
PLOVDIV UNIVERSITY �PAISSII HILENDARSKI�, BULGARIA
SCIENTIFIC WORKS, VOL. 35, BOOK 3, 2007 � MATHEMATICS

ÏËÎÂÄÈÂÑÊÈ ÓÍÈÂÅÐÑÈÒÅÒ �ÏÀÈÑÈÉ ÕÈËÅÍÄÀÐÑÊÈ�, ÁÚËÃÀÐÈß
ÍÀÓ×ÍÈ ÒÐÓÄÎÂÅ, ÒÎÌ 35, ÊÍ. 3, 2007 � ÌÀÒÅÌÀÒÈÊÀ

CLIQUES, PACKINGS OF SEGMENTS
AND BINARY MATRICES

Dimcho S.Dimov, Dobromir P.Kralchev, Alexander P. Penev

Abstract. Due to its great variety of applications, the packing
problem attracted our attention. The problem is reduced via a graph-
theoretic interpretation (searching for cliques in a graph) to searching for
a submatrix of a special kind. An algorithm is constructed by means of
self-monitoring, which is suitable for real-world problems.

Key words: heuristics, reflexive (self-monitoring) algorithms, packings,
graphs, cliques, binary matrices

Mathematics Subject Classification 2000: Primary 68T20; Secondary
68R10, 05C69, 05C50

1. Introduction

In programming one may sometimes come upon a problem that has an
obvious, though possibly ineffective solution. Either an effective algorithm
does not exist at all, or it is unknown to the programmer, who has little time
to make a deep analysis. It is highly desirable that one should have a simple
and reliable technique to manage such cases. Self-monitoring is often useful in
this situation.

For instance, many problems are easily formulated in terms of finding a
suitable packing of segments. Processor time sharing is a classical example.
Timetable generating, which contains a packing subproblem, does not have a
general solution yet.

The general packing problem is continuous, but it can be reduced to the
discrete variant [1]; it is the last one that is discussed below. The relations
between the segments of the discrete packing problem can be encoded in a
graph thus reducing the problem to finding a clique in a graph.

33

Dimcho S.Dimov, Dobromir P.Kralchev, Alexander P. Penev

There exist different approaches for finding cliques. A solution can be
deduced from a previous investigation of ours on the assignment problem. This
solution turns out to be most appropriate for the current discussion. A reflexive
algorithm is constructed on the basis of it.

2. The packing problem

Given k segments of lengths λ1 , λ2 , . . . , λk , is it possible to arrange them
upon another segment of a length λ0 without overlapping (external touch is
allowed) if there are additional constraints on the possible position of each
segment?

If
k∑

i = 1

λi > λ0 , then no solution exists. That is why, further on we assume

that
k∑

i = 1

λi ≤ λ0 . When the equality holds, the problem is canonical.

Let the big segment be [0;λ0]. Any possible position of the i-th segment
is of the kind [xi ; xi + λi]. Assume that the additional constraints are inde-
pendent, that is, they have the form xi ∈ Mi , ∀i ∈ {1, 2, . . . , k}, where M ’s
do not depend on x’s. This is equivalent to xi ∈ λMi , ∀i ∈ {1, 2, . . . , k}, where
λMi = Mi ∩ [0; λ0 − λi]. We say that the packing problem is discrete, when
λ0 , λ1 , λ2 , . . . , λk ∈ Z and M1 , M2 , . . . , Mk ⊆ Z .

3. Solution

The input of the discrete packing problem can be encoded as a binary
matrix A = (aj i) consisting of λ0 + 1 rows and k columns (j = 0, 1, 2, . . . , λ0

from bottom to top; i = 1, 2, . . . , k from left to right): if j ∈ Mi , then aj i = 1,
else aj i = 0. (Since the lengths of the segments are positive, the top λi cells
of the i-th column can be converted to zeros, and the λ0 -th row of A can be
safely omitted.) Then a packing corresponds to a k-tuple of units from different
columns, such that

(1) xi1
− xi2

/∈ (−λi1
; λi2

)
, ∀i1∀i2 ∈ {1, 2, . . . , k} , i1 6= i2;

(2) xi ∈ [0;λ0 − λi] ,∀i ∈ {1, 2, . . . , k} ;

where xi is the index of the row of the unit, taken from the i-th column.
(If the conversion of the top cells has taken place, then (2) can be omitted.)

34

Cliques, Packings of Segments and Binary Matrices

3.1. Graph-theoretic interpretation. Consider an unoriented graph
G, whose vertices correspond to the units of the matrix A (after conversion
of the top cells); two vertices are connected if and only if their units can take
part in a packing, that is, they are from different columns (say, i1 and i2) and
xi1

− xi2
/∈ (−λi1

;λi2

)
, where xi1

and xi2
are the indices of their rows. Then a

packing (of some m segments) corresponds to an m-clique in G and a solution
(a packing of all the k segments) corresponds to a k-clique. Obviously, G is
a k-partite graph and cl(G) ≤ k. We need an algorithm which checks whether
cl(G) = k and if so, finds a k-clique (if cl(G) < k, the exact value of cl(G) is of
no interest).

Finding cliques is NP-complete (cf. [2]). Fortunately, there still exist algo-
rithms whose average running-time (not the worst-case one!) is good enough
for the most cases met in practice.

3.2. Cliques and binary matrices. Let G = (V, E) be an unoriented
graph with n vertices, V = {v1, v2, . . . , vn}, B = (bj i) be an n x n binary ma-
trix defined as follows: if i 6= j and {vi ; vj} /∈ E, then bj i = 1, else bj i = 0.
A submatrix of B is said to be symmetrically positioned in B if the sets
of indices of its rows and its columns coincide (so it must be a square ma-
trix). Their common value defines a subset of V ; moreover, the correspondence
“a subset of V ↔ a symmetrically positioned submatrix of B” is one-to-one.

A symmetrically positioned submatrix whose elements are all zeros will
be called a clique square. If a subset of V is a clique, then its corresponding
submatrix of B is a clique square and vice versa. Therefore finding cliques in
the graph G is equivalent to finding clique squares in the matrix B.

3.3. Searching for clique squares. The problem now sounds like this:
given a symmetric binary n x n matrix B and an integer k, 1 ≤ k ≤ n, find
in B a clique square of a size k.

In our investigation [3] we designed an algorithm for solving a similar prob-
lem: given a binary n x n matrix and an integer g, 1 ≤ g ≤ 2n, find a submatrix
of zeros, such that the sum of its width and height is equal to g. The average
running-time of the algorithm is less than half a second even for a 1000 x 1000
matrix.

We would like to apply this algorithm to our new problem. The only
difference is that now the submatrix must be symmetrically positioned.

3.3.1. An algorithm for clique squares. We use a Pascal-like pseudocode.
The symbols ‘{’ and ‘}’ embrace a set, and ‘//’ start a C-style comment.
A symmetrically positioned submatrix is encoded as a set of integers — the
indices of its rows. When an empty set is returned, there is no clique square.

35

Dimcho S.Dimov, Dobromir P.Kralchev, Alexander P. Penev

function FindCliqueSquareInMatrix(

n: integer; // the size of the matrix B

B: matrix; // a symmetric binary matrix, tr(B) = 0

k: integer // the size of the clique square searched for

): set of integers; // the clique square

begin

Result := FindCliqueSquareInSubmatrix(n, B, {1,2,...,n}, k, true);

end;

function FindCliqueSquareInSubmatrix(

n: integer; // the size of the matrix B

B: matrix; // a symmetric binary matrix, tr(B) = 0

M: set of integers; // a symmetrically positioned submatrix

k: integer; // the size of the clique square searched for

bad0to1: boolean // a flag for "bad" zeros

): set of integers; // the clique square

var i, j: integer;

begin

Result := {};
for i∈ M do begin

Result := CliqueSquarePos(n,B,M,k,i);

if Result <> {} then break

else if bad0to1 then for j∈ M do begin

B[i, j] := 1; B[j, i] := 1;

end;

end;

end;

The FindCliqueSquareInMatrix function merely calls a more general one,
which has additional parameters. This is necessary, because the algorithm is
recursive.

The FindCliqueSquareInSubmatrix routine explores each zero in the main
diagonal of a submatrix and tries to find a clique square containing it. On
failure it replaces the “bad” zero and all the elements in its row and column
with units, if it has been told so (this happens only at the top level of the
recursion).

It should be noticed that our pseudocode describes the algorithm, not its
implementation. Some minor details may be changed in the implementation.
For example, if you use dynamic data structures, you may delete the row and
the column of a “bad” zero instead of filling them with units.

36

Cliques, Packings of Segments and Binary Matrices

function CliqueSquarePos (

n: integer; // the size of the matrix B

B: matrix; // a symmetric binary matrix, tr(B) = 0

M: set of integers; // a symmetrically positioned submatrix

k: integer; // the size of the clique square searched for

p: integer // a position that must belong to the clique square

): set of integers; // the clique square

var MaxSquare, MinSquare: set of integers;

begin

MaxSquare := GetMaxSquare(n, B, M, p);

if |MaxSquare| < k then Result := {}
else begin

MinSquare := GetMinSquare(n, B, MaxSquare);

if |MinSquare| ≥ k then // found

Result := {the first k elements of MinSquare}
else begin // recursive searching

Result := FindCliqueSquareInSubmatrix(

n, B, MaxSquare\MinSquare,
k - |MinSquare|, false

);

if Result <> {} then Result := MinSquare ∪ Result;

end;

end;

end;

The CliqueSquarePos routine searches a submatrix (defined by the set M)
of the matrix B for a clique square of a size k containing the p -th element
in the main diagonal of B. The function does so by calculating the maximal
and minimal squares. The maximal square of a position p is the submatrix
consisting of those rows and columns of B, whose p -th elements are zeros.
The minimal square of a position p is the submatrix of its maximal square
consisting of those rows and columns of its that contain only zeros. Maximal
and minimal squares are symmetrically positioned.

function GetMaxSquare(

n: integer; // the size of the matrix B

B: matrix; // a symmetric binary matrix, tr(B) = 0

M: set of integers; // a symmetrically positioned submatrix

p: integer // a position that must belong to the clique square

): set of integers; // the maximal square

37

Dimcho S.Dimov, Dobromir P.Kralchev, Alexander P. Penev

var j: integer;

begin

Result := {};
for j∈ M do if B[j, p] = 0 then Result := Result ∪ {j};

end;

function GetMinSquare(

n: integer; // the size of the matrix B

B: matrix; // a symmetric binary matrix, tr(B) = 0

M: set of integers // the maximal square

): set of integers; // the minimal square

var

i: integer; // a column index

j: integer; // a row index

flag: boolean; // a row of zeros

begin

Result := {};
for j∈ M do begin

flag := true;

for i∈ M do

if B[j, i] = 1 then begin flag := false; break end;

if flag then Result := Result ∪ {j};
end;

end;

Obviously, any clique square containing the p -th element in the main
diagonal of B is a part of the maximal square of this element (which itself
is not necessarily a clique square). On the other hand, the minimal square is
a clique square. If its size |MinSquare| is greater than or equal to k, then a
suitable clique square has been found. Otherwise, the clique square (if it exists)
must have at least r = k − |MinSquare| of the remaining rows and columns of
the maximal square. And vice versa, such a clique square of a size r can be
extended (using the rows and columns of the minimal square) to a clique square
of a size k. This explains the recursive call in CliqueSquarePos.

Converting “bad” zeros to units is not necessary for the correctness of the
algorithm, but it is a very good optimization. Indeed, if a zero is proved not
to participate in a clique square, then converting this zero to a unit will not
destroy any clique square and will prevent us from exploring again the same
zero (in subsequent recursive calls). Converting one “bad” zero usually causes
more conversions, thus simplifying the matrix.

38

Cliques, Packings of Segments and Binary Matrices

3.3.2. Experiments with the algorithm for clique squares. The algorithm
was implemented and tested on Celeron 366 MHz. For n = 1000 the maximal
and the average times are about 200 ms, resp. 100 ms if there is a clique square;
otherwise, the average time is 400 ms and the maximal one is several minutes!

A traditional approach is to make a deeper analysis of the original problem
in the hope of finding some special features that one can use to construct a
faster algorithm. For example, an important fact is that the graph is k-partite.

However, a developer rarely has much time for such an analysis. Therefore
our goal is to present a simple, yet powerful idea, applicable in a lot of similar
situations. That is why, we shall not use the special features of the problem,
even if they can help us speed up the algorithm.

The difficulty can be easily overcome if heuristics are allowed (this is often
the case in AI). A higher, monitoring level must be added to watch for the
running-time. If the lower level (the proposed algorithm) has been running for
a long time, it must be interrupted and a negative answer (‘no clique square
found’) must be returned. The modified algorithm consisting of two levels
united by a common goal is a reflexive, or self-monitoring algorithm.

Experiments were made on the last variant. A lot of matrices were gene-
rated at random for various sizes n, for each k = 0.1n, 0.2n, . . . , 0.9n, n, and
for each density from 0% to 100% at intervals of 10%, where k is the size of
the clique square. (Density is the ratio of the count of the units to the count
of all the elements of a matrix). The running-time limit was set to 1000 ms.

Percentages of results Maximal and average running-time (ms)

n

found
not

stopped
found not found total

found
max avg max avg max avg

500 9.1% 65.3% 25.6% 60 3 990 256 2090 445
1000 9.1% 60.4% 30.5% 170 91 990 370 1710 558
1500 9.1% 52.4% 38.5% 280 181 990 751 1640 819
2000 9.1% 13.8% 77.1% 440 320 990 986 1920 984

Table 1. Running-time of the reflexive algorithm for clique squares.

There are three possible results (return values): ‘found’, ‘not found’ and
‘stopped’ (= interrupted). Apparently, the average time of the ‘found’ answers
is much smaller than the average time of the ‘not found’ answers.

The running-time limit of 1000 ms was properly chosen: the maximal time
of the ‘found’ cases is much smaller than the limit. In fact, the maximal time
cannot be fully trusted: it may increase if more tests are run.

39

Dimcho S.Dimov, Dobromir P.Kralchev, Alexander P. Penev

The total maximal time is greater than the running-time limit, because
the limit is implemented through a timer and the WM TIMER message is of
low priority. Its handler is executed in a separate thread and it is not started
immediately. This increases the running-time of the ‘stopped’ answers.

The average running-time can be trusted much more than the maximal
one. It supports the drawn conclusion: most matrices that have a clique square
are processed quickly. Their percentage (9.1%) is stable and relatively small.
The percentage of the ‘stopped’ cases tends to grow, which is natural, because
the running-time limit is fixed.

3.4. Back to packings of segments. Now that we have an algorithm
for finding clique squares (or cliques, equivalently), we can use it to solve the
original problem. (Of course, we can use other algorithms for cliques, too.)

3.4.1. An algorithm for finding packings of segments. The reduction of
the problem has already been described. More formally:

procedure PackingsToCliques(

k: integer; // the count of the small segments

λ0: integer; // the length of the big segment

(λ i)
k
i= 1: sequence of integers; // the lengths of the small segments

A: matrix; // a binary matrix λ0 x k

var n: integer; // the size of the matrix B

var B: matrix; // the binary matrix n x n

var (rm)nm= 1: sequence of integers; // the rows of the 1s of A

var (cm)nm= 1: sequence of integers // the columns of the 1s of A

);

var

m ′, m ′′: integer; // indices

elem: boolean; // the current element of B

begin

n := the count of the units of A;

(rm)nm= 1 := the row indices of the units of A;

(cm)nm= 1 := the column indices of the units of A;

for m ′ := 1 to n do for m ′′ := 1 to n do begin

elem := not Can1sBeTogether
(
cm ′ , cm ′′ , rm ′ , rm ′′ ,λm ′ ,λm ′′

)
;

// 0 = false; 1 = true

B[m ′, m ′′] := elem;

B[m ′′, m ′] := elem;

end;

end;

40

Cliques, Packings of Segments and Binary Matrices

function Can1sBeTogether(

i1, i2: integer; // column indices

j1, j 2: integer; // row indices

λ1, λ2: integer; // lengths of segments

): boolean;

begin

if i1 = i2
then Result := (j1 = j 2)

else Result := (j1 - j 2) /∈ (-λ1; λ2)

end;

The PackingsToCliques procedure reformulates the packing problem in
terms of clique squares. The Can1sBeTogether function checks if some two
units of A can take part in the same packing; this is possible, when they
coincide or are from different columns whose small segments do not overlap.

function CliqueSquareToPacking(

ClSq: set of integers; // the clique square

(rm)nm= 1: sequence of integers; // the rows of the 1s of A

(cm)nm= 1: sequence of integers // the columns of the 1s of A

): sequence of integers; // the packing

var

(m i)
k
i= 1: sequence of integers;

begin

if ClSq = {} then

Result := empty sequence

else begin

(m i)
k
i= 1 := the sequence of the elements of ClSq ordered

in such a way that cm
i
= i, ∀i∈{1,2,. . .,k};

Result :=
(
rm

i

)k

i= 1
;

end;

end;

The CliqueSquareToPacking function translates solution back to the origi-
nal formulation. Obtaining the sequence (m i)

k
i = 1 requires some kind of sorting,

which can be avoided through carefully numbering the units of A and imple-
menting sets.

41

Dimcho S.Dimov, Dobromir P.Kralchev, Alexander P. Penev

function FindPackingOfSegments(

k: integer; // the count of the small segments

λ0: integer; // the length of the big segment

(λ i)
k
i= 1: sequence of integers; // the lengths of the small segments

A: matrix // a binary matrix λ0 x k

): sequence of integers; // the packing

var

n: integer;

(rm)nm= 1: sequence of integers; // the rows of the 1s of A

(cm)nm= 1: sequence of integers // the columns of the 1s of A

B: matrix; // a binary matrix n x n

ClSq: set of integers; // a clique square

begin

PackingsToCliques
(
k, λ0 , (λ i)

k
i= 1 , A, n, B, (rm)nm= 1 , (cm)nm= 1

)
;

ClSq := FindCliqueSquareInMatrix(n, B, k);

Result := CliqueSquareToPacking
(
ClSq , (rm)nm= 1 , (cm)nm= 1

)
;

end;

The FindPackingOfSegments routine accepts the input data (a sequence
λ1 , λ2 , . . . , λk and a matrix A with λ0 rows and k columns), then constructs
the matrix B as described above and searches B for a clique square of a size k.
It returns either the sequence of rows of units of A that form a packing or an
empty sequence (if there is no packing).

3.4.2. Experiments with the packing algorithm. The described algorithm
was implemented and tested. The parameter which affects the running-time
most is n — the count of the units of the matrix A.

A series of matrices were generated at random for each n: for each density α
from 10% to 90% at intervals of 10% a few dozens of matrices with N = n/α
elements were sampled (several matrices were processed for each pair <k, λ0>,
λ0 = N/k, where kmax =

√
N and k = 0.1 kmax , 0.2 kmax , . . . , kmax). For

each matrix the numbers λ1 , λ2 , . . . , λk were chosen at random in such a

way that
k∑

i = 1

λi ≤ λ0 . The running-time limit was set to 10 s. The results are

summarized in table 2.

42

Cliques, Packings of Segments and Binary Matrices

Percentages of results Maximal and average running-time (ms)

n

found
not

stopped
found not found total

found
max avg max avg max avg

500 68.7% 5.6% 25.8% 7800 785 9990 9990 10060 3681
600 65.8% 5.1% 29.1% 6100 1089 9990 9990 10060 4148
700 65.3% 3.6% 31.1% 6920 1519 9990 9990 10060 4469
800 68.2% 4.9% 26.9% 9290 2058 9990 9990 10060 4591
900 66.9% 5.1% 28.0% 9230 2414 9990 9990 10060 4935

1000 65.8% 6.2% 28.0% 8080 3033 9990 9990 10060 5428

Table 2. Running-time of the reflexive packing algorithm.

Most remarks about the algorithm for clique squares are valid here, too.
The main difference is that the new algorithm is somewhat slower due to the
additional processing of data. The percentage of ‘found’ cases here is much
greater (and slowly decreases), because the matrices B which are passed to
FindCliqueSquareInMatrix are not uniformly distributed.

It is important to know the reliabilty of the algorithm, that is, the proba-
bility of a correct answer.

Slow ‘found’ Slow ‘not found’ ‘Found’ Positive ‘stopped’
n from all from all from slow from all Reliability

(sfa) (snfa) (ffs) (psfa)

500 0.0% 5.6% 0.0% 0.0% 100.0%
600 0.0% 5.1% 0.0% 0.0% 100.0%
700 0.0% 3.6% 0.0% 0.0% 100.0%
800 0.4% 4.9% 8.3% 2.2% 97.8%
900 0.2% 5.1% 4.2% 1.2% 98.8%

1000 0.0% 6.2% 0.0% 0.0% 100.0%

Table 3. Reliability of the reflexive packing algorithm.

A slow test case is one whose running-time is over 90% of the limit.
In the table above:

s sfa is the percentage of the slow ‘found’ answers from all the tests.
s snfa is the percentage of the slow ‘not found’ answers from all the tests.
s ffs is the percentage of the slow ‘found’ answers from all the slow answers,

ffs =
sfa

sfa + snfa
·

Assume that ffs is approximately equal to the percentage of the tests that have
a packing from all the ‘stopped’ cases.

43

Dimcho S.Dimov, Dobromir P.Kralchev, Alexander P. Penev

s psfa is the percentage of the ‘stopped’ cases that have a packing from all the
tests,

psfa ≈ ffs . stopped,

where the value of stopped is taken from table 2. These are the wrong answers.
s All the other answers are correct, that is,

reliabilty = 1− psfa.

Reliabilty has never fallen below 97%.

4. Conclusion

Classical searching techniques combined with self-monitoring enabled us
to construct a relatively fast and reliable algorithm for finding packings of
segments. Its average time for big matrices is about 5 s and its reliabilty is
above 97%, which is enough for most cases met in practice.

References

[1] Dobromir Kralchev, Dimcho Dimov, Alexander Penev, Packings of seg-
ments, Scientific Conference “Mathematics, Informatics & Computer sci-
ence”, devoted to 20 years mathematics and informatics in “St. Kiril
and Methodii” University, Veliko Tarnovo, Bulgaria, 2006, May 12–13,
pp. 69–74 (in Bulgarian).

[2] M. R. Garey, D. S. Johnson, Computers and Intractibility, a guide to the
theory of NP-completeness, W. H. Freeman and Co., SanFrancisco, 1979.

[3] Dimcho Dimov, Dobromir Kralchev, Alexander Penev, Stanimir Stanchev,
Existence of solutions to the assignment problem, International Con-
ference on Automatics and Informatics, Sofia, May 30 – June 2, 2001,
pp. I-81 – I-83.

44

Cliques, Packings of Segments and Binary Matrices

Dimcho S. Dimov, Alexander P. Penev Received 14 December 2006
“Paissii Hilendarski” University
Dept. of Mathematics and Informatics
236 Bulgaria Blvd.
4000 Plovdiv, Bulgaria
e-mail: apenev@pu.acad.bg

Dobromir P. Kralchev
University of Food Technologies
Dept. of Informatics and Statistics
26 Maritsa Blvd.
4000 Plovdiv, Bulgaria
e-mail: dobromir kralchev@abv.bg

ÊËÈÊÈ, ÏÀÊÅÒÈÐÀÍÅ ÍÀ ÎÒÑÅ×ÊÈ
È ÄÂÎÈ×ÍÈ ÌÀÒÐÈÖÈ

Äèì÷î Äèìîâ, Äîáðîìèð Êðàë÷åâ, Àëåêñàíäúð Ïåíåâ

Ðåçþìå. Ïîðàäè ãîëÿìîòî ðàçíîîáðàçèå îò ïðèëîæåíèÿ çàäà÷àòà çà
ïàêåòèðàíå ïðèâëå÷å âíèìàíèåòî íè. ×ðåç èíòåðïðåòàöèÿ â òåðìèíèòå íà
òåîðèÿòà íà ãðàôèòå (òúðñåíå íà êëèêè â ãðàô) çàäà÷àòà ñå ñâåæäà äî
òúðñåíå íà ïîäìàòðèöà îò îïðåäåëåí âèä. Kîíñòðóèðàí å ñàìîíàáëþäàâàù
ñå àëãîðèòúì � èäåÿ, óäîáíà çà çàäà÷è, âúçíèêâàùè â ïðàêòèêàòà.

45

