
PLOVDIV UNIVERSITY �PAISSII HILENDARSKI�, BULGARIA
SCIENTIFIC WORKS, VOL. 35, BOOK 3, 2007 � MATHEMATICS

ÏËÎÂÄÈÂÑÊÈ ÓÍÈÂÅÐÑÈÒÅÒ �ÏÀÈÑÈÉ ÕÈËÅÍÄÀÐÑÊÈ�, ÁÚËÃÀÐÈß
ÍÀÓ×ÍÈ ÒÐÓÄÎÂÅ, ÒÎÌ 35, ÊÍ. 3, 2007 � ÌÀÒÅÌÀÒÈÊÀ

ON THE MOVING BOUNDARY HITTING
PROBABILITY FOR A BROWNIAN MOTION

Dobromir P.Kralchev

Abstract. We consider the probability that a Brownian motion hits
a moving two-sided boundary by a certain moment. In some special cases
we find formulae for this probability.

Key words: Brownian motion, hitting time, Laplace transformation
Mathematics Subject Classification 2000: Primary 60J65; Secondary

60G40

1. Introduction

Let (Bs)s≥ t be a Brownian motion with unit volatility and no drift,
Bt = x. Let T be an arbitrary fixed time-horizon, T ≥ t, and g(s) < f(s) be two
smooth real functions, defined at least for s ∈ [t;T ], such that g(t) ≤ x ≤ f(t).
Consider the hitting time τ = inf{s ∈ [t; T ] | Bs = f(s) or Bs = g(s)},
where inf ∅ = T . We define the functions

vf (t, x) = Pt, x (Bτ = f (τ)) ,

vg(t, x) = Pt, x (Bτ = g (τ)) .

In 1960 T. W. Anderson [1] discovered the crossing probabilities for rec-
tilinear boundaries with no horizon — two straight lines that are parallel or
cross on the left of the origin. In 1964 A. V. Skorokhod [2] found the proba-
bility of going out of the domain through a little “door” at the horizon; his
formula holds for rectilinear boundaries. In 1967 L. A. Shepp [3] found a for-
mula for the expectation of the first hitting time for a two-sided symmetric
square-root boundary with no horizon. In 1971 A. A. Novikov [4] solved the
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same problem for a one-sided square-root boundary. In 1981 he published
a formula [5] for the probability of going out of the domain through the hori-
zon; it holds for curvilinear boundaries that are close to each other. A little later
in the same year A. V. Mel’nikov and D. I. Hadz̆iev [6] published a solution to
a similar problem for Gaussian martingales. In 1999 A. Novikov, V. Frishling
and N. Kordzakhia [7] found approximate formulae for the crossing probabili-
ties both for a one-sided and a two-sided boundary with a horizon; they were
able to derive exact formulae for a one-sided and a two-sided symmetric square-
root boundary.

In this paper we find formulae for vf (t, x) and vg(t, x) for parallel rectilinear
boundaries and arbitrary square-root boundaries.

2. Calculation of vf (t, x)

According to [8], the function vf (t, x) is a solution to the problem

(1)

∂vf

∂t
+

1
2
· ∂2vf

∂x2
= 0, t < T, x ∈ (g(t); f(t))

vf (T, x) = 0, x ∈ (g(T ); f(T ))
vf (t, g(t)) = 0, t ≤ T
vf (t, f(t)) = 1, t ≤ T .

The equation is simple enough, but the boundary is too complicated. To
get a rectangular boundary, set

h(t) = f(t)− g(t) > 0, vf (t, x) = v1

(
t,

x− g(t)
h(t)

)
.

Then the function v1(t, x) is a solution to the problem

(2)

∂v1

∂t
− h ′(t) . x + g ′(t)

h(t)
· ∂v1

∂x
+

1
2
· 1

h2(t)
· ∂2v1

∂x2
= 0

v1(T, x) = 0, 0 < x < 1
v1(t, 0) = 0, t ≤ T
v1(t, 1) = 1, t ≤ T .

2.1. Two “parallel” curves: h(t) = c = const., ∀t ≤ T (c > 0).
Therefore h ′(t) = 0 and the equation takes the form

∂v1

∂t
− g ′(t)

c
· ∂v1

∂x
+

1
2c2

· ∂2v1

∂x2
= 0.
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2.1.1. Two parallel straight lines: g(t) = bt+c1, ∀t ≤ T . Then f(t) = bt+c2,
c2 > c1 , c = c2 − c1 > 0, g ′(t) = b, and the equation becomes

∂v1

∂t
− b

c
· ∂v1

∂x
+

1
2c2

· ∂2v1

∂x2
= 0.

Let κ =
1

2c2
> 0 , λ =

b

c
. Then we have to solve the problem

∂v1

∂t
− λ · ∂v1

∂x
+ κ · ∂2v1

∂x2
= 0

v1(T, x) = 0, ∀x ∈ (0; 1)
v1(t, 0) = 0, ∀t ∈ (−∞; T ]
v1(t, 1) = 1, ∀t ∈ (−∞; T ] .

We would prefer an initial condition, so we set

v2(t, x) = v1(T − t, x)

and reformulate the problem as follows:

− ∂v2

∂t
− λ · ∂v2

∂x
+ κ · ∂2v2

∂x2
= 0

v2(0, x) = 0, ∀x ∈ (0; 1)
v2(t, 0) = 0, ∀t ∈ [0;+∞)
v2(t, 1) = 1, ∀t ∈ [0;+∞).

After the Laplace transformation V (p, x) = L[v2(t, x)] we get the problem

(3)

κ . V ′′ − λ . V ′ − p . V = 0

V (0) = 0

V (1) =
1
p

(V is considered a function of x, and p is just a parameter).
The corresponding characteristic equation is κν2 − λν − p = 0 with

D = λ2 + 4κp > 0, because p > 0, so ν1, 2 =
λ±

√
λ2 + 4κp

2κ
and

V (x) =

(
C1 . cosh

√
λ2 + 4κp . x

2κ
+ C2 . sinh

√
λ2 + 4κp . x

2κ

)
exp

(
λx

2κ

)
.
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From V (0) = 0 and V (1) =
1
p

we find C1 = 0, C2 =
exp

(− λ
2κ

)

p . sinh
√

λ2+4κp

2κ

. So

V (x) =
sinh

√
λ2+4κp . x

2κ

p . sinh
√

λ2+4κp

2κ

exp
(

λ(x− 1)
2κ

)
.

Thus we have just proved the following theorem (where L−1 stands for the
reversed Laplace transformation):

Theorem 1. If g(t) = bt + c1 , f(t) = bt + c2 , ∀t ≤ T , and c2 > c1, then

vf (t, x) = v1

(
t,

x− bt− c1

c

)
, v1(t, x) = v2(T − t, x), v2(t, x) = L−1 [V (p, x)],

V (p, x) =
sinh

√
λ2+4κp . x

2κ

p . sinh
√

λ2+4κp

2κ

exp
(

λ(x− 1)
2κ

)
, κ =

1
2c2

, λ =
b

c
, c = c2 − c1.

Fortunately, the function V (p, x) can be explicitly transformed to the func-
tion v2(t, x) and then back to vf (t, x). According to [9], we have

v2(t, x) = L−1 [V (p, x)] =
∑
pn

res
pn

V (p, x) exp(pt) =

=


 sinh λx

2κ

sinh λ
2κ

+ 2κπ

∞∑
n =1

(−1)n. n. sin(nπx). exp

{
−

(
κn2π2+ λ2

4κ

)
t

}

κn2π2+ λ2
4κ


 exp

(
λ(x−1)

2κ

)
.

The single addend is the residuum at p 0 = 0. Its value must be considered
equal to x when λ = 0. The n-th term of the infinite sum is the residuum at
pn = −κn2π2 − λ2

4κ , n ∈ N . Then

v1(t, x) = v2(T − t, x) =

=


 sinh λx

2κ

sinh λ
2κ

+ 2κπ

∞∑
n =1

(−1)n.n. sin(nπx). exp

{(
κn2π2+ λ2

4κ

)
(t−T )

}

κn2π2+ λ2
4κ


 exp

(
λ(x−1)

2κ

)
.

Substituting κ and λ in the last expression, we get
 sinh(bcx)

sinh(bc)
+ 2π

∞∑
n =1

(−1)n. n. sin(nπx). exp

{
(n2π2+ b2c2) t−T

2c2

}

n2π2+ b2c2


 exp {bc(x−1)}.
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Finally, the probability we are looking for is equal to

vf (t, x) = v1

(
t,

x− bt− c1

c

)

and can be found from the expression above.

Theorem 2. If g(t) = bt + c1 , f(t) = bt + c2 , ∀t ≤ T , and c2 > c1, then

vf (t, x) = e
b(x−bt−c2 )

.


 sinh{b(x−bt−c1 )}

sinh(bc)
+

+ 2π

∞∑
n =1

(−1)n. n . sin

(
nπ

x−bt−c1
c

)
. exp

{
(n2π2+ b2c2) t−T

2c2

}

n2π2+ b2c2


 ,

where the single addend is equal to
x− c1

c when b = 0, and c = c2 − c1.

To check, let T → +∞; we may do this, because the series is convergent
uniformly with respect to T ∈ [t; +∞); thus we obtain a formula for the case
when there is no horizon.

Corollary 1. If g(t) = bt + c1 , f(t) = bt + c2 , ∀t ∈ R , c = c2 − c1 > 0
and there is no horizon, then

vf (t, x) =





e2b(x− bt− c1 ) − 1
e2bc − 1

for b 6= 0;

x− c1
c

for b = 0.

The formula for b = 0 is well-known from the martingale theory. The
formula for b 6= 0 can be found (in different denotation) in [1] as Theorem 4.1
on page 175.

Again, let c1 → −∞ in Corollary 1; thus we get the solution for a one-sided
boundary with no horizon.

Corollary 2. If f(t) = bt + c2 , ∀t ∈ R , and there are no lower boundary
and no horizon, then

vf (t, x) =
{

e2b(x− bt− c2 ) for b > 0;
1 for b ≤ 0.

Unfortunately, this technique cannot be applied to Theorem 2: the series
is not uniformly convergent with respect to c1 ∈ (−∞; x0],∀x0 ≤ x− bt.

Corollary 2 can be verified as well by means of Kendall’s famous formula.
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2.2. Square-root boundaries. If g(t)= a
√

t+γ + c0, f(t) = b
√

t+γ + c0,
∀t ∈ (−γ; T ] , b > a, T+γ > 0, then the problem (2) takes the form

∂v1

∂t
− 1

2(t + γ)
·
(

x +
a

b− a

)
· ∂v1

∂x
+

1
2
· 1

(b− a)2(t + γ)
· ∂2v1

∂x2
= 0

v1(T, x) = 0, ∀x ∈ (0; 1)
v1(t, 0) = 0, ∀t ∈ (−γ ; T ]
v1(t, 1) = 1, ∀t ∈ (−γ ; T ].

It is essential that the multiplier (t + γ) is raised to the same power in both
denominators; this happens for square-root boundaries only. That is why, by
multiplying the equation by 2(t + γ) we can ensure that the variable t takes
part in only one coefficient. Thus we obtain

2(t + γ) · ∂v1

∂t
−

(
x +

a

b− a

)
· ∂v1

∂x
+

1
(b− a)2

· ∂2v1

∂x2
= 0.

We can get rid of the multiplier (t + γ) by means of a suitable substitution.
Let v1(t, x) = v2

(
1
2 ln(t + γ), x

)
; then the function v2(t, x) is a solution to the

problem

∂v2

∂t
−

(
x +

a

b− a

)
· ∂v2

∂x
+

1
(b− a)2

· ∂2v2

∂x2
= 0

v2

(
1
2 ln(T + γ), x

)
= 0, ∀x ∈ (0; 1)

v2(t, 0) = 0, ∀t ∈ (−∞; 1
2 ln(T + γ)

]

v2(t, 1) = 1, ∀t ∈ (−∞; 1
2 ln(T + γ)

]
.

Finally, let v2(t, x) = v3

(− t + 1
2 ln(T + γ), x

)
in order to obtain an initial con-

dition instead of the final one. Therefore we have

− ∂v3

∂t
−

(
x +

a

b− a

)
· ∂v3

∂x
+

1
(b− a)2

· ∂2v3

∂x2
= 0

v3(0, x) = 0, ∀x ∈ (0; 1)

v3(t, 0) = 0, ∀t ∈ [0;+∞)

v3(t, 1) = 1, ∀t ∈ [0;+∞).
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Apply the Laplace transformation: V (p, x) = L[v3(t, x)]. Then

1
(b− a)2

· V ′′ −
(

x +
a

b− a

)
· V ′ − p · V = 0

V (0) = 0

V (1) =
1
p

(V is considered a function of x, and p is just a parameter).
This boundary-value problem has a unique solution; the solution is an

analytical function: V (x) =
∞∑

n = 0
cnxn. The differential equation turns into the

following equation for the coefficients of the series:

1
(b− a)2

(n + 2)(n + 1)cn+2 −
(

ncn +
a

b− a
(n + 1)cn+1

)
− pcn = 0, n∈N0;

i.e. cn+2 =
a(b− a)
n + 2

cn+1 +
(b− a)2(n + p)
(n + 2)(n + 1)

cn , n∈N0 .

We have to find c0 and c1 in order to specify the sequence (cn)∞n = 0 .
From V (0) = 0 it follows that c0 = 0. Let c1 = c, cn = cαn , n ∈ N0 . Then

α0 = 0, α1 = 1, αn+2 =
a(b− a)
n + 2

αn+1 +
(b− a)2(n + p)
(n + 2)(n + 1)

αn , ∀n ∈ N0;

V (x) = c .
∞∑

n = 0
αnxn = c .

∞∑
n = 1

αnxn ; from the boundary condition V (1) =
1
p

it follows that c =
1

p .
∞∑

n = 1
αn

. We have just proved the following

Theorem 3. If g(t) = a
√

t+γ + c0, f(t) = b
√

t+γ + c0, ∀t∈ (−γ; T ], b>a,

T+ γ > 0, then vf (t, x) = v1

(
t,

x− c0− a
√

t+γ

( b− a)
√

t+γ

)
, v1(t, x) = v2

(
1
2 ln(t+γ), x

)
,

where v2(t, x) = v3

(− t + 1
2 ln(T + γ), x

)
and v3(t, x) = L−1 [V (p, x)] ;

α0 = 0, α1 = 1, αn+2 =
a(b− a)
n + 2

αn+1 +
(b− a)2(n + p)
(n + 2)(n + 1)

αn , ∀n ∈ N0 ;

V (p, x) = c .

∞∑
n = 1

αnxn, c =
1

p .
∞∑

n = 1
αn

·
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When a = 0, we can obtain an explicit formula for (αn)∞n = 0 . Indeed,

α0 = 0, α1 = 1, αn+2 =
b 2(n + p)

(n + 2)(n + 1)
αn , ∀n ∈ N 0; so α

2m
= 0,∀m ∈ N 0 .

Let βm = α
2m+1

, ∀m ∈ N 0; then β0 = 1, βm+1 =
b 2(2m + 1 + p)

(2m + 3)(2m + 2)
βm ,

i.e. βm =
b 2(2m− 1 + p)
(2m + 1)(2m)

βm−1 , hence βm = b 2m

(2m+1)!

m∏
m̃ = 1

(2m̃− 1 + p) .

Corollary 3. If g(t) = c0 and f(t) = b
√

t + γ + c0 , ∀t∈ (−γ; T ], b > 0,

T+ γ > 0, then vf (t, x)= v1

(
t,

x− c0

b
√

t+γ

)
, where v1(t, x)= v2

(
1
2 ln(t+γ), x

)
,

v2(t, x) = v3

(− t+ 1
2 ln(T+γ) x

)
, v3(t, x) = L−1 [V (p, x)] ; c =

1

p .
∞∑

m = 0
βm

,

β0 =1, βm =
b 2m

(2m+1)!

m∏

m̃ = 1

(2m̃− 1 + p) , ∀m∈N; V (p, x)= c .

∞∑
m = 0

βmx2m+1
.

3. Calculation of vg(t, x)

This function satisfies requirements similar to (1) save that vg(t, f(t)) = 0,
vg(t, g(t)) = 1. This change propagates through the calculations.

3.1. Two parallel straight lines. Now (3) changes in this way:

κ . V ′′ − λ . V ′ − p . V = 0

V (0) =
1
p

V (1) = 0.

After the substitution V (x) = W (1− x) we get the problem

κ . W ′′ + λ . W ′ − p .W = 0

W (0) = 0

W (1) =
1
p
·

This is the same problem as (3), only λ has changed its sign. Then

W (x) =
sinh

√
λ2+4κp . x

2κ

p . sinh
√

λ2+4κp

2κ

exp
(

λ(1− x)
2κ

)
,
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V (x) =
sinh

√
λ2+4κp . (1− x)

2κ

p . sinh
√

λ2+4κp

2κ

exp
(

λx

2κ

)
,

which proves the next statement.

Theorem 4. If g(t) = bt + c1 , f(t) = bt + c2 , ∀t ≤ T , and c2 > c1, then

vg(t, x) = v1

(
t,

x− bt− c1

c

)
, v1(t, x) = v2(T − t, x), v2(t, x) = L−1 [V (p, x)],

V (p, x) =
sinh

√
λ2+4κp . (1−x)

2κ

p . sinh
√

λ2+4κp

2κ

exp
(

λx

2κ

)
, κ =

1
2c2

, λ =
b

c
, c = c2 − c1.

Theorem 5 can be deduced from Theorem 4 as Theorem 2 was deduced
from Theorem 1. Or we may notice that the changes in the formulae are equi-
valent to swapping the lower and the upper boundary: we replace x− g(t) with
f(t)− x and vice versa as well as b with −b in Theorem 2.

Theorem 5. If g(t) = bt + c1 , f(t) = bt + c2 , ∀t ≤ T , and c2 > c1, then

vg(t, x) = e
b(x−bt−c1 )

.


 sinh{b(bt+c2−x)}

sinh(bc)
+

+ 2π

∞∑
n =1

(−1)n. n . sin

(
nπ

bt+c2−x

c

)
. exp

{
(n2π2+ b2c2) t−T

2c2

}

n2π2+ b2c2


 ,

where the single addend is equal to
c2− x

c when b = 0, and c = c2 − c1.

Corollary 4. If g(t) = bt + c1 , f(t) = bt + c2 , ∀t ∈ R, c = c2 − c1 > 0
and there is no horizon, then

vg(t, x) =





e−2b(bt+ c2− x) − 1
e−2bc − 1

for b 6= 0;

c2 − x
c

for b = 0.

Corollary 5. If g(t) = bt + c1 , ∀t ∈ R, and there are no upper boundary
and no horizon, then

vg(t, x) =
{

e2b(x− bt− c1 ) for b < 0;
1 for b ≥ 0.
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3.2. Square-root boundaries.

Theorem 6. If g(t) = a
√

t+γ + c0, f(t) = b
√

t+γ + c0, ∀t∈ (−γ; T ], b>a,

T+ γ > 0, then vg(t, x) = v1

(
t,

x− c0− a
√

t+γ

( b− a)
√

t+γ

)
, v1(t, x) = v2

(
1
2 ln(t+γ), x

)
,

v2(t, x)= v3

(
– t+ 1

2 ln(T+γ), x
)
, v3(t, x)= L−1 [V (p, x)] , V (p, x)= W (p, 1– x);

α0 = 0, α1 = 1, αn+2 =
− b(b− a)

n + 2
αn+1 +

(b− a)2(n + p)
(n + 2)(n + 1)

αn , ∀n ∈ N0 ;

W (p, x) = c .

∞∑
n = 1

αnxn, c =
1

p .
∞∑

n = 1
αn

·

Corollary 6. If g(t) = a
√

t + γ + c0 and f(t) = c0 , ∀t∈ (−γ; T ], a < 0,

T+ γ > 0, then vg(t, x) = v1

(
t,

x− c0− a
√

t+γ

− a
√

t+γ

)
, v1(t, x)= v2

(
1
2 ln(t+γ), x

)
,

v2(t, x)= v3

(
– t+ 1

2 ln(T+γ), x
)
, v3(t, x)= L−1 [V (p, x)] , V (p, x)= W (p, 1– x);

β0 =1, βm =
(− a) 2m

(2m + 1)!

m∏

m̃ = 1

(2m̃− 1 + p), ∀m∈N; W (p, x)= c .

∞∑
m = 0

βmx2m+1,

c =
1

p .
∞∑

m = 0
βm

·

4. Numerical experiments

The formulae in this paper were programmed and tabulated. The re-
sults were compared with the values of the crossing probabilities calculated by
means of the Monte Carlo method and dynamical programming. The idea of
the last method is to calculate the crossing probabilities, beginning from the
horizon and moving to the starting moment step by step; for each t an array
of probabilities is calculated using the array of the previous step.

The three results agree with one another. So we have a numerical sup-
port of our formulae besides the theoretical one. The algorithm that uses the
formulae is the fastest one.

The functions V (p, x) and W (p, x) were written in the form of infinite
power series. Alternatively, they can be expressed in terms of some special
functions, for instance, the parabolic cylinder function (cf. [10]). For compu-
tational reasons, we preferred power series to special functions as well as a
sequence of simple substitutions to a single compound substitution.
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5. Conclusion

The propositions above give a comprehensive answer to the question about
the crossing probabilities in two special cases: rectilinear parallel boundaries
and square-root boundaries with a time-horizon. The obtained formulae are
suitable for programming: calculations based on them are fast enough.
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ÂÚÐÕÓ ÂÅÐÎßÒÍÎÑÒÒÀ ÇÀ ÄÎÑÒÈÃÀÍÅ
ÍÀ ÏÎÄÂÈÆÍÀ ÃÐÀÍÈÖÀ
ÎÒ ÁÐÀÓÍÎÂÎ ÄÂÈÆÅÍÈÅ

Äîáðîìèð Êðàë÷åâ

Ðåçþìå. Ðàçãëåæäàìå âåðîÿòíîñòòà Áðàóíîâî äâèæåíèå äà äîñòèãíå
ïîäâèæíà äâóñòðàííà ãðàíèöà äî îïðåäåëåí ìîìåíò. Â íÿêîè ÷àñòíè ñëó÷àè
èçâåæäàìå ôîðìóëè çà òàçè âåðîÿòíîñò.
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