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1. Introduction

In the [5] and [8] the authors discuss stability properties in terms of two
measures employing perturbing families of Lyapunov functions.

Analysing the stability, asymptotic stability and instability of systems
of ordinary differential equations Martynyuk A.A. in [1] and [4] applies the
method of matrix Lyapunov functions.

In the theory of the stability of large scale systems the different dynamic
properties may have independent subsystems, but the whole system may pos-
sess certain type of stability on all variables. In the [2] and [11] the analysis
of the polystability of dynamic systems is based on using matrix Lyapunov
functions.

The extension of the method of matrix Lyapunov functions and the idea of
the polystability [2], [11] and some ideas of the comparison method [6] allow a
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new approach to be outlined in investigating the stability of motion described
in the paper [3].

Moreover the method of matrix Lyapunov functions and the idea of sta-
bility in terms of two measures are used in the mathematical models of the
populations [9] and in the impulsive systems [10].

Using the ideas in [8] in this paper we investigate the stability in terms
of two measures of a system of differential equations with the help of matrix
Lyapunov functions applying a new approach in which the comparison system
has a cascade structure.

2. Preliminary notes

Let (Rn, ‖ • ‖) be a real Euclidean normed space, R+ = [0, +∞), C[X, Y ]
- class of continuous mappings of the topological space X, in the topological
space Y , I = [τ, +∞), τ ∈ R, I ∈ R - set of the initial values t0.

We consider the system

(1)
dxi

dt
= fi(t, x1, . . . , xs), xi(t0) = xi0, i = 1, 2, . . . , s,

where xi ∈ Rni , t ∈ I, fi ∈ C[I × Rni × · · · × Rns , Rni ] and we assume that
fi(t, 0, . . . , 0) = 0, i = 1, 2, . . . , s for each t ∈ I.

Let us list the following classes of functions:

K = {σ ∈ C[R+, R+] : σ(u) is strictly increasing in u and σ(0) = 0};
CK = {σ ∈ C[R+ ×R+, R+] : σ(t, u) ∈ K for each t ∈ R+};
Γ = {h ∈ C[R+ ×Rn, R+] : inf

x∈Rn
h(t, x) = 0 for each t ∈ R+}.

In the problem for stability in terms of two measures the custom is system
(1) to be considered in the region S(h, ρ), where

(2) S(h, ρ) = {(t, x) ∈ R+ ×Rn : h(t, x) < ρ}, ρ = const > 0.

We shall use the following definitions:

Definition 1 [5]. Let h0, h ∈ Γ. Then we say that h0 is finer than h if
there exist a ρ > 0 and a function Φ ∈ CK such that h0(t, x) < ρ implies
h(t, x) ≤ Φ(t, h0(t, x)).
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Definition 2 [5]. The system (1) is said to be (h0, h)-equistable if given
ε > 0 and t0 ∈ R+ there exists a δ = δ(t0, ε) > 0 that is continuous in t0 for
each ε such that h0(t0, x0) < δ implies h(t, x(t)) < ε for each t ≥ t0.

Definition 3 [6]. Let Q ∈ C[Rs
+, R+] with Q(0) = 0 and assume that

Q(u) is nondecreasing in u. Then we say that Q ∈ K∗[Rs
+, R+].

With the help of the matrix-function

(3) U(t, x) = [uij(t, x)], i, j = 1, 2, . . . , s

of the constant matrix A with (s × s)-dimension and of the vector-function
ϕ ∈ C[Rn, Rs

+], ϕ(0) = 0, we construct the vector-function [3]

(4) L(t, x, ϕ) = AU(t, x)ϕ(x).

Let the function L ∈ C[I ×Rn ×Rs
+, Rs] and satisfy the locally Lipschitz

condition in x. We define the right upper Dini derivative [3] of the function
(4):

D+
(1)L(t, x, ϕ) = AD+

(1)U(t, x).ϕ(x) + AU(t, x)D+
(1)ϕ(x),

where

D+
(1)U(t, x) = lim

r→0+
sup[U(t + r, x + rf(t, x))− U(t, x)]/r,

D+
(1)ϕ(x) = lim

r→0+
sup[ϕ(x + rf(t, x))− ϕ(x)]/r

for (t, x) ∈ I ×Rn.
We shall deduce the following definitions:

Definition 4. Let U ∈ C[S(h, ρ), Rs×s], h0, h ∈ Γ and the function Q ∈
K∗[Rs

+, R+]. Then the matrix-function U(t, x) is said to be h-positive definite
if there exist a ρ > 0 and a function b ∈ K such that h(t, x) < ρ implies
b(h(t, x)) ≤ Q(L(t, x, ϕ)).

Definition 5. Let L ∈ C[I × Rn × Rs
+, Rs], h0, h ∈ Γ and the function

Q ∈ K∗[Rs
+, R+]. Then the vector-function L(t, x, ϕ) is said to be:

1) h0-decrescent if there exist a ρ0 > 0 and a function a0 ∈ K such that
h0(t, x) < ρ0 implies Q(L(t, x, ϕ)) ≤ a0(h0(t, x));

2) weakly h0-decrescent if there exist a ρ0 > 0 and a function a ∈ CK such
that h0(t, x) < ρ0 implies Q(L(t, x, ϕ)) ≤ a(t, h0(t, x)).
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In order with system (1) and vector-function (4) we shall examine also the
comparison system

(5)
du

dt
= g(t, u), u(t0) = u0 ∈ R+,

where g ∈ C[I ×Rs
+, Rs], g(t, 0) = 0 for each t ∈ I.

Let L = (LT
p , LT

q )T , where Lp ∈ C[I × Rn × Rs
+, Rp], Lq ∈ C[I × Rn ×

Rs
+, Rq], p + q = s.

Let u(t; t0, u0) is a solution of system (5) with initial conditions t0 ∈ I and
u(t0; t0, u0) = u0 ∈ R+. We divide the vector u ∈ Rs

+ into two subvectors up

and uq such that (uT
p , uT

q )T = u.

Definition 6 [6]. Let Q1 ∈ K∗[Rp
+, R+] and Q2 ∈ K∗[Rq

+, R+] (p+q = s).
Then system (5) is said to be polystable in I if for given ε1 > 0, ε2 > 0 and
t0 ∈ R+ there exist a δ1 = δ1(t0, ε1) > 0 and a δ2 = δ2(ε2) > 0 such that

(6)
Q1(uop) < δ1 implies Q1(up(t; t0, u0)) < ε1, t ≥ t0,

Q2(uoq) < δ2 implies Q2(uq(t; t0, u0)) < ε2, t ≥ t0

3. Main result

Theorem. Let the following hypotheses fulfill:

(H0) h0, h ∈ Γ and h0 is finer than h;

(H1) there exist a matrix-function (3), a constant matrix A and a vector-

function ϕ ∈ C[Rn, Rs
+], ϕ(0) = 0 such that the vector-function L(t, x, ϕ) is

locally Lipschitzian in x in the region S(h, ρ) from (2), Lp(t, x, ϕ) is weakly

h0-decrescent and

b(h(t, x)) ≤ Q2(Lq(t, x, ϕ)) ≤ a0(h0(t, x)) + a1(Q1(Lp(t, x, ϕ)))

for (t, x) ∈ S(h, ρ) ∩ Sc(h0, η), for every η(0<η<ρ) and Q1(Lp(t, 0, ϕ(0))) ≡ 0
for every t ∈ I, where b, a0, a1 ∈ K[R+, R+], Q1 ∈ K∗[Rp

+, R+] and Q2 ∈
K∗[Rq

+, R+] with p + q = s;
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(H2) there exists a vector-function g ∈ C[I×Rs
+, Rs], g(t, u) is quasi-monotone

nondecreasing in u, for the components (gT
p , gT

q )T = g for which function the

following inequalities are fulfilled:

1) D+Lp(t, x, ϕ) ≤ gp(t, Lp(t, x, ϕ), 0) for each (t, x) ∈ S(h, ρ);
2) D+Lq(t, x, ϕ) ≤ gq(t, Lp(t, x, ϕ), Lq(t, x, ϕ)) for each (t, x) ∈ S(h, ρ) ∩

Sc(h0, η), for every η(0<η<ρ), where Sc(h0, η) is the complement of S(h0,η);

(H3) the comparison system (5) is polystable in I in the sense of definition 6.

Then, the system (1) is (h0, h)-equistable.

Proof. Since Lp(t, x, ϕ) is weakly h0-decrescent, there exist a ρ1(0<ρ1≤ρ)
and a Φ0 ∈ CK such that

(7) Q1(Lp(t, x, ϕ)) ≤ Φ0(t, h0, (t, x)) if h0(t, x) < ρ1.

Also, h0 being finer than h implies that there exist a ρ0(0 < ρ0 ≤ ρ1) and
a Φ1 ∈ CK such that

(8) h(t, x) ≤ Φ1(t, h0(t, x)) provided h0(t, x) < ρ0,

where ρ0 is such that Φ1(ρ0) < ρ1.
Let 0<ε<ρ and t0 ∈ I be given. By hypothesis (H3), given ε1 > 0, ε2 > 0

and t0 ∈ I, there exist a δ10 = δ10(t0, ε1) > 0 and a δ20 = δ20(ε2) > 0 such
that

(9)
Q1(uop) < δ10 implies Q1(up(t; t0, u0)) < ε1, t ≥ t0,

Q2(uoq) < δ20 implies Q2(uq(t; t0, u0)) < ε2, t ≥ t0

Since a0 ∈ K and Φ1 ∈ CK, we can find δ1 = δ1(ε) such that

(10) a0(δ1) <
1
2
δ20 and Φ1(t0, δ1) < ε.

Let ε2 = b(ε) and ε1 = a−1
1 (1

2δ20). Choose uop = Lp(t0, x0, ϕ(x0)). Since
Φ0 ∈ CK, Q1(Lp(t, 0, ϕ(0))) ≡ 0 and (7), it follows that there exists a
δ2 = δ2(t0, ε) > 0 such that, δ2 ∈ (0,min(δ1, ρ1)) and

(11)
h0(t0, x0) < δ2 implies

Q1(Lp(t0, x0, ϕ(x0))) ≤ Φ0(t0, h0(t0, x0)) < δ10.
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We set δ = min(δ1, δ2) and suppose that h0(t0, x0) < δ. We note that because
of (8) and (10), we have

(12) h(t0, x0) ≤ Φ1(t0, h0(t0, x0)) ≤ Φ1(t0, δ) ≤ Φ1(t0, δ1) < ε.

We claim that h0(t0, x0) < δ implies h(t, x(t)) < ε, t ≥ t0. If this is not true,
because of (12) there exist a solution x(t) of the system (1) with h0(t0, x0) < δ

and t2 > t1 > t0 such that

(13)
h(t2, x(t2)) = ε < ρ, h0(t1, x(t1)) = δ1(ε),

x(t) ∈ S(h, ε) ∩ Sc(h0, η) with η = δ1(ε) for t ∈ [t1, t2].

Then (H2) implies

(14)
D+mp(t) ≤ gp(t, mp(t), 0), t0 ≤ t ≤ t2;

D+mq(t) ≤ gq(t,m(t)), t1 ≤ t ≤ t2,

where m(t) = L(t, x(t), ϕ(x(t))). Hence by the comparison theorem [7] we
have

(15)
mp(t) ≤ up(t; t1,m(t1)), t1 ≤ t ≤ t2;

mq(t) ≤ uq(t; t1,m(t1)), t1 ≤ t ≤ t2

Let u∗(t) = u(t; t1,m(t1)) be the extension of u(t) to the left of t1 up to t0

and u∗(t0) = u∗0. Choose up(t0) = L(t0, x0, ϕ(x0)) and uq(t0) = u∗oq. Consider
now the differential inequality

(16) D+mp(t) ≤ gp(t,mp(t), u∗q(t)), mp(t0) = up(t0)

which by comparison theorem [7] yields

(17) mp(t) ≤ up(t; t0, u0), t0 ≤ t ≤ t1, u0 = (uT
p (t0), u∗Toq )T .

Then it is clear that u(t) = (uT
p (t; t0, u0), u∗Tq (t; t1,m(t1))) is a solution of the

system (5) on [t0, t1]. Using (13), (15) and (H1), we obtain

(18) b(ε) = b(h(t2, x(t2)) ≤ Q2(Lq(t2, x(t2), ϕ(x(t2))) ≤
≤ Q2(uq(t2; t1,m(t1))).
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But from (9) and (17), provided Q1(uop) < δ10 we get

Q1(Lp(t1, x(t1), ϕ(x(t1))) ≤ Q1(up(t1; t0, u0)) < b−1
1 (

1
2
δ20(ε)).

From (H1), (10) and (13) now we have

Q2(Lq(t1, x(t1), ϕ(x(t1))) ≤
≤ a0(h0(t1, x(t1))) + a1(Q1(Lp(t1, x(t1), ϕ(x(t1))))) ≤
≤ a0(δ1(ε)) + a1(a−1

1 (
1
2
δ20)) <

1
2
δ20 +

1
2
δ20 = δ20

and therefore from (9) we get

Q2(uq(t2; t1, m(t1))) < b(ε)

which contradicts (18). Hence the proof is complete. ¤
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EDNO NAPRAVLENIE V METODA NA MATRIQNI
FUNKCII NA L�PUNOV I USTO�QIVOST PO

OTNOXENIE NA DVE MERKI

I. K. Rusinov

Rez�me. Prilo�en e nov podhod v metoda na matriqnite funkcii na
L�punov i e izsledvana usto�qivostta na sistemi ot obiknoveni diferen-
cialni uravneni� po otnoxenie na dve merki.
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