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Abstract. Some properties of the partially projectable vector fields
are proved and their help is used to determine the structure of the prod-
uct P. There are specified requirements for the metric on the differentia-
tion allowing metricizing of a manifold with a semi-tangential structure.
It is proved that the three-dimensional manifold with a semi-tangential
structure is locally conformal to an Euclidean one.
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We suppose that F is a differentiable manifold of class C*°, B is a submani-
fold of E of the same class (dimE = m + n, dim B = n), where 0 : E — B
is a submersion. Regarding o, local triviality of E is required. If T'B is the
tangential differentiation of B then the point set

M = {o(p), &op),P | P € E, &) — a tangent vector to B in point o(p)}
is a manifold with a semi-tangential structure [1].

It is possible to introduce local coordinates (u’,y*, s*) of point p= (o(p),

§otp),P); @ = 1,2,...,n, a = 1,2,...,m. The coordinates u® determine the
location of point o(p) from base B, while s* determines the location of point
pin layer So(p) = {q | ¢ € E,0(q) = o(p)}. s* =0 are the local equations of
base B in E. If ;) is in two coordinate surroundings simultaneously, then the
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relation between the corresponding coordinates is:

T=ei@)
1) y =y 2l 5

s = 0% (ak, ).
The objective of the following publication is to demonstrate how 91 can
be metricized if F is in possession of the appropriate metrics.

Structure of the product P. The vector field on E : 2 = z* a?u' + @ £a
is called partially projectable if x* are functions, depending only on the variables
u”. In particular % are exactly that kind of vector fields. In other words we
have o,y (z) = xi(ui)(%)ﬂ(m. There holds the following:

Proposition 1. The partial projectability is retained at an arbitrary ad-
missible change of the variables, which is determined by the first and the third
equations of (1).

Proof. The partial projectability of the vector field x means that the
. . . X

components of the matrix block X; in the matrix column ( X1>’ composed
2

by the coordinates of the z field, depend only on the variables u’. After the
substitution in E : (u%,s%) — (u',3%), according to the first and the third
o

B

basis {%7 %} of the coordinates of z, the following matrix column has been
defined

equations of (1), let the Jacobian be . In that case, with respect to the

—’y‘lﬂolel —+ ’y_ng

That proves the proposition. (I
If # = 2'52 and 2 = 2° ;2 are projectable, then the commutator [z, z] is

also a projectable vector field. Consequently, the totality of projectable vector
fields on E, which will be called horizontal from now on, is Lie algebra. So
in each point of E there has been defined the following horizontal distribution
H:0.,(H) = Hy,). Let V be Kero, .

The elements of V : A = A*(u,, sb)a% will be called vertical, and V' - will
be called a vertical distribution.

On the basis of the partial projectability definition of a vector field, there
follows
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Proposition 2. 1. Ifz = z° a?ﬂ + x° aia is partially projectable and

A=A a(Za is vertical, then the commutator [z, A] is a vertical vector field.
2. The distribution V is integrable. The integral surface in any point of E is a

layer over the point o(p).

Proof. We have X(4) = (X! a?n Ab 4+ Xe 82@ Ab)% and
A(X)=A° £a Xb%. Consequently [X, A] = X (A) — A(X) is a vertical field.
The second part of the statement is proved in [1]. O

The availability of two distributions in F determines the structure of the

product P. According to the basis {%, a%a} we have the following form of

0 —Ep
matrix of degree m. Then according to {%, 52 } we obtain

(B 0
b <—2’Y_1ﬁ —E2> '

Taking into consideration Propositions 1 and 2, there follows that P is in-
tegrable if and only if the horizontal distribution contains projectable vector
fields only.

P: (El 0 ), where Fj is the single matrix of degree n and Fs is the single

Metrics on M. In [2] we showed that if a partially projectable metric
9= (9ap), @,3=1,2,...,n+m is assigned on E

g A

AT B

where g1 = (gij)v A= (gia)a B = (gab)a Za] = 1a2a RN CL,b = n+17 ceey M,
det g1.det B # 0, it can be expanded to the following ¢g¥¢ in M

og1 | g1 A
EC . .
g . g1 0 . 0 )
| AT |0 : B |

0 is a zero matrix column, where dg; = >_ y'd;g1.
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If A =0 then we will say that ¢ is in a canonical form. The metric g¥¢
is canonical if and only if the two distributions in F are orthogonal.

Theorem 1. If h is a partially projectable metric on FE, then it is possible
to introduce a canonical metric on .

Proof. We use the fact that h(2, 2), = h(Z, 2) ), Poo. =0, 0P
at any point p and we define g : g(X,Y) = [h(X,Y) + h(PX, PY)]. In this
case g induces metric g; on the horizontal distribution:

g ( o 0 > g<a 0 5 0 > h< 0 0 )
N5 5% = 2705 % =hl 35 7%
out’ Ouk » ou Ouk o(p) out’ Ouk o(p)

By analogy ¢g induces metric B on the vertical distribution

g 0 g 0

where gl(%7%)20 and B(a, 8):0. 0

Theorem 2. If the Riemannian metric g on E is partially projectable and
the vertical distribution is one-dimensional, then it is possible to introduce local
coordinates in the vicinity of a point, with respect to which the metric 9T will
be in a canonical form.

Proof. A local basis in any point of the coordinate vicinity is {%7 %},
i=1,2,...,n. In that case, from the condition det(gq,3) # 0 follows g 1+1 nt+1 =
g(%7 %) # 0. We substitute (@*,3) for (u',s):

u' =1

s = \@").3, A@*) #0.

Respectively, the Jacobian is:

1

M A oo A A
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where all the remaining elements equal zero, whereas \; = 22. The new local

- our
basis {%, %} is represented by means of the old one in this way:
0 0 0
= — )\
ow 0w os
0 0
— =i
s 0Os

Consequently we have

_ a 0
Jin+1 = 9(ﬁ7 %) = Mgin+1 + Nignt1,n+1] -

Subsequently, we apply the conditions
Jint1 =G2n42 =+ =Innt1 =0
This system is equivalent to
(2) Gin+1 + ANigntinti =0 .
From the first equation (i = 1) of the system (2) we find

(@) = —/Mdﬂl +C@?, ..., u") .
gn+1,n+l

We determine the function C(?,...,u") from the second equation of (2)

9 n — —n
92,n+1 + 2 [— / gl’iﬂdﬂl + C’(ug, e W) g1+ =0

g7z+1,n+1
accurated to a new function D(w3,...,u"). This process continues until we
have exhausted all equations from (2), i.e. we have found A(@) . O

Corollary. If the Riemannian metric in the differentiation E is partially
projectable, then the basis B, with respect to the Levi-Civita connection, ge-
nerated by this metric, is a totally geodesic submanifold in E [3].

As we have shown in [2], if ¢ is a partially projectable metric on manifold
E, then from the components of g there has been determined the matrix

91314
AT B
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as the matrix blocks g; and B are symmetrical, and the elements of g; de-
pend only on the variables u*(i = 1,2,...,n). The matrix corresponds to the
expanded lift g¥¢ of the metric g

91 1 g1 A

EC . . .
g . gl . 0 . 0

| AT 0 : B

This matrix has degree 2n + m and if (ggc) = Jg1, then 991 = (Y"On+ngir) =

(y"%gik). The components of the constant tensor field f from type (1,1
determine the matrix

where FE is a one-dimensional block of degree n. The empty spaces mean zero
matrix blocks. The metric g¥C is pure, i.e. fJ gfg = fg gEC . The purity
condition of ¢¥¢ proves to be very important. From that follows

Theorem 3. If g is a partially projectable metric, then the partial deriva-
tives of the components of g¥C are pure objects with relation to f:

(3) fgawgg'?:fg agg$7 a7ﬂ77:1727~”72n+m'

Proof. We write the equations (3) in an equivalent form, taking into con-
sideration the specific type of the matrix of f:

=6 i k=1,2,...,n.

This leads to the following equivalent notation of (3):

(4) FE Onyaghy = F3T 00gh iy -
Subsequently we take into consideration that for any function )
oQ oQ oQ
ai = a5 an W = 5 0 nt+a" = 5 -
Q=575 Ot oy Ot Q=52
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We find that the components of the matrix blocks dg; and ¢g; do not depend
on the variables s%, and those of A and B do not depend on y’. It must be
verified under these conditions that for all values of «, (3,~, obtained in the
process of describing the sequence 1,2,...;n,n+1,...,2n;2n+1,...,2n+m,
the equations in (4) are identically fulfilled. O

Corollary 1. Since f§ = const, then for the linear connection V, the con-
dition V f = 0 is equivalent to purity of the connection coefficients in relation
to f. In our case the purity of 6agBE,YC leads to purity of the corresponding
Christoffel symbols, generated by gfﬁc . Consequently, the semi-tangential ten-
sor f is transferred in a parallel way in relation to the Levi-Civita connection,
determined by g®C.

Corollary 2. In any point of 9 the pair {I, f}, where I is an identical
transformation, determines a representation of algebra R(e), €2 = 0. For this
reason, the quadratic form with coefficients gfgc is interpreted as a real model

of such g over R(e) (see [1]). The coefficients of g are analytical functions over
R(¢). That is why we agree to call g¥C an analytical metric.

The next example is an illustration of what has been stated up to this point.
In it, the stratified manifold F is two-dimensional with a one-dimensional basis
and layers. Let the linear element of F, corresponding to the metric of g is

dr* = du® + B(u)ds®, B(u) >0.

We interpret E as a surface with a constant curvature in the three-dimen-
sional Euclidean space. In the case of a sphere or a pseudosphere, let a fixed
meridian (for example s = 0) be the basis B, and let the parallels be one-
dimensional layers. When B(u) = u? we can consider E as a stratification of
the circumferences

22 4y =
over R: s =0, x =wucoss, y=usins.

The metric g is partially projectable and because of the condition

(2)- ()
- (2) - (2))-
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which is a projectable part. In that case the expanded metric ¢ over 9t has
a linear element
*
dr? = du.dy + B(u)ds* .

For this example, the semi-tangential structure over 9 has a rank of 1.
For 9 the only Christoffel symbols for g€ are

{ 133 }:;B/((Z)) and { 323 }:—;B'(u).

It means that, with relation to the Levi-Civita connection for g¥¢ there

follows 5 5 5 5
3 2
Vi (50) =1 05 foo Vo (a0) = o

and 8Q is an absolutely parallel vector field.
Y

Let R be the corresponding Riemannian tensor curvature. The only nonzero
component R is
(B')? —2BB"
4B '
The corresponding Ricci tensor S also has only one single component, distinct
from zero:

Rizz1 =

1
S = §R1331 .

The scalar curvature at any point of 9 is equal to zero.

Theorem 4. The three-dimensional manifold 9 is locally conformal of
an Euclidean manifold.

Proof. Let v = p(u) = [ %du and 1 (v) is the reverse function of p(u).

Then we obtain
dr? = (dv.dy + ds®).B(y(v)) .

In particular, if B(u) = cos? u we have
% du.dy
2 _ .2 2| _ 2
dr* = cos” u |:COSZ'LL +ds } =TT [dv.dy—&—ds } ,
v=tgu, cosu= ! O
- g ) - 1 + ’U2 .
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METPUKU BbPXY MHOI'OOBPA3UA
C ITOJIVAOIINPATEJ/IHA CTPYKTVYPA

A. Xpucros

Pesrome. Jlokazanu ca HAKOUM CBOMCTBA HA YACTUIHO HPOEKTUPYEMHUTE
BEKTODHH T0JIETa U C TAXHA [OMOIII € ONpe/iesieHa CTPYKTYPa Ha TPON3BEIeHNE
P. Tlocouenu ca n3UCKBaHUs 33 METPUKATA BbPXY PA3CIOEHUETO, TO3BOJISBAIIA
MeTpHu3UpaHe Ha MHOrooGpasue ¢ MOJyJIonuparesHa crpykrypa. JlokazaHo e,
Y€ TPEMEPHOTO MHOT0OOpa3ue ¢ MOy IONHUPATENHA CTPYKTYPa € JTOKATHO-KOH-
dHOpMHO HA €BKJINUI0BO.
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