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Abstract. We propose a new, heuristic algorithm for the rook
problem. The algorithm is reflexive: it examines its own running-time,
which is in correlation with the output.
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1. Essence of the rook problem

You have a chessboard N x N , some of its fields are prohibitted and the
others are permitted. Can you put N rooks on the permitted fields of the
chessboard so that they do not attack one another?

This is usually called the rook problem. Many real-world problems can be
reduced to it: assigning jobs to workers or classrooms to teachers, etc.

The rook problem is equivalent to the perfect matching problem [1].
The next formulation of the rook problem turns out to be most suitable

for our purpose: You have a binary matrix N x N . Any N units in different
rows and columns form an assignment. Can you find at least one assignment?

So the rook problem is a special case of the assignment problem. There are
algorithms for the general case — for example, the Hungarian algorithm [2];
but one can use the special features of the binary case to construct faster
algorithms, suitable for a big N .

The rook problem consists of three parts:
a) Does at least one assignment exist?
b) How many assignments exist?
c) Find at least one assignment (if there is any).
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The first part is especially important for this reason: many problems are
OR-compositions of rook subproblems and can be solved following the next
schemes:

— examine the subproblems one by one trying to find an assignment until
you find one or there are no subproblems left;

— examine the subproblems one by one: if there is an assignment, then
find it and stop searching, else go to the next subproblem.

The second scheme is faster. That is why, it is important to construct a
quick algorithm for the first part of the rook problem. Moreover, the third part
can be reduced to the first one [3].

Consider also the fact that N is rather big in practical problems: N ≈ 103.
This is the upper limit we want to reach.

To sum it up: our purpose is to find an algorithm that solves the existence
part of the rook problem; the algorithm must be fast enough for N ≤ 103.

2. Construction of the algorithm

2.1. Analysis of old algorithms
An algorithm for finding perfect matchings is given in [4].
The second part — about the count of the assignments, resp. the count

of the perfect matchings — can be reduced to calculating a permanent. There
are approximate formulae in [5]. You can find interesting algorithms for this
problem in [6] and [7].

Algorithms for the existence of an assignment are given in [8], [9] and [10].
A detailed analysis of the rook problem can be read in [11] and [12].
We shall accelerate the algorithm from [9]. (In fact, [9] does not contain

an explicit formulation of the algorithm, but the theorems, managing different
cases, are arranged in the same way as the steps of the algorithm. An explicit
formulation of the algorithm is given in [11] and [12].)

A rectangle of zeros is any submatrix containing only zeros. The basic
idea in [9] is that you can search for a big rectangle of zeros instead of an
assignment.

Theorem 1. There is an assignment in a binary matrix of a size N x N
if and only if there is not a rectangle of zeros of a size P x Q with P + Q > N .

Searching for a big rectangle of zeros, the algorithm checks each zero for
a possible participation in such a rectangle. To do so, the algorithm explores
some submatrices (according to the position of the zero being checked) and
makes recursive calls when necessary.

68



A Reflexive Algorithm for the Rook Problem

The details of the algorithm are unimportant for the current study. You
can find them in [9], [11] and [12].

Density (%) 10 20 30 40 50 60 70 80 90

‘Yes’ 42 46 50 53 56 28 24 18 14

‘No’ 12 13 14 14 15 20 18 16 13

Average running-time (in centiseconds) for a 1000 x 1000 matrix.

The density is the percentage of the units of the matrix. The last two rows
contain the average running-time depending on the density of the matrix and
the output of the algorithm (‘Yes’ means there is an assignment, ‘No’ means
there is not).

Obviously, the running-time of the algorithm depends on its output: the
positive answer (‘Yes’) consumes more time. So the algorithm can be accele-
rated through restricting its running-time. A new algorithm is thus obtained
consisting of two levels: the lower level is the old algorithm, the higher level is
a monitor that can stop the low-level algorithm, if it consumes too much time.
The levels are united by a common goal, so they form a single self-monitoring
algorithm, hence the name ‘reflexive’.

2.2. A reflexive algorithm for the rook problem
Input:

A: the binary matrix of a size N x N;

T: the maximal running-time allowed.

Question: Does there exist an assignment in the matrix A?

Output: ‘Yes’ or ‘No’ — the answer to the question.

Actions (of the higher level):

1. Run the low-level algorithm that searches A

for a rectangle of zeros of a size P x Q with P + Q > N.

2. Set a timer to measure out T seconds.

3. Wait for the lower level to finish

or for the timer to fire.

4. If the lower level finishes within T seconds,

stop the timer and return the answer of the lower level.

5. If time is up, terminate the lower level

and return a positive answer (‘Yes’).
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The longer T , the less the probability for a wrong answer, but the longer
the running-time of the new algorithm. The reasonable values of T are between
0.20 sec. (the maximal value at the ‘No’ row of the table) and 0.30 sec. (the
average running-time for a 1000 x 1000 matrix, regardless of the output). These
values of T should decrease the running-time twice.

Of course, the actual running-time depends on the hardware and the size N
of the matrix, so the value of T must be different for each N and must be
chosen after having the actual running-time of the lower level tested. It is easy
to implement the testing procedure in the higher level so that T becomes a
variable whose value is dynamically adjusted during a series of calls.

It is possible to make the actions of the higher level dependent on the
density of the matrix. The correlation between the running-time and the answer
of the lower level is stronger for rare matrices (of a density up to 50%). The
higher level could first inspect the density ρ of the matrix A and set the timer
only if ρ ≤ 50%.

3. Conclusion

Reflexive algorithms are suitable when the output is in correlation with
some easily recognizable characteristic of the algorithm. Running-time can
often be used in this part, but it is not one and only. Other characteristics,
such as memory consumption, may also be useful.
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ÐÅÔËÅÊÑÈÂÅÍ ÀËÃÎÐÈÒÚÌ
ÇÀ ÇÀÄÀ×ÀÒÀ ÇÀ ÒÎÏÎÂÅÒÅ

Äîáðîìèð Êðàë÷åâ, Äèì÷î Äèìîâ, Àëåêñàíäúð Ïåíåâ

Ðåçþìå. Ïðåäëàãàìå íîâ, åâðèñòè÷åí àëãîðèòúì çà çàäà÷àòà çà òîïî-
âåòå. Àëãîðèòúìúò å ðåôëåêñèâåí: íàáëþäàâà ñâîåòî âðåìå çà èçïúëíåíèå,
êîåòî ñå íàìèðà âúâ âçàèìíà âðúçêà ñ ðåçóëòàòà.
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