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Abstract. The curvature tensor on an arbitrary 3-dimensional Lorentz
manifold is expressed by the Ricci tensor and the scalar curvature. The curva-
ture tensor on a 3-dimensional almost contact B-metric manifold belonging to
two main classes is studied. The corresponding curvatures are found and the
respective geometric characteristics of the considered manifolds are obtained.
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1. Preliminaries

Let (M, ¢,&,n,9) be a (2n + 1)-dimensional almost contact manifold with
B-metric, i.e. (¢,&,n) is an almost contact structure and ¢ is a metric on M
such that

(1.1) P =—id+n®& &) =1 glee)=—g(,")+n()nl).

Both metrics g and its associated g : ¢ = ¢* + n ® n are indefinite metrics of
signature (n,n + 1) [1], where it is denoted g* = g(-, ).

In this paper we study the curvature properties of the almost contact B-
metric manifolds of dimension three. This dimension is the lowest possible
dimension of these manifolds.
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Further, X, Y, Z, W will stand for arbitrary differentiable vector fields on M
(ie. X, Y, Z, W € X(M)), and z,y, z, w — arbitrary vectors in the tangential
space T, M to M at some point p € M.

Let (V,¢,&,1n,9) be a (2n + 1)-dimensional vector space with almost con-
tact B-metric structure. Let us denote the subspace hV := kern of V, and
the restrictions of g and ¢ on hV by the same letters. It is obtained a 2n-
dimensional vector space hV with a complex structure ¢ and B-metric g. Let
{e1,...,en,pe1,...,0e,,&} be an adapted p-basis of V', where

_g(e’i’ej) = 9(90625306]) = 674]’9(62’906]) = Oan(el) = O,Z,] € {17 s ?n}'

A decomposition of the class of the almost contact manifolds with B-metric
with respect to the tensor

F: F(X,Y,Z) =g((Vx¢)Y, Z)

is given in [1], where there are defined eleven basic classes F; (i = 1,...,11).
The Levi-Civita connection of ¢ is denoted by V. The special class Fy: F =0

is contained in each of F;. The following 1-forms
0() :g”F(elaeja)? 0*() :g”F(emgpe]?)a W() - F(‘Ea€7>

are associated with F', where {e;,&} (¢ = 1,...,2n) is a basis of T,M, and
(9%7) is the inverse matrix of (g;).

In this paper we consider especially the class Fy and two of the main classes
F4 and F5 engendered by the main components of F. Explicit examples of F5-
and F;® Fs-manifolds are given in [1]. Moreover, these classes are analogues of
the ones of the known a-Sasakian and a-Kenmotsu manifolds in the geometry
of the almost contact metric manifolds. The considered classes are determined
by the conditions

Fi: F(X,Y,Z) = =2 {g(oX, oY )0(Z) + g0 X, 0 Z)n(Y)},
 F(

(1.2) o (e)
F5: F(X)Y,Z) = =52 {g(X, Y)N(Z) + 9(X, pZ)n(Y)} .

Let us recall [4] the canonical connection. It is a non-symmetric natural
connection D on (M, p,&,n,g) defined by

DXY = VY + L {(Vx@)g¥ + (Vxm)VE} —n(¥)Vxé
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The structural tensors ¢, &, 1, g, g are covariant constants with respect to D.
The curvature tensor R for V is defined as ordinary by R = [V, V] -V ;.
The tensor K is the corresponding curvature tensor for D. The corresponding
tensor fields of type (0,4) are denoted by the same letters.
Let R be the set of all curvature-like tensors, i.e. the tensors L having the
properties

(1.3) L(z,y,z,w) = —L(y,x, z,w) = —=L(z,y,w,z), O L(z,y,2z,w)=0.

x7y7z

In an analogous way of the Ricci tensor p and the scalar curvatures 7 and 7
of R we denote the following contractions of L:

p(L)(y.2) = gV L(ei,y, 2,¢j), (L) = g“p(L)(ei e;), T(L)=g"p(L)(ei,e;),

where {e;} (i =1,...,2n+1) is a basis of T,M, and (g*), (§) are the inverse
matrices of (gi;), (Gi;), respectively.
As it is known ([3]), in the subclasses

F)={F4|d0 =0} and F2={F5]|do* =0}

the canonical curvature tensor K is a Kéahler tensor, i.e. K satisfies the Kéhler
property
K(p,0)=—-K(,--) and K eR.
We use the following curvature-like tensors of type (0,4), which are invari-
ant with respect to the structural group GL(n,C)NO(n,n)) x I. The tensor
S is a symmetric (0, 2)-tensor and

V1(9)(,y, 2, u) —g(y7 2)8(x,u)—g(z, 2)S(y, u)+g(z,u)S(y, 2)—g(y, u)S(, 2),
2(5)(2,y, z,u) = ¥1(S)(z,y, ¢z, pu),

3(9) (@, y, 2,u) = —1(S)(,y, pz,u) — P1(S)(x,y, 2, pu),

(S)

)=

)=
1(S)(,y, 2,u) = P1(S) (2, y, & wn(z) +91(S) (2, y, 2, En(u),
U5(S) (2, y, 2,u) = P1(5) (2, 9, &, pu)n(z) + ¥1(S)(z, y, 02, &)n(u).
We put

S
S
S

S &E5EE

mi = 50il9) (i = 1,2,3),m = ti(g) (i = 4,5).

It is known [4], that the tensors m — w9 — w4 and 73 + 75 are Kéhler tensors.
Let us recall the interconnections between the curvature tensors R and K
given in the following
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Theorem 1.1 ([2]). Let (M, p,&,1n,g) be an FP-manifold (i = 4,5). Then

{my — w4}

o I=5

£6" (& 0*2(¢
ko=t QT(L L+ 471(2)

A decomposition of R over (V,p,&,n,g) into 20 mutually orthogonal and

1.

invariant factors with respect to the structural group GL(n,C)NO(n,n)) x I
is obtained in [6]. The partial decomposition R = hR & vR & wR is received
initially and subsequently the decompositions:

hMR=wi @ - ®wi, R=0v1@---Dvs, wWR=w ® S ws.

The characteristic conditions of the factors w; (¢ = 1,...,11), v; ( =1,...,5),
wg (k=1,...,4) are given in [6].

Let us recall [7], an almost contact manifold with B-metric is said to be in
one of the classes wR, wg, v, ws if R belongs to the corresponding component,
where k=1,...,11;r=1,...,5;,s=1,...,4.

2. On an arbitrary 3-dimensional Lorentz manifold

Let (M,g) be a 3-dimensional Lorentz manifold, i.e. ¢ is an indefinite

metric with signature (1,2).

Theorem 2.1. Every curvature-like tensor on a 3-dimensional Lorentz
manifold has the form
L=a(p() - "

Proof. Let {e1, ez, e3} be a pseudo-orthonormal basis on T, M with respect
to g, i.e. for g;; = g(es,e;) we have —g11 = g22 = g33 = 1, g5 = 0, @ # j.
Then the components of p(L) and 7(L) are: p(L)11 = L1221 + L1331, p(L)22 =
— L1221 + Lassa, p(L)3ss = —Li3s1 + Liss1, p(L)12 = L3123, p(L)13 = Loi3,
p(L)2g = —Li931, T(L) = —p(L)11 + p(L)22 + p(L)33. By direct computations
we obtain the above relation between the tensors of type (0,4) for arbitrary
vectors in T, M. O

.
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Corollary 2.2. The curvature tensor on every 3-dimensional Lorentz mani-

fold has the form

(2.1) R=1(p) - 5.

3. On a 3-dimensional almost contact B-metric manifold

Let (M, ¢,£,1n,9) be a 3-dimensional almost contact B-metric manifold.
According [1] the class of these manifolds is F1 & Fy @ F5 & Fg @ -+ - ® Fi1.

From the decomposition of R it follows that the 3-dimensional almost con-
tact manifold with B-metric cannot belong to the factors w; (i = 1,2, 3,4, 9, 10,
11), v; (j = 4,5).

Proposition 3.1. Every 3-dimensional almost contact B-metric manifold
belongs to the class ws ® v1 ® wR.

Proof. Let {e1,e2 := ger,e3 := £} be a ¢-basis of T,M at every point
p € M. For arbitrary € T,M we have the decomposition z = hx + n(z)¢,
where hx = z'e; + 2%e5. We obtain immediately from (2.1) the following

components

R(hx, hy, hz, hw) = {7 {m + m2} (ha, hy, hz, hw),
R(hz, hy, hz,€) = 5 {v1 + 2} (p) (h, hy, hz,€),
R(&, hy, hz,€) = y'2' Ra1iz — g(hy, ohz) Ra123 + y*2* Ragas.
Taking into account the last equalities and the decomposition of R from [6]
we receive hR € ws, vR € v1, wR € wR and consequently M € ws®viPwR. O
Using (1.1), the Kéhler property of L and Theorem 2.1 we receive imme-
diately the components of p(L) and 7(L) whence we have

Lemma 3.2. Every Kahler curvature-like tensor L on a 3-dimensional
almost contact B-metric manifold is zero.

It is known [2], the curvature tensor R (resp. K) on an Fp-manifold (resp.
.ﬁp—manifold, i =4,5) is a Kéhler tensor. Then Lemma 3.2 implies the follow-
ing two theorems.
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Theorem 3.3. Every 3-dimensional Fy-manifold is flat, i.e. R = 0.

Theorem 3.4. Every 3-dimensional F?-manifold (i = 4,5) is canonical
flat, i.e. K =0.

Then Theorem 3.4 and Theorem 1.1 imply the following
Proposition 3.5. Let (M, ¢, &, n, g) be a 3-dimensional F?-manifold (i=4,5).
Then
o =4
1, 1
R = —0°(&) {m2 — ma} — 5£0(&)ms;

e i=5 1 ]
_ T p*2 T ep* .
R=—10"(€)m — 560" (©)m;
Using Corollary 2.2 and Proposition 3.5 we establish the truthfulness of
the following

Theorem 3.6. The curvature tensor, the Ricci tensor and the scalar cur-
vatures on a 3-dimensional F?-manifold (i = 4,5) are respectively:

o =4
R= —%7’ {m — w3 —2my} — %?ﬂg = —%7‘ {my —ma+ms} + %’7:71'5,
p=—3{T—7Ttg"+man,
T=p(6,€) = 56°(6), T =30%(&) —€0(6);
o i=5

R=g{r—27}m — 3 {r =37} m,
p=s5{r—Trg—z{r-37}nan,
T= 3 30O 1) =68 = 3 {020 + 26079}

According to the decomposition of R from Theorem 3.6 we receive

Proposition 3.7. The class of the 3-dimensional ]:Zo—manifo]ds fori =14
and i =5 Is ws @ wy ® wo for i = 4 and ws G wy for i = 5, respectively.
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It is well known the orthogonal decomposition V= hV@uvV of (V, ¢, &, 1, g)
(dimV = 2n+1), where hV = {x € V | x = hx = —¢*z}, vV = {x € V|
x = vz = n(z)¢}. Then the restrictions of the B-metrics g and g on hV are
gn = —9g(p, ) =g9g—nmn, gn = g(-, ) = g*, respectively. On the other
side, n ® 7 is the restriction of the both B-metrics on vV.

Let us introduce the following notions.

Definition 3.8. The (2n + 1)-dimensional manifold (M, ¢, &, 1, g) is called
a contact-Einstein manifold if the Ricci tensor on 7),M has the form p =
agn+Ban+yn®@n, where o, (3, are real constants. A contact-Einstein manifold
is called an h-Einstein manifold, a v-Einstein manifold if p = agy+59n,
p = yn ®n, respectively. An h-Einstein manifold is called a ¢-Einstein
manifold, a x-Einstein manifold if p = agy, p = Bgn, respectively.

Note that M is an Einstein manifold (i.e. p = ag) in the case when 5 = 0,

a=7v#0.
Having in mind Theorem 3.6 we give some geometric characteristics of the

FO-manifolds (i = 4,5).

)

Proposition 3.9. The 3-dimensional F{-manifolds are not Einstein,
p-FEinstein, x-Einstein, Ricci-flat manifolds. The 3-dimensional fg—manifolds
are not x-Einstein, Ricci-flat manifolds.

Proposition 3.10.
1. A 3-dimensional Fj-manifold is v-Einstein iff 6(&)=const.
2. A 3-dimensional F9-manifold is
(a) Einstein iff 0*(§) = const;
(b) -Einstein iff 260*(€) = —6*2(¢).
(c) v-Einstein iff £6*(&) = —0*2(&).
Proposition 3.11.

1. The scalar curvature T and the Ricci curvature in the direction of £ on

a 3-dimensional F{-manifold are equal and positive.
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2. The associated scalar curvature 7 and the Ricci curvature in the direction
of € on a 3-dimensional F{-manifold are equal.

R@yy.z)
Wl(w§y7y’x)
every nondegenerate section « with a basis {x,y} in T,M, dimn M =2n+1is

known. The special sections in T, M, dim M = 2n+1: a &-section (e.g. {&,x}),
a p-holomorphic section (i.e. & = pa) and a totally real section (i.e. a L pa)

The sectional curvature k(z,y) = with respect to g and R for

are introduced in [5]. Note that the totally real sections in the 3-dimensional
case do not exist.

Using Theorem 3.6 we compute the sectional curvatures of a &-section and
a p-holomorphic section on a 3-dimensional FP-manifold (i = 4,5):

. i=4
(3.1) k(&a)= % {1 + m} _ ;gszgfg)’
b (pay ) = -1 = — 2,
. i=5
(32) k(Ew) =g =~ {6720 + 266°©)}
k (o, p%z) = g _F= _9*24(5).

Then according to (3.1) and (3.2) we receive a certain constancy of the
special sectional curvatures.

Proposition 3.12. Every 3-dimensional F?-manifold (i = 4,5) has nega-
tive point-wise constant w-holomorphic sectional curvatures. Every 3-dimen-

sional F2-manifold has point-wise sectional curvatures of the &-sections.

Proposition 3.13. Let (M, ¢,£,1n,9) be a 3-dimensional FP-manifold
(i=4,5). Then
e for i=4

M has positive constant sectional curvatures of the {-sections and nega-
tive constant @-holomorphic sectional curvatures iff M is a v-Einstein
manifold;
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1]

2]

e for i=5

1. M has negative constant p-holomorphic sectional curvatures iff M
is an FEinstein manifold;

2. If M is FEinstein then M has constant sectional curvatures of the

&-sections.
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KPUBUHHU CBOMCTBA HA HSIKOU TPMMEPHO IIOUTHU
KOHTAKTHU B-METPMNYHM MHOI'OOBPA3US

Manruo MamueB, I'ana HaxkoBa

Pe3tome. B Tasm crartus ce m3zpassaBa KPUBUMHHUAT TEH30pP BLPXY IPOU3-
BOJIHO JIOPEHIIOBO MHOroobpa3ue upe3 TeH3opa Ha Puym u crkasapHaTa KpUBUHA.
Pasrienanu ca TpuMepHU MOUYTU KOHTAKTHU B-mMeTpuuynu MHOroo6pasus, Ipu-
HaJIEXaly Ha OBA [JIaBHU Kjaaca. VI3ydeH e KPUBMHHUSA TEH30D BBLPXY TE3U
MHOTOOOpasua. HamepeHnu ca ChbOTBETHUTE KPUBUHU U Ca MOJYUYEHU CBDLP3AHU-

T€ C TSAX F€OMETPUYHN XAPAKTEPUCTUKU HA PA3TJIeJaHNTE MHOroo0Opa3us.
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