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Abstract. The bifurcations of the solutions of multiparametric non-
linear boundary problem in Physics of Josephson junctions (JJ) are inves-
tigated numerically. Two cases are considered: JJ with overlap geometry
and with in-line geometry. In order to study the stability of the solution
of the nonlinear boundary problem with respect to small “space-time”
perturbations a Sturm-Liouville problem generated from this solution is
considered. The bifurcational points are calculated by the continuous
analogue of the method of Newton. A good coincidence of the numerical
results and experimental data is received. Some numerical results and
an investigation of the critical curves are illustrated graphically.
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1. Statement of the problem

In this paper the bifurcations of the solutions of multiparametric nonlinear
boundary problems in Physics of Josephson junctions (JJ) are investigated
numerically.

The basic physical quantity which characterizes JJ is a phase difference
ϕ(x) of the wave functions of both superconductors. At a suitable normalization
the phase difference can be considered as a magnetic flux across the junction.
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The junctions is one-dimensional (or long) if one of the dimensions (for
instance x) is much more longer than the two other dimensions (y and z).

The stationary (independent on the time) distributions of the magnetic
flux ϕ(x) satisfy a nonlinear differential equation of second order so called per-
turbed sine-Gordon equation. The exact form of the equation for the magnetic
flux depends on the physical conditions at which JJ is considered. The following
two cases are most popular in practice.

A. JJ with overlap geometry. In this case the external current flows along
the x-axis during the entire junction (x ∈ [−∆, ∆], where ∆ is the half-length
of the JJ) and it can be considered approximately as a constant. Some more
precise models taking into account the change of the current γ along the length
of JJ and the connected with this physical effects are considered in the papers
[22, 23].

In the case of JJ with overlap geometry the sine-Gordon equation for the
magnetic flux ϕ(x) has the following form

(1.1) −ϕxx + jD(x) sin ϕ + γ = 0,

and the boundary conditions are “symmetric” conditions of Neuman type.

(1.2) ϕx(−∆) = hB , ϕx(∆) = hB .

In the expressions shown above the function jD(x) is a given function of
independent variable x describing the amplitude of Josephson critical current
and the magnitude hB is a constant which from the physical point of view
expresses the voltage of a magnetic field at the ends of JJ.

Let us note that here and further in the paper the physical magnitudes
are dimensionless. The method for reducing of equations into the dimensionless
form is described in [2].

B. JJ with “in-line” geometry. In this case the current γ flows “only” at the
ends of JJ. The magnetic flux ϕ(x) satisfies the nonlinear ordinary differential
equation

(1.3) −ϕxx + jD(x) sin ϕ = 0,

with “non-symmetric” boundary conditions of the kind

(1.4) ϕx(−∆) = hL ≡ hB − αLγ, ϕx(∆) = hR ≡ hB − αRγ.

Here αL and αR are parameters satisfying the condition αL + αR = 1.
Further we shall consider in details the case of JJ with “in-line” geometry

comparing our results with the known ones for JJ with overlap geometry.
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In order to study the stability of the solution ϕ(x) of the nonlinear boun-
dary problem (1.3), (1.4) with respect to small “space-time” perturbations we
consider the generated from this solution differential Sturm-Liouville problem
(SLP)

(1.5) −ψxx + q(x)ψ = λψ,

(1.6) ψx(−∆) = 0, ψx(∆) = 0,

with a potential q(x) = jD(x) cos ϕ(x). Evidently in this case we have
−1 ≤ q(x) ≤ 1.

It is well-known [18] that SLP (1.5), (1.6) in this case has infinite number
of bounded below eigen-values (EV)

λmin = λ0 < λ1 < · · · < λn < · · ·
and to every EV λn corresponds one and only one eigen-function (EF) ψn(x)
satisfying the normalizing condition

(1.7) 〈ψ, ψ〉 ≡
∆∫

−∆

ψ2
n(x)dx = 1.

According to the theorem of oscillations [18] the number of zeros of EF
ψn(x) in the interval [−∆, ∆] equals the index n.

PSL gives a simple stability criterion [2]. If the solution ϕ(x) is stable
then the corresponding to this solution minimal EV λmin is positive. If the
solution ϕ(x) is unstable — λmin is negative. The case λmin = 0 corresponds to
the stability station switches to unstability one or vice versa. This method is
justified in the work [2] and developed in the papers [4, 15–17]. We shall note
that every solution ϕ(x) of (1.3), (1.4) depends not only on the coordinate x
but on the physical parameters hB and γ, as well. Then the potential q(x) and
therefore EV λn and EF ψn(x) of SLP will also depend on the magnitudes hB

and γ. The dependence expressed by the equation

(1.8) λmin(hB , γ) = 0,

defines geometrically a curve in the plane (hB , γ). This curve is called a bifur-
cational curve (BC) for the given solution. Let us note that in contrast to EV
and EF the envelope of BCs can be obtained experimentally. Sometimes in the
physical literature the term “a critical curve” is used.
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We suppose that the dielectric layer in JJ is, in general, non-homogeneous.
Physically this means that the thickness (the size in z-axes) of the dielectric
layer (see fig. 1a) can change along the length x of JJ. The non-homogeneity is
simulated by the function jD(x) ∈ [0, 1]. Evidently in a homogeneous junction
jD(x) = 1.

Fig. 1a

Further, we shall consider the case of a junction which dielectric layer has
only one non-homogeneity of resistable type which is disposed in the center of
the junction.

Fig. 1b

8



Numerical Simulation of Bifurc. Curves in Long Non-Homog. Josephson Junctions

The real non-homogeneities of JJ have limited sizes which must be taken
into account in the numerical simulations. That is why in this work the am-
plitude of the current jD(x) in JJ is modelled by a trapezoid (fig 1b) with a
base µ and a height 1. The upper base has a length σ = mµ, where m ≥ 1 is
a parameter depending on the technology of preparation of the corresponding
pattern. At m = 1 the non-homogeneity is a rectangle with a base equal to
µ. The change of the current from 0 to 1 in such a non-homogeneity passes in
the interval δ = (m − 1)µ/2 which is determined by the corresponding width
µ. All the numerical calculations in the presented work are done at µ = 1.5 .

The analytical expression for the amplitude jD(x) in a junction with one
non-homogeneity with a center in the point x = 0 has a form jD = 1−ζ(x, µ, m)
where

ζ(x) =
2m

µ(1 + m)

[
(x +

µ

2m
)+ − (x +

µ

2
)+ − (x− µ

2
)+ + (x− µ

2m
)+

]

and x+ denotes the unit step-function of Heavyside.
Let us note that in the case of rectangular non-homogeneity (m = 1) the

boundary problem (1.3), (1.4) is written in details as follows

(1.9) ϕx(−∆) = hB − αLγ;

(1.10) −ϕxx + sin ϕ = 0, for x ∈ (−∆, µ/2);

(1.11) ϕ(−µ/2− 0)− ϕ(−µ/2 + 0) = 0;

(1.12) ϕx(−µ/2− 0)− ϕx(−µ/2 + 0) = 0;

(1.13) −ϕxx = 0, for x ∈ (−µ/2, µ/2);

(1.14) ϕ(µ/2− 0)− ϕ(µ/2 + 0) = 0;

(1.15) ϕx(µ/2− 0)− ϕx(µ/2 + 0) = 0;

(1.16) −ϕxx + sin ϕ = 0, for x ∈ (µ/2, ∆);

(1.17) ϕx(∆) = hB − αRγ;
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At given values of the parameters the problem (1.9)–(1.17) allows a formal
analytic solution which can be written in quadratures by elliptic functions. Ac-
tually, the equations (1.10) and (1.16) allow the first integrals (of the “energy”)

(1.18)
ϕ2

x

4
= kj − cos2

ϕ

2
, j = 1, 2 ,

where kj are the integration constants. It follows from here that outside of the
non-homogeneity i.e. when x ∈ [−∆,−µ/2)∪ (µ/2,∆] the general solution has
the form

(1.19) cos
ϕ

2
= −kjsn(x + `j , kj),

where sn(x, k) is the elliptic sine of Jacoby and `j are the integration constants.
When x ∈ (−µ/2, µ/2) i.e. inside the non-homogeneity the general solution

is a linear function

(1.20) ϕ(x) = a1x + a2

with parameters aj , j = 1, 2.
In this way, in the equations (1.19) and (1.20) enter 6 arbitrary constants

kj , aj , `j , i = 1, 2. In order to calculate all of them we have a closed system
of equations from the conditions (1.9), (1.11), (1.12), (1.14), (1.15) and (1.17).
If the junction is homogeneous then the number of the integration constants
is 4.

An analysis of the upper scheme in the case of a homogeneous or non-
homogeneous JJ with Dirac δ-shaped non-homogeneities is presented in the
works [2,19,14]. The solving of the algebraic system for the parameters (in-
tegration constants) in the case of a non-homogeneous JJ with a rectangular
non-homogeneity is connected with considerable technical difficulties. This
method leads to more serious difficulties in the construction of the BCs. This
is the reason that in the present work the direct numerical modeling of the
system (1.3)–(1.7) is prefered.

Using the algorithm originally described in the paper [15] BCs (critical
curves) for the solutions in JJ with a single non-homogeneity corresponding to
different values of the width µ of the non-homogeneity are constructed. It is
shown that the envelope of BCs for a given µ of the form “current-magnetic
field” λmin(hB , γ) = 0 has singularities which do not exist in homogeneous
JJ. Namely, the local maximums of the critical (maximal) current γ at fixed
values of the magnetic field hB , and also “zones of damping” (intervals for
hB in which the maximal current is zero) do not exist. This phenomenon is
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marked for the first time in the work [6] for the case of Josephson lattices
which dielectric layer consists of a big number of periodically distributed non-
homogeneities. An attempt of theoretical analysis of this phenomenon using
mechanical analogues is made in the paper [21].

Our numerical results prove that the pointed out phenomenon appears
because of the presence of the non-homogeneity and depends on the kind of
the boundary conditions and it is not connected with a periodicity (lattice).

Fig. 2

It should also be noted that the known in the physical experimental data
[5–7] contain a very important from the physical point of view but not suf-
ficiently discussed by the authors peculiarity consisting of displacement (see
fig.2) of the central maximum (corresponding to so called “Meissner” solution
as we shall show bellow) of the critical curve of the kind “current-magnetic
field” λmin(hB , γ) = 0 from the point hB = 0. Our numerical results show
that the analogous displacement arises as a result of the non-homogeneity of
the boundary conditions. From the physical point of view this means that the
marked effect is actually a consequence of the conditions of the experiment
(current injection through the ends of JJ).
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2. Continuous analogue of the method of Newton

In the present work for the formulated above bifurcational problem we
shall use the continuous analogue of the method of Newton (CAMN). We shall
explain the main idea of CAMN on the base of single nonlinear equation of the
form

(2.1) f(x) = 0

where f(x) is a given function with a necessary smoothnees. We suppose that
the equation (2.1) has a real root x∗. In the classic method of Newton [10] an
approximate solution of (2.1) is finding by the iterational process

(2.2) f ′(xn).wn = −f(xn), n = 0, 1, 2, . . . .

The problem (2.2) is a linear equation with respect to wn and x0 is a
given initial approximation. The next approximation to the exact solution is
determined by the formula

(2.3) xn+1 = xn + wn.

The convergence of the iterational process (2.2) in the neighbourhood of an
exact solution x∗ is quadratic [10]. If the choice of the initial approximation
x0 is not suitable then the process (2.2) turns out to be divergent.

The basic idea of CAMN (see the original work of Gavurin [8] and the
survey [9] as well) consists of the presentation of the “motion” between the
points x0 and x∗ by the curve x(t) depending on the continuous parameter t (an
analogue of the time). “The trajectory” x(t) satisfies the ordinary differential
equation (Gavurin’s equation)

(2.4) f ′(x).ẋ = −f(x)

which “obviously” has the first integral f(x) = f(x0).e−t. If the magnitude
f(x(0)) is bounded then from the last equality it follows the convergence of the
“path” x(t) at t →∞ to the exact solution x∗. From here one of the principal
advantages of CAMN is seen. This is the possibility for a considerable extension
of the convergence region.

In the numerical realization of CAMN several discretizations of Gavurin’s
equation (2.4) can be used. The most simple and at the same time sufficiently
effective is the Euler’s scheme [9]. In this case the “time” t is replaced by the
discrete parameter τn = tn+1 − tn and the derivative w = ẋ is replaced by the
difference analogue wn = (xn+1 − xn)/τn. Thus at each iteration n (at every
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“layer” tn) we reach the equation (2.2) again, but now the next approximation
xn+1 depends on the step τn and we calculate it by the formula

(2.5) xn+1 = xn + τnwn .

It is clear that at τn = 1 the iterations are those which are derived from
the classic method of Newton.

The quantity τn is usually determined by the condition of minimum of the
error

(2.6) δ(τn) = f2(xn + τnwn)

which ensures the best convergence. For this purpose a series of methods
are developed. In our point of view the most algorithmically simple is the
method of Ermakov and Kalitkin [11]. The basic idea of this method consists of
approximate presentation of the dependence (2.6) in the interval δ(τn) ∈ (0, 1)
by a parabola and the point τopt of the minimum of this parabola gives us the
“optimal” value of the step

(2.7) τopt = δ(0)/(δ(0) + δ(1)).

Here δ(0) is the discrepancy of a current approximation xn, and δ(1) is the
discrepancy of the approximation obtained from xn by the pure newtonian
step (τn = 1).

3. Application of CAMN for calculation of bifurcational points

We apply the development of CAMN for the solving of the formulated in
§1 problem of calculation of bifurcation curves (1.3)–(1.7). For this purpose,
we consider these equations at fixed length 2∆, width µ of the junction and
parameters αL and αR, as an united system for the unknown functions ϕ(x)
and ψ(x) in which the three parameters hB , γ and λ take place. In order that
the system be closed we must set the two of these parameters and then the
third of them can be considered as EV of a nonlinear spectral problem. In the
“trivial” case we set the magnitudes hB and γ. Then the system decomposes
itself into two independently subsystems for the variable ϕ(x) and (ψ(x), λ),
which denotes that we verify the stability of the solution ϕ(x). The spectral
parameter in this case is the magnitude λ. In the other two cases (γ and λ,
or hB and λ given) the system must be considered as a nonlinear EV problem
with a spectral parameter hB and γ respectively.

Further, we consider the case in which hB is chosen as a spectral parameter.
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Let us fix the parameters γ and λ and let us consider the function

f(z) =





−ϕxx + jD(x) sin ϕ

ϕx(−∆)− hL

ϕx(∆)− hR

−ψxx + [jD(x) cos ϕ− λ]ψ
ψx(−∆)
ψx(∆)
〈ψ, ψ〉 − 1

,

where for the sake of simplicity (ϕ,ψ, hB) is set by z. We suppose that the
equation

(3.1) f(z) = 0

has an isolated solution z∗ i.e. there exists a neighbourhood |z − z∗| < ε in
which the condition f(z) 6= 0 is fulfilled. Then the equation (2.2) will take the
form

(3.2) −uxx + q(x)u = ϕxx − jD(x) sin ϕ,

(3.3) ux(−∆)− p = hL − ϕx(−∆), ux(∆)− p = hR − ϕx(∆),

(3.4) −vxx + [q(x)− λ]v + jD(x) sin ϕuψ = ψxx − [q(x)− λ]ψ,

(3.5) vx(−∆) = −ψx(−∆), vx(∆) = −ψx(∆),

(3.6) 2〈ψ, v〉 = 1− 〈ψ, ψ〉,

where {ϕ̇, ψ̇, ḣB} ≡ {u(x), v(x), p} is denoted by w and we have

(3.7) ϕ̇ = u, ψ̇ = v, ḣB = p.

For the sake of brevity in (3.2)–(3.7) the iteration number n is omited. In order
to decompose the system (3.2)–(3.6) we shall look for the solution in the form
of a linear combination

(3.8) u(x) = u1(x) + pu2(x), v(x) = v1(x) + pv2(x),
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where u1, u2, v1, v2 are new unknown functions of the independent variable x,
and p is a parameter (the derivative of the magnetic field hB with respect to
the “time”). If we substitute the correlations (3.8) into (3.2)–(3.6) and if the
coefficients in front of the derivative p are set to be zero then we receive

(3.9) −u1,xx + q(x)u1 = ϕxx − jD(x) sin ϕ,

(3.10) u1,x(−∆) = hL − ϕx(−∆), u1,x(∆) = hR − ϕx(∆),

(3.11) −u2,xx + q(x)u2 = 0,

(3.12) u2,x(−∆) = 1, u2,x(∆) = 1,

(3.13) −v1,xx + [q(x)− λ]v1 = ψxx − [q(x)− λ]ψ − jD(x) sin ϕψu1,

(3.14) v1,x(−∆) = −ψ(−∆), v1,x(∆) = −ψ(∆),

(3.15) −v2,xx + [q(x)− λ]v2 = −jD(x) sin ϕψu2,

(3.16) v2,x(−∆) = 0, v2,x(∆) = 0.

The obtained expressions allow to define the following algorithm for the
calculation of the bifurcation points along the parameter hB of the solutions
in JJ:

A. For a given solution ϕ(x), ψ(x) and hB at n-th iteration, we calculate
the functions u1(x) and u2(x) from the linear boundary problem (3.9)–(3.12).

B. We replace the known magnitudes in (3.13)–(3.16). We find the left
sides of the last system and calculate the corresponding solutions v1(x) and
v2(x).

C. At known v1(x) and v2(x) we calculate the increase p of the bifurcation
parameter hB of a current iteration from the equation

(3.17) p =
1− 〈ψ, ψ〉 − 2〈v1, ψ〉

2〈v2, ψ〉 ,

which follows from (3.6).
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D. The next approximation for ϕ(x), ψ(x) and hB we find by the formulas

(3.18) hn+1
B = hn

B + τnpn

(3.19) ϕn+1(x) = ϕn(x) + τn[un
1 (x) + pnun

2 (x)],

(3.20) ψn+1(x) = ψn(x) + τn[vn
1 (x) + pnvn

2 (x)],

which are analogous to (2.5) and directly follow from the discretization of the
differential equations (3.7). We calculate the iterational parameter τn by the
formula of Ermakov-Kalitkin (2.7).

4. Discretization of the linearized problem

We solve numerically the obtained in the previous paragraph linear equa-
tions (3.9)–(3.17). For this aim we use the differential scheme based on the
approximative presentation of the solution by cubic splines.

Let us consider a linear ordinary differential equation of second order with
boundary conditions of Neuman.

(4.1) −w′′ + q(x)w = r(x), x ∈ (−∆, ∆),

(4.2) w′(±∆) = A.

We suppose that r(x) and q(x) are known functions of the independent
variable x, and A is a given constant. At a suitable choice of the functions r(x)
and q(x) and of the parameter A we achieve the linearized equations (3.9)–
(3.16) of CAMN.

We introduce in the interval [−∆,∆] an uniform grid

−∆ = x0, x1, x2, . . . , xN = ∆

with a step h = xi+1 − xi, i = 0, 1, 2, . . . , N − 1. We look for a solution of
the equation (4.1) in the form of a cubic spline S(x) of a class C2 with knots
coinciding with the knots of the introduced grid. Such a spline in the interval
[xi, xi+1] is defined by the formula [5]

(4.3) S(x) = (1− s)wi + swi+1 − h2

6
s(1− s)[(2− s)Mi + (1− s)Mi+1].
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Here we have set s = x−xi

h , and Mi are the second “moments” of the spline
Mi = S′′(xi). The conditions for the continuity of the first derivative of the
spline at the interval points of the grid have the form

(4.4) Mi−1 + 4Mi + Mi+1 =
6
h2

(wi−1 − 2wi + wi+1).

According to the collocation method we require in the knots of the grid
the following condition to be fulfilled

(4.5) −S′′i + qiSi = ri,

where we have set qi = q(xi), ri = r(xi).
After the elimination of the moments Mi from the conditions (4.4) with

the help of (4.5) we reach the system of N − 1 algebraic equations

(4.6) awi−1 + biwi + ciwi+1 = di,

with coefficients

(4.7) ai = −1 +
h2

6
qi−1, bi = 2 +

2h2

3
qi, ci = −1 +

h2

6
qi+1,

and right side

(4.8) di =
h2

6
(ri−1 + 4ri + ri+1).

In order to receive a closed system accordingly to the form of the boundary
conditions (4.2) for the equation (4.1) we use the two boundary conditions of
first order [12] for the spline

2M0 + M1 =
6
h

(w1 − w0

h
− w′0

)
, MN−1 + 2MN =

6
h

(
w′N − wN − wN−1

h

)
.

If we eliminate the magnitudes M0, M1, MN−1 and MN from the last
two equations with the help of the collocation conditions (4.5) we obtain the
required two algebraic equations

(4.9) b0w0 + c0w1 = d0, aNwN−1 + bNwN = dN .

Here the coefficients and the right sides are

(4.10) b0 = 2 +
2h2

3
q0, c0 = −1 +

h2

6
q1,

17



P.Kh. Atanasova, T. L. Bojadjiev

(4.11) aN = −1 +
h2

6
qN−1, bN = −1 +

h2

6
qN ,

(4.12) d0 =
h2

6
(2r0 + r1) + hA, dN =

h2

6
(2rN + rN−1)− hA.

The equations (4.6) and (4.9) form a tri-diagonal system of N + 1 linear
algebraic equation for the values of the spline interpolating the solution at the
grid knots. It follows from the kind of coefficients ai, bi and ci that the matrix
of this system has a diagonal domination. Therefore, to solve this system we
can use the sweep method without a choice of a leading element.

The estimate of the error of the constructed approximate solution is con-
sidered in book [12].

5. Some numerical results and an investigation of the critical curves

Based on the above presented algorithm and the spline-differential scheme
a program in the language FORTRAN for the calculation of the bifurcation
curves of the solutions of the boundary problems (1.1)–(1.4) is composed. The
basic input parameters of the program are:

∆ – half-length of the junction;
µ – width of the non-homogeneity;
hB – voltage of the magnetic field at the ends of the junction;
γ – current
Three regimes of work are provided:
i. regime of looking for solutions at known initial approximation;
ii. regime of variation of a given solution with respect to the parameter

hB (or γ);
iii. regime of variation of a given solution with respect to the width µ of

non-homogeneity.
In the last two cases as an initial approximation for the current value

of the varied parameter the received for the previous value of this parameter
solution is chosen. This guarantees a fast convergence (usually, no more than
2-4 iterations are sufficient).

At the variation of initial approximations the algorithm can be convergent
to one and the same solution. Analogously to [15] in order to avoid the rep-
etition, before the calculation of the physical characteristics it is necessary to
verify the identity of the newly obtained solution with the solutions received
earlier.
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Fig. 3

It is important also to note that at an “arbitrary” initial approximation
the presented above algorithm does not always converge to the stable solution
corresponding to λ = λmin. The fixed value of the parameter λ coincides with
some of higher EV of SLP. In mathematical point of view, however, we have
a bifurcation of an unstable solution into unstable one. This phenomenon is
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physically nonobservable. That is why if it is necessary the program provides
a verification of the number of zeros of every received solution accordingly to
the theorem for the oscillations [18].

In fig. 3 there are presented the received at the numerical experiments parts
of a typical envelope of bifurcation curves (critical curves) of the kind “current-
magnetic field”, corresponding to the stated in the introduction two geometries
of JJ. The values of the parameters are given as follows: length of JJ 2∆ = 6.3,
width of non-homogeneity µ = 0.8 and a parameter αL = 0.6 (αR = 0.4). The
comparison with the data received by Vystavkin et al [7] and Larsen et al [6]
(see fig.2) shows a good qualitative coincidence between the numerical and the
experimental results, the more so, as the indicated data is related to patterns of
JJs with different geometrical and physical characteristics. It should be pointed
out that the presence in the constructed by a numerical way critical curves and
the three mentioned above experimental effects:

Â a shift of the absolute maximum from the zero boundary magnetic field;
Â the presence of local maximums (marked by the letter “M”) disturbing

the Fraunhopher lattice [1];
Â the presence of “damping zones” of the current at big values of hB

(marked by a letter “Z”).
The last two effects are obtained in [6] in experiments with JJ the dielectric

layer of which is a “lattice” f resistive non-homogeneity.
In our opinion, a quantitative coincidence between numerical and exper-

imental data can be reached. First, by relating the data to the same pattern
of JJ, and also, by making more precise the physic-mathematical model (for
example taking into account the inductance of JJ [23]).

Let us consider more precisely the structure of the critical curves in view
of the carried out numerical experiment.

The concrete envelopes (critical curves) corresponding to fixed values of
the parameters of JJ consist of separate parts (bifurcation curves) each of which
is numbered and corresponds to a concrete solution of the problem (1.1), (1.2)
or (1.1), (1.4).

In table 1 the basic data for these solutions at the value γ = 0 of the
current are presented. The following notations are used:

(5.1) ∆ϕ = ϕ(∆)− ϕ(−∆)

- full magnetic flux for the solution;
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Parameters of the bifurcation solutions

in onedimensional junction with one nonhomogeneity

2∆ = 6.3, µ = 0.8, γ = 0

hB ∆ϕ/2π A E FE ϕL ϕR qavr

S0 2.0236 0.9776 2.0 1.168 21.767 3.2120 9.3543 0.2503

S1 -1.0444 0.4371 1.0 0.9963 5.1023 1.7685 4.5147 0.0413

S1 2.5758 2.1003 3.0 2.429 53.421 2.8266 16.0229 0.1827

S2 2.2852 2.2426 3.364 2.706 53.848 4.1527 18.2438 0.1972

S2 2.7843 2.1003 3.4252 3.547 75.4301 5.5180 22.4183 0.1329

S2 2.2852 2.2426 2.636 2.706 53.848 0.6058 14.6967 0.1972

S2 2.7843 2.1003 4.5748 3.547 75.4301 2.7145 19.6148 0.1329

S3 2.5419 2.8297 3.0 3.818 75.736 0.5349 18.3147 0.1006

S3 4.3789 4.1451 5.0 7.402 173.2635 2.6858 28.7301 0.0589

S4 4.774 4.7083 5.624 9.359 216.111 3.0766 32.6594 0.0396

S4 4.281 4.3026 4.516 7.935 179.205 0.3536 27.3874 0.0570

S5 4.703 4.8761 5.0 9.982 223.949 0.3894 31.0265 0.0365

S6 5.883 6.0811 8.0 15.152 346.004 6.0283 44.2372 0.0229

S7 7.652 7.6093 9.0 23.343 552.574 4.3691 52.1796 0.0245

S8 7.738 7.8878 8.0 25.033 583.753 0.3525 49.9130 0.0193

S9 9.747 9.8597 10.0 38.738 913.719 0.4407 62.3911 0.0173

Table 1

(5.2) A(hB , γ) =
1

4π∆

∆∫

−∆

ϕ(x, hB , γ)dx

- dimensionless “area” of the figure, surrounded by the graph of the solution
ϕ(x) in the interval [−∆,∆];

(5.3) E =

∆∫

−∆

[ϕ2
x

2
+ jD(x)(1− cos ϕ) + γϕ

]
dx

- energy;

(5.4) FE = E + hB∆ϕ

- full energy for the concrete solution.
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The section with number 1 corresponds to the so called Meissners (“vac-
uum”) solution which at a current γ = 0 and a boundary magnetic field hB = 0
(i.e. far from the bifurcation values of the physical parameters is the trivial
solution

ϕk(x) = kπ, k = 0,±1,±2, . . .

At k = 0,±2,±4, . . . for the sake of equality |q(x)| = jD(x) Meissners solutions
are stable, and at odd values of k – unstable.

Fig. 4

The character of the deformation of Meissners solution at non-zero val-
ues of the current γ is shown in fig 4. It is seen that at an increase of |γ| the
magnetic flux ϕ(x) in JJ as well as the magnetic field (the derivative ϕx(x)) con-
centrate themselves in the neighbourhood of the non-homogeneity, moreover,
the corresponding minimal EV λmin decreases coming nearer the bifurcation
value λmin = 0.

The deformation of Meissners solution at a change of the external magnetic
field hB (see fig. 5) in contrast to the previous case consists of a concentration
of the magnetic field ϕx(x) at the ends of JJ.
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Fig. 5

Fig. 6
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The asymmetry of boundary conditions (the possible injection of a current
through the ends of JJ) exerts a considerable influence on the form of bifurcat-
ing curves for the Meissners solution. This basic numerical fact is illustrated in
details in fig.6 for several values of the normalizing parameter αL and consists
of a shifting at αL 6= 0.5 (“antisymmetric” boundary conditions) of the maxi-
mums of the bifurcation curves from the point hB = 0. The magnitude of such
a shifting depends essentially on the size of the parameter αL. Conversely, in
the “symmetric” case of JJ, described by the boundary problem (1.1) and (1.2),
the maximums of the bifurcation curves (compared with fig.1) for Meissners
solution are always at hB = 0 (see [4,15]).

The section of the critical curve, marked with ←, corresponds to the so-
lution which for an infinite homogeneous JJ or a non-homogeneous JJ with a
single Dirac’s non-homogeneity, has an analytical form.

(5.5) ϕ(x) = 4 arctg exp{±x},

with full energy F = 8. The sign + in the above equation corresponds to a
distribution of the magnetic flux along the length of JJ, which in the physical
literature is called basic “fluxon” and its derivative ϕx(x) — “soliton”. The
full magnetic flux of the basic fluxon is ∆ϕ = 2π. The solution (5.5) with a
sign “−” is known as “antifluxon” with a derivative, called “antisoliton” and
the corresponding magnetic flux is ∆ϕ = −2π, respectively.

At a current γ = 0 the maximum (the minimum of the basic soliton) of
the antisoliton of the magnetic field is in the center of non-homogeneity x = 0.
At γ 6= 0 the extremum of the soliton displaces itself [24] depending on the sign
of γ to the left or to the right from the point x = 0, as a result the problem
has 4 solutions of the indicated form - “left” or “right” solitons (below we
use the notations SL and SR, respectively) and antisolitons (AL and AR). In
mathematical point of view the existence of these solutions is a consequence
of the properties of the symmetry of the considered problem (see for example
[23]).

In fig. 7 the diagram of the dependence λmin(γ) of the solution of JJ in
overlap geometry (the problem (1.1), (1.2)) at 2∆ = 6.3 and zero magnetic field
hB is shown. The points B1 and B4 are points of a bifurcation of Meissners
solution, and B2 and B3 – solutions of the basic fluxon. The bifurcational
diagram for any solution is a geometric lock of the indicated form.
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Fig. 7

Fig. 8

Especially, in fig. 8 the full bifurcation diagram for the basic fluxon S1 is
shown. As it is seen, the corresponding curves for the solutions SR and AL,
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and also for SL and AR intersect in the points K1 and K2, forming fluxon-
antifluxon “crosses”. This fact is received for the first time numerically in the
work [4] and it is confirmed experimentally in the paper [7].

Reducing the width µ of the non-homogeneities the fluxon and antifluxon
sections of the diagram are displaced to the right (to the left) along the axis
hB and at sufficiently small µ “the crosses” can disappear from the upper
half-plane λmin ≥ 0, transfering upon the unstable solutions.

At further increasing of the external magnetic field hB (see fig.3) in JJ
new solutions are “generated”, the most typical of which are presented in fig.9
and fig.10 ( the numbering corresponds to that of fig.3).

First of all, we shall note that every solution ϕ(x) has its own region of
stability at the change of the current γ and the boundary magnetic field hB in
which the solution exists.

Fig. 9

The magnetic fields, corresponding to the marked by ↑ and → solutions
can be considered as such non-linear deformations of the basic soliton, at which
from the left and from the right of the junction either one soliton (antisoliton)
(see the curve SSS in fig.9 corresponding to the solution →) or a soliton -
antisoliton couple (see the curve ASS of fig.9 corresponding to the solution ↑)
is added. The symmetric solution SSA is not shown. The solution ASA exists
in the symmetric with respect to the axis γ interval of the axis hB .
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This chain process can be visualized by the following scheme.

S ⇒





S ⊕ S ⊕ S ≡ SSS ⇒





S ⊕ SSS ⊕ S ≡ SSSSS

A⊕ SSS ⊕ S ≡ ASSSS

S ⊕ SSS ⊕A ≡ SSSSA

A⊕ S ⊕ S ≡ ASS ⇒





S ⊕ASS ⊕ S ≡ SASSS

A⊕ASS ⊕ S ≡ AASSS

S ⊕ASS ⊕A ≡ SASSA

S ⊕ S ⊕A ≡ SSA ⇒





S ⊕ SSA⊕ S ≡ SSSAS

A⊕ SSA⊕ S ≡ ASSAS

S ⊕ SSA⊕A ≡ SSSAA

(We use formally the symbol ⊕ to denote the (non-linear) process of the change
of the solution. Graphically ⊕ expresses “addition” or “subtraction” of “vorte-
ses” (solitons) to the graph of the derivative)

Fig. 10

The “addition” of a single soliton or antisoliton to one side of the non-
homogeneity leads to unstable solution. Such unstable solutions are shown in
fig.10 by dotted lines.
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Fig. 11

The bifurcation dependences (see fig.11) for the four solutions of the kind ↑

S ⇒
{

SSA

ASS
,

exist by couples, corresponding to “the left” and “the right” solitons (the posi-
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tive and negative values of the external current γ). The symmetric with respect
to the ordinate axis dependences

A ⇒
{

SAA

AAS

exist at negative hB . In fig.11 by the symbol “∇“ is marked the curve repre-
senting the solution SSAR and by the symbol ∆ – the solution ASSL.

According to what has been said it follows that the presence of the local
extremums in the critical curves is a consequence of the different “level of
stability” of the “pure” soliton and mixed solution-antisoliton solutions.

Fig. 12

Finally, in fig.12 the critical curves for JJ with one (N = 1) and two
(N = 2) identical non-homogeneities are shown. It is seen that the basic
differences consist of non-coincidence of the amplitudes and the localization of
the local extremums and of the generation of new ones at (N = 2), and of non-
coincidence of the damping zones, too. Hence, it follows that we must accept
as a basic factor for the peculiarities of the critical curves in JJ the presence of
non-homogeneity in the dielectric layer.

In this way, the disturbing of the Fraunhopher chain [1] in the critical
dependence of the kind “current-magnetic field” for non-homogeneous JJ (the
presence of the local extremums and damping zones of the current γ) is inherent
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to the JJ with a single non-homogeneity and at big values practically does not
depend on the kind of boundary conditions.
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×ÈÑËÅÍÎ ÌÎÄÅËÈÐÀÍÅ ÍÀ ÄÚËÃÈ
ÍÅÕÎÌÎÃÅÍÍÈ ÄÆÎÇÅÔÑÎÍÎÂÈ ÏÐÅÕÎÄÈ

Ï.Õð.Àòàíàñîâà, Ò.Ë.Áîÿäæèåâ

Ðåçþìå. Â ðàáîòàòà å ïðåäñòàâåíî ÷èñëåíî ìîäåëèðàíå íà äúëãè íåõî-
ìîãåííè äæîçåôñîíîâè ïðåõîäè. Ðàçãëåäàíè ñà ïðåõîäè ñ �overlap� è
�in-line� ãåîìåòðèÿ. Âúïðîñúò ñå ñâåæäà äî íåëèíåéíà ãðàíè÷íà äèôåðåí-
öèàëíà çàäà÷à îò âòîðè ðåä, êîÿòî ñå ðåøàâà ÷èñëåíî. Èç÷èñëÿâàíåòî íà
áèôóðêàöèîííèòå òî÷êè å íàïðàâåíî ñ ïðèëàãàíå íà íåïðåêúñíàòèÿ àíàëîã
íà ìåòîäà íà Íþòîí. ×èñëåíèòå ðåçóëòàòè ñå èíòåðïðåòèðàò è å ïîêàçàíî
äîáðî ñúâïàäåíèå ñ åêñïåðèìåíòàëíè äàííè. Ðàáîòàòà å èëþñòðèðàíà ãðà-
ôè÷íî äîñòàòú÷íî ïúëíî.
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