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Abstract. In this work, we will introduce the notion of polystability of
systems of differential equations in terms of two measures sufficient condi-
tions for this kind of stability are obtained by the method of vector Lyapunov
functions.
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1. Introduction

In [1] the authors present the definition for polystability of movement on
part of the variables and apply the Direct Lyapunov Method for analysis of
the polystability. Later Russinov I. K. in [7-9] analyzes the polystability of a
flag of integral manifolds using scalar, vector and matrix Lyapunov function.
Developing this idea in [6] the exponential polystability of a flag of invariant
sets is analyzed.

On the other hand a notion of new type of stability emerges, called stability
in terms of two measures, which is considered in [2,3,5,10].

The present paper presents the notion of polystability of dynamical systems
in terms of two measures, analyzing this polystability using scalar Lyapunov
functions.
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2. Preliminary notes

We shall consider the system of differential equations

(1) ẋ = X(t, x), X(t, 0) ≡ 0,

where x = (x1, . . . ,xn)T ∈ Rn and t ∈ R+, under the assumption X ∈ C[R+×
Rn, Rn].

Let us list definitions and classes of functions for convenience:

K = {σ ∈ C[R+, R+] : σ(u) is strictly increasing in x and σ(0) = 0},
CK = {σ ∈ C[R+ ×R+, R+] : σ(t, •) ∈ K for each t ∈ R+},
Γ = {h ∈ C[R+ ×Rn, R+] : inf

x∈Rn
h(t, x) = 0 for each t ∈ R+}.

Definition 1 [2]. Let hi
0, hi ∈ Γ for i = 1, 2. Then we say that hi

0 is
uniformly finer than hi if there exists a ρi > 0 and a function Φi ∈ K such
that hi

0(t, x) < ρi implies hi(t, x) ≤ Φi(hi
0(t, x)) for i = 1, 2.

Definition 2. Let hi
0, hi ∈ Γ. Then system (1) is said to be polystable in

terms of two measures, if:
1) it is (h1

0, h
1)-uniformly stable, i.e. for each ε > 0 and t0 ∈ R+ there

exists a function δ = δ(t0, ε) > 0, which is continuous in t0 for each ε such that
h1

0(t0, x0) < δ implies h1(t, x(t)) < ε, t ≥ t0, for any solution x(t) = x(t; t0, x0)
of the system (1);

2) it is (h2
0, h

2)-uniformly asymptotically stable, i.e. it is (h2
0, h

2)-uniformly
stable and (h2

0, h
2)-uniformly attractive, i.e. for each t∗0 ∈ R+ there exists a

∆ > 0 such that for each solution x(t) = x(t; t∗0, x
∗
0) with initial conditions

x∗0(t) = x(t∗0; t
∗
0, x

∗
0) definite for each t ≥ t∗0 and for some sequence ti → ∞,

depending on t∗0 and x∗0, h2
0(t

∗
0, x

∗
0) < ∆ implies lim

i→∞
h2(ti; t∗0, x

∗
0) = 0.

We use a scalar function V (t,x), where V ∈ C[R+×Rn, R+] and V (t,0) ≡ 0.

Definition 3. Let V ∈ C[R+ × Rn, R+]. Then for (t, x) ∈ R+ × Rn, the
upper right Dini derivative of V (t, x) with respect to the system (1) is defined
as

(2) D+V (t, x) = lim
h→0+

sup[V (t + h, x + hX(t, x))− V (t, x)]/h
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Definition 4 [2]. Let V i ∈ C[R+ ×Rn, R+] and hi
0, h

i ∈ Γ for i = 1, 2.
1) Then V i(t, x) is said to be hi-positive definite if there exists a ρi > 0

and a function bi ∈ K such that hi(t, x) < ρi implies bi(hi(t, x)) ≤ V i(t, x) for
i = 1, 2;

2) Then V i(t, x) is said to be hi
0-decrescent if there exists a ρi

0 > 0 and
a function ai ∈ K such that hi

0(t, x) < ρi
0 implies V i(t, x) ≤ ai(hi

0(t, x)) for
i = 1, 2;

3) Then V i(t, x) is said to be weakly hi
0-decrescent if there exists a ρi

0 > 0
and a function ai ∈ CK such that hi

0(t, x) < ρi
0 implies V i(t, x) ≤ ai(t, hi

0(t, x))
for i = 1, 2.

Together with the parent system (1) we also consider the equations

(3) u̇ = f(t, u), f(t, 0) ≡ 0, f ∈ C[R+ ×R+, R],

(4) v̇ = g(t, v), g(t, 0) ≡ 0, g ∈ C[R+ ×R+, R],

and f, g are nondecreasing.
Let u(t; t0, u0) and v(t; t∗0, v

∗
0) be the solutions of the equations (3) and (4)

respectively, as u0 = u(t0; t0, u0) ∈ R+ and v∗0 = v(t∗0; t
∗
0, v

∗
0) ∈ R+. We denote

by ū(t0; t0, u0) and v̄(t∗0; t
∗
0, v

∗
0) the maximal solutions of the scalar equations

(3) and (4) respectively.
We put
S(hi, ρi) = [(t, x) ∈ R+ ×Rn : hi(t, x) < ρi] for i = 1, 2.

3. Main result

Theorem. Assume that

1) hi
0, h

i ∈ Γ and hi
0 is uniformly finer than hi for i = 1, 2;

2) V i ∈ C[S(hi, ρi), R+], V i(t, x) is locally Lipschitzian in x, hi-positive

definite, hi
0-decrescent for i = 1, 2;

3) D+V 1(t, x) ≤ f(t, V 1(t, x)) for (t, x) ∈ S(h1, ρ1);
4) D+V 2(t, x) ≤ g(t, V 2(t, x)) for (t, x) ∈ S(h2, ρ2);
5) the trivial solutions of (3) and (4) are uniformly stable and uniformly

asymptotically stable respectively.
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Then, the differential system (1) is polystable in terms of two measures in

sense of definition 2.

Proof. First we shall prove that the system (1) is (h1
0, h

1)-uniform stability.
Since V 1(t, x) is h1-positive definite, there exist λ ∈ (0, ρ1] and b1 ∈ K

such that

(5) b1(h1(t, x)) ≤ V 1(t, x), whenever h1(t, x) < λ.

Let 0 < ε < λ and t0 ∈ R+ be given and suppose that the trivial solution
of (3) is uniformly stable. Then for the given b1(ε) > 0 and t0 ∈ R+ there
exists a function δ1 = δ1(ε) > 0 such that

(6) u0 < δ1 implies u(t; t0, u0) < b1(ε), t ≥ t0.

We choose u0 = V 1(t0, x0). Since V 1(t, x) is h1
0-decrescent there exist

ρ1
0(0 < ρ1

0 ≤ ρ1) and a function a1 ∈ K such that

(7) h1
0(t, x) < ρ1

0 implies V 1(t, x) ≤ a1(h1
o(t, x)).

Since h1
0 is uniformly finer than h1, there exist ρ1

1(0 < ρ1
1 ≤ ρ1

0) and Φ1 ∈ K

such that

(8) h0(t, x) < ρ1
1 implies h1(t, x) ≤ Φ1(h1

o(t, x)),

where ρ1
1 is such that Φ1(ρ1

1) < ρ1
0 .

Since a1, Φ1 ∈ K there exists a function δ1 = δ1(ε) > 0 such that

(9) a1(δ1) > δ1 and Φ1(δ1) < ε.

Since a1 ∈ K and V (t, 0) ≡ 0, by (7) it follows, that there exists a function
δ2 = δ2(ε) > 0 such that δ2 = min(δ1, ρ

1
0). Then

(10) h1
0(t0, x0) < δ2 implies V 1(t0, x0) ≤ a1(h1

0(t0, x0)) < δ1.

Choose δ = min(δ1, δ2), a1(δ) < δ1 and assume that h1
0(t0, x0) < δ . In

consequence of (8) and (9) we have

(11) h1(t0, x0) ≤ Φ1(h1
0(t0, x0)) ≤ Φ1(δ) ≤ Φ1(δ1) < ε.
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We claim that

(12) h1(t, x(t)) < ε, t ≥ t0, whenever h1
0(t0, x0) < δ,

where x(t) = x(t; t0, x0). Suppose that this is not true. Then there exists a
solution x(t) = x(t; t0, x0) of the system (1) with h1

0(t0, x0) < δ and a t∗ > t0

such that

(13) h1(t∗, x(t∗)) = ε < ρ1 and h1(t, x(t)) < ε for t ≥ t0.

Setting m1(t) = V 1(t, x(t)) for t ∈ [t0, t∗] and using the conditions 2) and
3) of the theorem we obtain

D+m1(t) ≤ f(t,m1(t)), t ∈ [t0, t∗] .

Thus we get by the comparison theorem [4], the estimate

(14) m1(t) ≤ ū(t; t0,m1(t0)), t ∈ [t0, t∗],

where ū(t; t0, u0) is the maximal solution of (3). Then, using (5), (6) and the
choice of δ, we have

b1(ε) ≤ b1(h1(t∗, x(t∗))) ≤ V 1(t∗, x(t∗)) ≤ ū(t∗, t0, u0) < b1(ε),

which is a contradiction. Thus (12) is true, proving the (h1
0, h

1)-uniform sta-
bility of the system (1).

Let the trivial solution of (4) be uniformly asymptotically stable, which
implies that the system (1) is (h2

0, h
2)-uniformly stable. To prove the (h2

0, h
2)-

uniform attractivity, let 0 < ε ≤ λ∗ and t∗0 ∈ R+ be given and designate
δ̃0 = δ̃0(λ∗). Since the trivial solution of (4) is attractive, given b2(ε1) > 0 and
t∗0 ∈ R+, there exist δ∗10 = δ∗10 > 0 and T = T (ε1) > 0 such that

(15) v∗0 < δ∗10 implies v(t; t∗0, v
∗
0) < b2(ε1), t ≥ t∗0 + T.

Choosing v∗0 = V 2(t∗0, x
∗
0) as before, where x∗0 = x(t∗0; t

∗
0, x

∗
0) we find δ∗0 > 0

such that a2(δ∗0) < δ∗10. Let δ0 = min(δ∗0, δ̃0) and h2
0(t

∗
0, x

∗
0) < δ0. This implies

that h2(t, x(t)) ≤ Φ2(h2
0(t, x)) < ρ1, t ≥ t∗0 for all solutions x(t) = x(t; t∗0, x

∗
0)

of the system (1). Hence, setting m2(t) = V 2(t, x(t)) we obtain

D+m2(t) ≤ g(t,m2(t)), t ≥ t∗0 .
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Thus we get, by the comparison theorem [4], the inequality

(16) m2(t) ≤ v̄(t; t∗0,m
2(t∗0), t ≥ t∗0.

Suppose now that there exists a sequence {t(n)}, t(n) ≥ t∗0 + T, tn → ∞,
as n →∞ such that the estimate

(17) ε1 ≤ h2(t(n), x(t(n))) < ρ1

hold, where x(t) = x(t; t∗0, x
∗
0) is a solution of the system (1) with h0(t∗0, x

∗
0)<δ0.

Thus we receive

b2(ε1) ≤ b2(h2(t(n), x(t(n)))) ≤ V 2(t(n), x(t(n))) ≤ v̄(t(n), t∗0, v
∗
0) < b2(ε1),

which contradicts with (15)–(17). Hence it follows that the system (1) is
(h2

0, h
2)-uniformly asymptotically stable and the proof is complete. ¤
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KRITERI� ZA POLIUSTO�QIVOST NA
DIFERENCIALNI URAVNENI� PO OTNOXENIE NA

DVE MERKI

I. K. Rusinov

Rez�me. V tazi rabota we predstavim ide�ta za poliusto�qivost na
sistemi ot diferencialni uravneni� po otnoxenie na dve merki. Poluqe-
ni sa dostat�qni uslovi� za tozi vid usto�qivost s pomowta na metoda na
vektornite funkcii na L�punov.
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Erratum

The words “integral manifold” sould be regarded as “invariant set” in the
following papers of I. K. Russinov, published as follows:

1. Comptes Rendus de l’Academie Bulgare des Sciences, 46(2), 1993, 21–24;

2. Mathematica Balkanica, 7(3–4), 1993, 323–331;

3. Scient Works at Plovdiv University – Math.: 26(3), 1988, 75–86;
27(3), 1989, 159–171 and 173–188; 28(3), 1990, 123–134 and 135–145;
31(3), 1994, 89–95; 32(3), 1995, 9–16 and 17–21.

I. K. Russinov
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