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Abstract. Some properties of the partially projectable vector fields
are proved and their help is used to determine the structure of the prod-
uct P . There are specified requirements for the metric on the differentia-
tion allowing metricizing of a manifold with a semi-tangential structure.
It is proved that the three-dimensional manifold with a semi-tangential
structure is locally conformal to an Euclidean one.
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We suppose that E is a differentiable manifold of class C∞, B is a submani-
fold of E of the same class (dim E = m + n, dim B = n), where σ : E → B
is a submersion. Regarding σ, local triviality of E is required. If TB is the
tangential differentiation of B then the point set

M = {σ(p), ξσ(p), p | p ∈ E, ξσ(p) − a tangent vector to B in point σ(p)}

is a manifold with a semi-tangential structure [1].
It is possible to introduce local coordinates (ui, yi, sa) of point

∗
p = (σ(p),

ξσ(p), p), i = 1, 2, . . . , n, a = 1, 2, . . . , m. The coordinates ui determine the
location of point σ(p) from base B, while sa determines the location of point
p in layer Sσ(p) = {q | q ∈ E, σ(q) = σ(p)}. sa = 0 are the local equations of
base B in E. If

∗
p is in two coordinate surroundings simultaneously, then the
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relation between the corresponding coordinates is:

(1)

ui = ϕi(uj)

yi =
∑ ∂ϕi(uj)

∂uk
.yk

sa = θa(uk, sb) .

The objective of the following publication is to demonstrate how M can
be metricized if E is in possession of the appropriate metrics.

Structure of the product P . The vector field on E : x = xi ∂
∂ui +xa ∂

∂sa

is called partially projectable if xi are functions, depending only on the variables
uk. In particular ∂

∂uk are exactly that kind of vector fields. In other words we
have σ∗p(x) = xi(ui)( ∂

∂ui )σ(p). There holds the following:

Proposition 1. The partial projectability is retained at an arbitrary ad-
missible change of the variables, which is determined by the first and the third
equations of (1).

Proof. The partial projectability of the vector field x means that the

components of the matrix block X1 in the matrix column
(

X1

X2

)
, composed

by the coordinates of the x field, depend only on the variables ui. After the
substitution in E : (ui, sa) → (ui, sa), according to the first and the third

equations of (1), let the Jacobian be
(

α 0
β γ

)
. In that case, with respect to the

basis { ∂
∂ui ,

∂
∂sa } of the coordinates of x, the following matrix column has been

defined 


α−1.X1

. . . . . . . . .
−γ−1βα−1X1 + γ−1X2


 .

That proves the proposition. ¤
If x = xi ∂

∂ui and z = zi ∂
∂ui are projectable, then the commutator [x, z] is

also a projectable vector field. Consequently, the totality of projectable vector
fields on E, which will be called horizontal from now on, is Lie algebra. So
in each point of E there has been defined the following horizontal distribution
H : σ∗p(H) = Hσ(p). Let V be Ker σ∗ .

The elements of V : A = Aa(ui, sb) ∂
∂sa will be called vertical, and V - will

be called a vertical distribution.
On the basis of the partial projectability definition of a vector field, there

follows
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Proposition 2. 1. If x = xi ∂
∂ui + xa ∂

∂sa is partially projectable and

A = Aa ∂
∂sa is vertical, then the commutator [x, A] is a vertical vector field.

2. The distribution V is integrable. The integral surface in any point of E is a
layer over the point σ(p).

Proof. We have X(A) = (Xi ∂
∂ui A

b + Xa ∂
∂sa Ab) ∂

∂sb and
A(X) = Aa ∂

∂sa Xb ∂
∂sb . Consequently [X,A] = X(A)−A(X) is a vertical field.

The second part of the statement is proved in [1]. ¤
The availability of two distributions in E determines the structure of the

product P . According to the basis { ∂
∂ui ,

∂
∂sa } we have the following form of

P :
(

E1 0
0 −E2

)
, where E1 is the single matrix of degree n and E2 is the single

matrix of degree m. Then according to { ∂
∂ui ,

∂
∂sa } we obtain

P :
(

E1 0
−2γ−1β −E2

)
.

Taking into consideration Propositions 1 and 2, there follows that P is in-
tegrable if and only if the horizontal distribution contains projectable vector
fields only.

Metrics on M. In [2] we showed that if a partially projectable metric
g = (gαβ), α, β = 1, 2, . . . , n+m is assigned on E

g :




g1

... A
. . . . . . .

AT
... B


 ,

where g1 = (gij), A = (gia), B = (gab), i, j = 1, 2, . . . , n, a, b = n+1, . . . , n+m,
det g1. detB 6= 0, it can be expanded to the following gEC in M

gEC :




∂g1 g1

... A
. . . . . . . . . .

g1 0
... 0

. . . . . . . . . .

AT 0
... B




,

0 is a zero matrix column, where ∂g1 =
∑

yi∂ig1.
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If A = 0 then we will say that gEC is in a canonical form. The metric gEC

is canonical if and only if the two distributions in E are orthogonal.

Theorem 1. If h is a partially projectable metric on E, then it is possible
to introduce a canonical metric on M.

Proof. We use the fact that h( ∂
∂u , ∂

∂u )p = h( ∂
∂u , ∂

∂u )σ(p), P ◦ σ∗ = σ∗ ◦ P

at any point p and we define g : g(X, Y ) = 1
2 [h(X, Y ) + h(PX,PY )]. In this

case g induces metric g1 on the horizontal distribution:

g1

(
∂

∂ui
,

∂

∂uk

)

p

= g

(
σ∗

∂

∂ui
, σ∗

∂

∂uk

)

σ(p)

= h

(
∂

∂ui
,

∂

∂uk

)

σ(p)

By analogy g induces metric B on the vertical distribution

B

(
∂

∂sa
,

∂

∂sb

)
= h

(
∂

∂sa
,

∂

∂sb

)
,

where g1

(
∂

∂ui ,
∂

∂sa

)
= 0 and B

(
∂

∂ui ,
∂

∂sa

)
= 0 . ¤

Theorem 2. If the Riemannian metric g on E is partially projectable and
the vertical distribution is one-dimensional, then it is possible to introduce local
coordinates in the vicinity of a point, with respect to which the metric M will
be in a canonical form.

Proof. A local basis in any point of the coordinate vicinity is { ∂
∂ui ,

∂
∂s},

i = 1, 2, . . . , n. In that case, from the condition det(gαβ) 6= 0 follows gn+1,n+1 =
g( ∂

∂s , ∂
∂s ) 6= 0. We substitute (ui, s) for (ui, s):

ui = ui

s = λ(uk).s, λ(uk) 6= 0 .

Respectively, the Jacobian is:



1
...

1
...

. . .
...

1
...

. . . . . . . . . . . .
... . . .

λ1 λ2 . . . λn

... λ




,
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where all the remaining elements equal zero, whereas λi = ∂λ
∂ui . The new local

basis { ∂
∂ui ,

∂
∂s} is represented by means of the old one in this way:

∂

∂ui
=

∂

∂ui
+ λi

∂

∂s
∂

∂s
= λ

∂

∂s
.

Consequently we have

gi,n+1 = g(
∂

∂ui
,

∂

∂s
) = λ[gi,n+1 + λign+1,n+1] .

Subsequently, we apply the conditions

g1,n+1 = g2,n+2 = . . . = gn,n+1 = 0 .

This system is equivalent to

(2) gi,n+1 + λign+i,n+i = 0 .

From the first equation (i = 1) of the system (2) we find

λ(u) = −
∫

g1,n+i

gn+1,n+1
du1 + C(u2, . . . , un) .

We determine the function C(u2, . . . , un) from the second equation of (2)

g2,n+1 +
∂

∂u2

[
−

∫
g1,n+1

gn+1,n+1
du1 + C(u2, . . . , un)

]
gn+1,n+1 = 0

accurated to a new function D(u3, . . . , un). This process continues until we
have exhausted all equations from (2), i.e. we have found λ(u) . ¤

Corollary. If the Riemannian metric in the differentiation E is partially
projectable, then the basis B, with respect to the Levi-Civita connection, ge-
nerated by this metric, is a totally geodesic submanifold in E [3].

As we have shown in [2], if g is a partially projectable metric on manifold
E, then from the components of g there has been determined the matrix

g :




g1

... A
. . . . . . .

AT
... B


 ,

61



A. H. Hristov

as the matrix blocks g1 and B are symmetrical, and the elements of g1 de-
pend only on the variables ui(i = 1, 2, . . . , n). The matrix corresponds to the
expanded lift gEC of the metric g

gEC :




∂g1

... g1

... A
. . . . . . . . . . .

g1

... 0
... 0

. . . . . . . . . . .

AT
... 0

... B




.

This matrix has degree 2n + m and if (gEC
ij ) = ∂g1, then ∂g1 = (yn∂n+hgik) =

(yn ∂
∂yh gik). The components of the constant tensor field f from type (1,1)

determine the matrix

f :




...
...

. . . . . . . . . . .

E
...

...
. . . . . . . . . . .

...
...




,

where E is a one-dimensional block of degree n. The empty spaces mean zero
matrix blocks. The metric gEC is pure, i.e. fσ

α gEC
σβ = fσ

β gEC
ασ . The purity

condition of gEC proves to be very important. From that follows

Theorem 3. If g is a partially projectable metric, then the partial deriva-
tives of the components of gEC are pure objects with relation to f :

(3) f$
α ∂$gEC

βγ = f$
β ∂αgEC

$γ , α, β, γ = 1, 2, . . . , 2n+m .

Proof. We write the equations (3) in an equivalent form, taking into con-
sideration the specific type of the matrix of f :

fn+i
k = δi

k, i, k = 1, 2, . . . , n .

This leads to the following equivalent notation of (3):

(4) fn+i
α ∂n+ig

EC
βγ = fn+i

β ∂αgEC
n+i,γ .

Subsequently we take into consideration that for any function Q

∂iQ =
∂Q

∂ui
, ∂n+iQ =

∂Q

∂yi
, ∂2n+aQ =

∂Q

∂sa
.
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We find that the components of the matrix blocks ∂g1 and g1 do not depend
on the variables sa, and those of A and B do not depend on yi. It must be
verified under these conditions that for all values of α, β, γ, obtained in the
process of describing the sequence 1, 2, . . . ;n, n + 1, . . . , 2n; 2n + 1, . . . , 2n + m,
the equations in (4) are identically fulfilled. ¤

Corollary 1. Since fα
β = const, then for the linear connection ∇, the con-

dition ∇f = 0 is equivalent to purity of the connection coefficients in relation
to f . In our case the purity of ∂αgEC

βγ leads to purity of the corresponding

Christoffel symbols, generated by gEC
αβ . Consequently, the semi-tangential ten-

sor f is transferred in a parallel way in relation to the Levi-Civita connection,
determined by gEC .

Corollary 2. In any point of M the pair {I, f}, where I is an identical
transformation, determines a representation of algebra R(ε), ε2 = 0. For this
reason, the quadratic form with coefficients gEC

αβ is interpreted as a real model

of such
∗
g over R(ε) (see [1]). The coefficients of

∗
g are analytical functions over

R(ε). That is why we agree to call gEC an analytical metric.

The next example is an illustration of what has been stated up to this point.
In it, the stratified manifold E is two-dimensional with a one-dimensional basis
and layers. Let the linear element of E, corresponding to the metric of g is

dτ2 = du2 + B(u)ds2, B(u) > 0 .

We interpret E as a surface with a constant curvature in the three-dimen-
sional Euclidean space. In the case of a sphere or a pseudosphere, let a fixed
meridian (for example s = 0) be the basis B, and let the parallels be one-
dimensional layers. When B(u) = u2 we can consider E as a stratification of
the circumferences

x2 + y2 = u2

over R : s = 0, x = u cos s, y = u sin s.
The metric g is partially projectable and because of the condition

σ∗

(
∂

∂u

)
=

∂

∂u
, σ∗

(
∂

∂s

)
= 0

there follows

g

(
σ∗

(
∂

∂u

)
, σ∗

(
∂

∂s

))
= 1
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which is a projectable part. In that case the expanded metric gEC over M has
a linear element

d
∗
τ2 = du.dy + B(u)ds2 .

For this example, the semi-tangential structure over M has a rank of 1.
For M the only Christoffel symbols for gEC are

{
3
13

}
=

1
2

B
′
(u)

B(u)
and

{
2
33

}
= −1

2
B
′
(u).

It means that, with relation to the Levi-Civita connection for gEC there
follows

∇ ∂
∂u

(
∂

∂s

)
=

{
3
13

}
∂

∂s
, ∇ ∂

∂s

(
∂

∂s

)
=

{
2
33

}
∂

∂y
,

and ∂
∂y is an absolutely parallel vector field.

Let R be the corresponding Riemannian tensor curvature. The only nonzero
component R is

R1331 =
(B

′
)2 − 2BB

′′

4B
.

The corresponding Ricci tensor S also has only one single component, distinct
from zero:

S11 =
1
B

R1331 .

The scalar curvature at any point of M is equal to zero.

Theorem 4. The three-dimensional manifold M is locally conformal of
an Euclidean manifold.

Proof. Let v = ϕ(u) =
∫

1
B(u)du and ψ(v) is the reverse function of ϕ(u).

Then we obtain
d
∗
τ2 = (dv.dy + ds2).B(ψ(v)) .

In particular, if B(u) = cos2 u we have

d
∗
τ2 = cos2 u

[
du.dy

cos2 u
+ ds2

]
=

1
1 + v2

[
dv.dy + ds2

]
,

v = tg u, cos2 u =
1

1 + v2
. ¤
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ÌÅÒÐÈÊÈ ÂÚÐÕÓ ÌÍÎÃÎÎÁÐÀÇÈß
Ñ ÏÎËÓÄÎÏÈÐÀÒÅËÍÀ ÑÒÐÓÊÒÓÐÀ

À. Õðèñòîâ

Ðåçþìå. Äîêàçàíè ñà íÿêîè ñâîéñòâà íà ÷àñòè÷íî ïðîåêòèðóåìèòå
âåêòîðíè ïîëåòà è ñ òÿõíà ïîìîù å îïðåäåëåíà ñòðóêòóðà íà ïðîèçâåäåíèå
P . Ïîñî÷åíè ñà èçèñêâàíèÿ çà ìåòðèêàòà âúðõó ðàçñëîåíèåòî, ïîçâîëÿâàùà
ìåòðèçèðàíå íà ìíîãîîáðàçèå ñ ïîëóäîïèðàòåëíà ñòðóêòóðà. Äîêàçàíî å,
÷å òðèìåðíîòî ìíîãîîáðàçèå ñ ïîëóäîïèðàòåëíà ñòðóêòóðà å ëîêàëíî-êîí-
ôîðìíî íà åâêëèäîâî.
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