1 , because degS(f ; z) is an even number
as well. If degf(z) is an odd number, then m is also an odd number and
then ZR(S(f ; z)) = m + 1 is again impossible, because degS(f ; z) is an odd
number. Therefore, ZR(S(f ; z)) ≤ m . ¤

Theorem 4. If the polynomial S(f ; z)) has only real and simple zeros,

then the polynomial f(z) has also only real and simple zeros and the zeros of

f(z) separate the zeros of S(f ; z) .
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Proof. Suppose that the polynomial S(f ; z) has only real and simple
zeros, say x1, x2, . . . , xn with x1 < x2 < . . . < xn . From (5) we have
ZR(f(z)) ≥ n and since degf(z) = n , it follows that ZR(f(z)) = n , i.g.
the polynomial f(z) has only real zeros. According to Corollary 1, the zeros
of the polynomial f(z) are different from the zeros of the polynomial S(f ; z) .
Consider either of the intervals (xk, xk+1) , k = 1, 2, . . . , n− 1 . We have

S(f ;xk) = S(f ;xk+1) = 0, S
′
(f ;xk) 6= 0, S

′
(f ; xk+1) 6= 0 .

According to Roll’s theorem, the polynomial S
′
(f ; z) has an odd number of

zeros in the interval (xk, xk+1) and then

(6) S
′
(f ; xk)S

′
(f ;xk+1) < 0 .

From (3) we conclude that

(7) f(xk) = −S
′
(f ;xk) , f(xk+1) = −S

′
(f ; xk+1) .

Now from (6) and (7) we get that f(xk)f(xk+1) < 0 . Therefore the polynomial
f(z) has an odd number of zeros in the interval (xk, xk+1) . Thus in each of
the intervals (xk, xk+1) , k = 1, 2, . . . , n−1 , the polynomial f(z) has at least
one zero. In fact it has at least n−1 real zeros. Since degf(z) = n , it follows
that in each of the intervals (xk, xk+1) , k = 1, 2, . . . , n − 1 , the polynomial
f(z) has exactly one zero and one zero in the interval (−∞, x1) , or in the
interval (xn, +∞) . This completes the proof of the theorem. ¤

Now, using the theorems we have proven so far, we state the following
result about the zeros of the polynomials of the type

(8) fν+1(z) =
n∑

k=0

(
k + ν

ν

)
f (k)(z), ν = 0, 1, 2, . . . ,

where
f1(z) = S(f ; z) , f2(z) = S(f1; z) , . . . .

Corrolary 3. If the polynomial f(z) does not have real zeros, then none

of the polynomials (8) has real zeros.
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Finally, considering the polynomials

(9) fν+1(z) =
n∑

k=0

(
n− k + ν

ν

)
zk

k!
, ν = 0, 1, 2, . . . ,

where

f1(z) = 1 +
z

1!
+

z2

2!
+ . . . +

zn

n!
,

f2(z) = S(f1; z) , f3(z) = S(f2; z) , . . . ,

we also establish the following statement.

Corrolary 4. Each of the polynomials (9) can have at most one real zero.
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POLINOMI NA SILVEST_R

Ivanka Kasandrova, Margarita Kostova

Rez�me. V rabotata sa poluqeni n�koi rezultati za razpredelenieto
na nulite na polinomite ot vida S(f ; z) =

∑n
k=0 f (k)(z) , k�deto f(z) e

polinom ot stepen n s realni koeficienti. Dokazano e, qe ako polinom�t
S(f ; z) ima samo realni i prosti nuli, to polinom�t f(z) ima s�wo samo
realni i prosti nuli i nulite na f(z) razdel�t nulite na S(f ; z) .
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